Я не знаю, что такое этот эфир.
Итак, вопрос о существовании выделенной системы отсчета — покоящегося эфира — висел в воздухе. Может быть, стоит еще раз напомнить, что весь бой разгорелся вокруг принципа относительности.
Если движение какой-то системы (допустим, Земли) относительно эфира влияет на оптические явления — принцип Галилея в оптике несправедлив.
Если не влияет — напротив, справедлив.
По Френелю, движение не влияет «в первом порядке отношения v/c». Это утверждение называли иногда практическим принципом относительности.
Но вот в шестидесятых годах весь вопрос об эфире был поставлен совершенно по-новому, и это еще больше запутало дело.
Уже упоминалось, что Фарадей первым установил связь оптических и электромагнитных явлений. Значение его работ, однако, значительно шире. Он создал твердую экспериментальную основу для дальнейшего изучения электромагнетизма, и после него исследования в этой области стремительно развиваются. Можно сказать, что Фарадей в истории электричества — то же, что Галилей в механике.
После Галилея, естественно, должен был появиться Ньютон. И вот в 1865 году Джемс Кларк Максвелл создает законченную теорию электромагнитных явлений.
Сходство Максвелла с Ньютоном не только в том, что его работу можно поставить в один ряд с «Началами». Не только в том, что, так же как Ньютон, он создал стройную теорию совершенно нового класса явлений.
Открытие Максвелла явилось полным торжеством метода принципов, причем метод был использован в совершенно новой форме.
Если говорить совсем схематично, Максвелл сделал вот что. Он составил уравнения. Эти уравнения очень хорошо описывали все известные электромагнитные явления. Но это далеко не все.
Среди решений уравнений были такие, которые как будто не соответствовали ничему. Эти решения описывали электромагнитные волны, распространяющиеся в «пустом» пространстве. А во времена Максвелла подобные волны не были еще известны. Из уравнений следовало, что, во-первых, волны поперечны и, во-вторых, они распространяются с определенной конечной скоростью.
Что означают слова «электромагнитные волны поперечны»? Что в них колеблется? Из этих же уравнений следовало, что в электромагнитной волне должны колебаться векторы электрического и магнитного полей, причем векторы эти перпендикулярны к направлению распространения волны.
А откуда взял Максвелл «скорость волн»?
В его уравнении входила некая постоянная величина, размерность которой совпадала с размерностью скорости. И Максвелл сделал смелое предположение. Он допустил, что полученные из уравнений периодические решения описывают реальные электромагнитные волны. При этом неизвестная постоянная величина получила физический смысл — как скорость волн.
Эту величину можно было измерить чисто электромагнитным путем. Измерили. Оказалось, что она равна 310 тысячам километров в секунду. Как видите, число, довольно близкое к скорости света. Эти измерения, естественно, были не очень точны. Более поздние опыты показали, что скорость электромагнитных волн равна 299 796 километрам в секунду.
Но Максвелл пошел еще дальше. Мало того, что он постулировал существование тогда еще никому не известных электромагнитных волн. На основании того факта, что их гипотетическая скорость очень близка к скорости света, он выдвинул гипотезу, что свет — это тоже электромагнитные волны.
Это очень дерзкая, предельно неожиданная мысль. Поглядев, что «постоянная» в его уравнениях совпадает со скоростью света, Максвелл решил: «Здесь что-то скрыто. Вероятно, свет и мои электромагнитные волны — это одно и то же».
К теории Максвелла далеко не сразу пришло признание. Но к концу столетия все были убеждены в ее справедливости.
Что же произошло с эфиром после появления теории электромагнитных волн?
Ничего хорошего. После Максвелла к эфиру предъявили еще большие требования. Теперь уже и все электромагнитные явления надо было объяснять при помощи того же эфира.
С другой стороны, и сами опыты с электромагнитными процессами давали новые возможности проверки теории эфира.
…Подробный разговор о дальнейшей судьбе эфира, естественно, невозможен. Поэтому, может статься, вы не будете очень убеждены в неотвратимости выводов Эйнштейна.
Может быть, это и хорошо.
Прошу поверить, что самое простое — изложить схемы нескольких решающих опытов и объявить: «Вот в результате того-то и того-то гипотеза эфира стала неприемлемой». Это можно сделать очень убедительно, так что читатели поверят, причем тем охотнее, что все это правда. После такого рассказа остается обычно чувство легкого недоумения. «Как же все это не видели ученые того времени?»
Иногда закрадывается даже чувство известного превосходства над такими людьми, как Максвелл или Ньютон.
Автору кажется, что подобное понимание хуже самого черного невежества, и потому в нашей беседе он, автор, все время усиленно пытался охранить вас, читателей, от подобных иллюзий.
Если хорошо подумать, придется признать: почти все вопросы, затронутые в нашей беседе, разобраны неудовлетворительно. Это совершенно естественно, иначе и не могло быть, но об этом стоит все время помнить. В наибольшей степени последнее замечание относится к такой общей проблеме, как теория эфира. Мы можем только очень схематично коснуться основных затруднений, и следует честно признать: перед вами только очень плохой, неясный и грубый отпечаток той борьбы, которая бушевала в прошлом столетии. Причем не приходится сомневаться, что любой образованный физик середины XIX столетия спокойно разбил бы вас, если бы вы попытались доказать несостоятельность эфира только на основе нашего разговора.
…В прошлой главе мы остановились на хитроумной теории Френеля. Однако она касалась поведения эфира в сплошных средах. Френель объяснил, почему все опыты, в которых пытались уловить изменение оптических свойств сплошных сред относительно эфира, должны давать отклонения только «во втором порядке отношения v/c».
Но, может быть, осуществимы опыты без привлечения сплошных сред, и тогда эффект движения относительно эфира можно выловить «в первом порядке отношения v/c»?
Подобные опыты искали, но найти не могли. Природа как будто подшучивала над учеными.
Опыты, которые возможно было проделать, позволяли наблюдать движение относительно эфира, но только «во втором порядке отношения v/c».
Было предложено несколько принципиальных схем возможных опытов «первого порядка»[46], но все они оказались неосуществимыми из-за условий измерения.
С. И. Вавилов так характеризовал ситуацию: «Создается довольно курьезное положение. В неувлекаемом эфире должны существовать эффекты первого порядка… но измерить их нельзя».
Этот самый «курьез» и мучил физиков примерно полстолетия. А эфир пока жил потому, что против него не было решающих доводов.
Скорее даже наоборот. В интервале между созданием теории Френеля (частичное увлечение эфира в сплошных телах) и опытом Майкельсона (о котором мы сейчас расскажем) теория неувлекаемого эфира имела и крупные достижения.
Во-первых, аберрацию света теория неувлекаемого эфира объясняла сразу.
Во-вторых, эфир устоял против обвинения, что «в первом порядке» эффект движения относительно него не удавалось обнаружить.
Отсутствие эффектов «первого порядка» в опытах со сплошными средами объяснил, как помните, Френель; причем теория Френеля получила блестящее подтверждение. В 1851 году Физо сделал опыт по проверке теории Френеля. Мы не будем разбирать схемы этого опыта и только заметим — об эксперименте Физо не кто-нибудь, а сам Майкельсон написал: «Произведенный им опыт — один из самых остроумных, когда-либо сделанных физиками».
Так вот, опыт Физо дал точное совпадение с предсказаниями Френеля. Впоследствии Майкельсон проверил результаты Физо и снова убедился, что они правильны.
И наконец, в-третьих. В 1842 году Ганс Христиан Допплер, используя гипотезу неувлекаемого эфира, теоретически установил, что при движении источника или приемника световых сигналов относительно эфира частота световых волн (или цвет света), воспринимаемая наблюдателем, отлична от «истинной», когда приемник и источник света покоятся относительно эфира. И вскоре, исследуя спектры звезд, получили качественные подтверждения этого предсказания.
Вот схема эффекта Допплера в теории неувлекаемого эфира.
1. Приемник и источник неподвижны относительно эфира. Свет источника воспринимается в приемнике с частотой ω.
2. Источник покоится относительно эфира, а приемник движется со скоростью V. В приемнике отмечается, что свет имеет частоту ω′, отличную ω. (При сближении источника и приемника ω′ > ω; при удалении — ω′ < ω.)
3. Приемник покоится, источник движется с той же скоростью V. Свет воспринимается с частотой ω″, причем ω″ > ω, но не равна ω′, хотя относительная скорость источника и приемника не изменилась.
Вот последняя фраза очень важна. Если справедлива теория неувлекаемого эфира, то даже в том случае, когда относительная скорость источника и приемника одна и та же, воспринимаемая частота света различна в зависимости от того, движется ли относительно эфира приемник или же источник света.
Чтобы не очень отвлекаться, ограничимся замечанием, что, по Допплеру, теория эффекта изменения частоты воспринимаемых световых волн абсолютно аналогична соответствующему эффекту для звуковых волн. Это совершенно естественно, поскольку для звука существует неувлекаемый эфир — атмосфера.
И сейчас мы несколько отвлечемся, чтобы подробнее рассказать об эффекте Допплера. На это есть несколько причин. Но мы ограничимся ссылкой на две.
Во-первых, эффект Допплера играет исключительную роль в разнообразных областях физики. В частности, использование Допплер-эффекта — один из самых мощных экспериментальных методов современной астрофизики. А во-вторых, об эффекте Допплера почему-то у многих обычно смутное представление, хотя сущность явления очень просто понять.
Сейчас мы решим задачу примерно за 6–7-й классы средней школы. Задача совершенно точно отражает суть эффекта Допплера для звука, а также явилась бы совершенно точной аналогией Допплер-эффекта для световых волн, если бы была правильна теория неувлекаемого эфира.
Итак, есть некий порт A. От него со скоростью v удаляется некий корабль B. Естественно, скорость корабля определена относительно воды. По неким причинам связь между портом и кораблем поддерживается следующим не слишком удобным способом.
Через промежутки времени Δt начальник порта отправляет на корабль посыльные катера.
Капитан корабля делает то же самое. Он также отправляет катера в порт через интервалы Δt. Скорость катеров относительно воды обозначим c. Естественно, c > v. Иначе ни один катер из порта не попал бы на корабль.
Требуется узнать, какой интервал времени между двумя последующими приемами катеров из порта пройдет на корабле и каков интервал между приходами катеров в порту.
Найдем время, которое тратит катер, чтобы добраться из порта до корабля.
Если в момент отправления первого катера расстояние до корабля было a, то время пути катера определяется очевидным равенством:
S = c · t1пут = a + vt1пут, и отсюда:
t1пут = a/(c – v).
В момент, когда отправится следующий катер, корабль будет находиться уже на расстоянии a + Δt · v, и время пути этого катера, естественно, равно
t2пут = (a + Δt · v)/(c - v)
Если первый катер был отправлен в момент t0, а второй соответственно в момент t0 + Δt, то времена их прибытия на корабль соответственно:
t1прибыт = t0 + a/c – v;
t2прибыт = t0 + Δt + a + Δt · v/c – v;
А интервал времени между приемами катеров, очевидно, равен:
Δtприема = t2прибыт – t1прибыт = Δt(1 + v/c – v).
Или если ввести β = v/c:
Δtприема = Δt(1 + β/1 – β) = Δt/(1 – β).
Как видите, интервал между двумя приемами катеров больше, чем интервал между моментами их отправления. Это, конечно, совершенно понятно, потому что второй катер находился в худших условиях — ему нужно пройти бóльший путь, чем предыдущему.
Обратим теперь внимание, что в выражение для Δtприема не входит величина a — начальное расстояние корабля от порта. Иными словами, для любой пары катеров, следующих друг за другом, растяжение интервала между их прибытием на корабль определяется только отношением
(v/c).
Если корабль не удаляется, а приближается, достаточно изменить знак скорости корабля. Характер решения не изменится. (Надеюсь, что в этом читатели могут убедиться самостоятельно.)
Итак, Δtприема = Δt/(1±β).
Знаки – и + соответствуют удалению и приближению корабля.
Если ввести новую характеристику — частоту отправления и приема катеров, а она, естественно, определится как ν = 1/Δt, то мы получим:
νприема = νотправл(1±β).
Рассмотренный пример совершенно точно показывает, как изменится частота звуковых волн, если источник покоится относительно атмосферы, а приемник движется.
Если бы была правильна теория неувлекаемого эфира, точно так же должно было обстоять и с электромагнитными волнами.
Полагаю, что читатели смогут сами определить частоту приема в порту катеров, посланных с корабля, и получить формулу:
νприема = νотправл/(1±β).
Здесь + соответствует приближению, а – удалению корабля.
Как видите, хотя качественно в обоих случаях частота меняется одинаково, количественно должны наблюдаться разные результаты в зависимости от того, источник или приемник движутся относительно эфира, даже если скорость их относительно эфира одинакова[47].
Часто приходится читать, что, слушая рев сирены электропоезда, проезжающего мимо наблюдателя на полотне дороги, легко можно непосредственно наблюдать эффект Допплера.
Должен заметить, что, очевидно, это возможно лишь для людей с очень развитым слухом. Обычно же фиксируется не изменение частоты, а изменение громкости (интенсивности). Поэтому наблюдатели без особых музыкальных данных и несколько «испорченные» образованием отождествляют кривую изменения интенсивности звука с теоретически предсказанным изменением частоты и приходят к выводу, что кривая для изменения частоты в акустическом эффекте Допплера имеет примерно такой вид.
На самом же деле по оси ординат здесь откладывается интенсивность, а не частота.
Кривая же, характеризующая изменение частоты и обычно не воспринимаемая на слух, представлена на следующем рисунке.
ω — «истинная» частота сирены (то есть частота, наблюдаемая, если источник и наблюдатель находятся относительно атмосферы).
При скорости примерно 65 километров в час изменение высоты звука достигает приблизительно полутона (то есть вместо, скажем, ноты «до» мы должны услышать «до диез»). Однако поскольку сирена поезда редко дает «чистый» (монохроматичный) звук, вся наблюдаемая картина несколько хитрее. Могу повторить, что реально эффект Допплера без специальных лабораторных устройств наблюдать затруднительно, если вы не обладаете хорошим музыкальным слухом.
Вообще-то стóит добавить, что обычно наблюдаемая картина описывается несколько более сложными формулами, чем приведенные выше.
Мы рассмотрели те случаи, когда скорость направлена вдоль прямой, соединяющей источник и приемник. Когда это не так (а это почти всегда не так), вместо полной скорости v следует брать ее проекцию на прямую, соединяющую источник и приемник.
Мы ограничимся этим замечанием, отметив только, что, как показано на предыдущем рисунке, в момент, когда электричка проезжает мимо наблюдателя и проекция скорости на прямую, соединяющую наблюдателя и электричку, очевидно, равна нулю, воспринимаемая частота равна истинной.
Теперь можно обратить внимание на те любопытные следствия, что вытекают из эффекта Допплера для световых волн.
Когда приемник и источник света сближаются, воспринимаемая частота растет. Двигаясь со скоростью, достаточно близкой к скорости света, навстречу какой-либо звезде, мы увидим не ту спектральную часть ее излучения, что расположена в области видимых световых волн, а инфракрасную часть спектра или даже радиоволновую.
Теоретически вполне возможно увидеть яркое радужное сияние вокруг радиобашни, если только приближаться к ней со скоростью, сравнимой со световой.
Напротив, достаточно быстро удаляясь от источника, можно своими глазами наблюдать гамма-кванты. Какой-либо атомный котел явится в этом случае ярчайшим источником света.
Не помню, в каком именно научно-фантастическом романе некий хирург нашел способ изменять сетчатку глаза таким образом, что оказалось возможно непосредственно наблюдать электромагнитные колебания с большой длиной волны. Эффект Допплера открывает подобные возможности без оперативного вмешательства.
Все те выводы, что сейчас сделаны, остаются и в правильной теории эффекта Допплера, построенной на основе теории относительности. Можно сказать, что теория явления Допплера в схеме неувлекаемого эфира «почти правильна».
Однако есть и очень существенное отличие.
Во-первых, в теории неувлекаемого эфира, как мы видели, можно различить случаи: 1) приемник движется навстречу источнику со скоростью V относительно эфира; 2) приемник покоится, а источник двигается ему навстречу с той же скоростью V. В обоих случаях частота возрастет, но по-разному. Вспомнив формулы, приведенные выше, легко убедиться, что разность воспринимаемых частот по порядку величины равна β2.
В теории относительности, как будет видно из дальнейшего, вообще бессмысленно говорить о существовании какой-либо абсолютной системы отсчета — мирового эфира. Бессмысленно поэтому и различить эти два случая. Изменение частоты целиком определяется относительной скоростью источника и наблюдателя. Частота по-прежнему возрастает при сближении и падает при удалении.
Но формула для изменения частоты несколько трансформируется. А именно:
Во-вторых, точная теория эффекта Допплера, построенная на базе теории Эйнштейна, приводит к заключению, что воспринимаемая частота должна измениться даже в том случае, когда проекция скорости на прямую, соединяющую источник и приемник, равна нулю (электричка находится прямо против наблюдателя). Этот замечательный вывод, так называемый поперечный эффект Допплера, очень тесно связан с изменением хода времени в разных системах отсчета. Экспериментальное подтверждение этого предсказания теории сам Эйнштейн считал важнейшим доводом в ее пользу.
К сожалению, автор не знает, как в доступной форме изложить существо эффекта Допплера с точки зрения теории относительности. Поэтому в дальнейшем мы ограничимся только краткими замечаниями по поводу явления Допплера. Важнейшие же черты явления, пожалуй, отмечены в предыдущем кратком анализе.
Итак, возвращаясь к эфиру, можно сказать, что качественно теория эффекта Допплера, основанная на представлении о неувлекаемом эфире, совпадала с опытом. А точный анализ его был непосилен физикам XIX столетия, так как правильная формула для частоты отличается от той, что основана на представлении о неувлекаемом эфире на величину порядка (v/c)2.
Итак, несмотря на все трудности с эфиром, многие факты свидетельствовали за его бытие.
Аберрация света, экспериментальное подтверждение частичного увлечения по Френелю, эффект Допплера, наконец, почти вся волновая теория — все это, казалось бы, очень веские аргументы в пользу неувлекаемого эфира.
Обычно говорят: решающим доказательством справедливости теории служит правильное предсказание результатов новых экспериментов. Пример с теорией Френеля может убедить, что в таких вопросах нужно быть необычайно осторожным. Даже если теория подтверждается экспериментальными данными, все же, пока этот экспериментальный материал не станет весьма обширным, не может быть полной уверенности в ее истинности.
Ведь предсказал же Френель результат опытов Физо!
Зато, безусловно, опровергнуть теорию вполне возможно одним опытом.
И в 1881 году Майкельсон провел, наконец, первый опыт, позволяющий уловить эффект движения Земли относительно эфира «во втором порядке отношения v/c». Результат был отрицателен.
Движение Земли относительно эфира не влияло на оптические явления и «во втором порядке отношения v/c»!
В этом месте традиции предписывают автору и читателям замереть в благоговейном молчании.
«Сыроватый подвал Потсдамской астрофизической лаборатории. Уже давно погасли все огни. Город бюргеров спал мертвым сном, когда Альберт Абрагам Майкельсон закончил, наконец, отладку прибора. Помедлив мгновение, он слегка дрожащими пальцами включил источник света и приник к окошечку интерферометра.
Вряд ли прошло больше нескольких секунд, но он мог поклясться, что протекла вечность, пока его глаза напряженно искали ожидаемое смещение интерференционных полос. Еще одна вечность протекла, прежде чем он осознал, что эффекта нет.
Вместо бурной радости он чувствовал смертельную усталость. Радость придет позже; он знал это так же твердо, как то, что сейчас он закончил опыт, равного которому не было в истории физики».
Автор должен признаться, что когда-то он примерно так представлял себе научную работу и процесс крупного научного открытия.
На наше воображение легче всего действуют эффектные драматические сцены, и мы обычно отмечаем в своей памяти только подобные ситуации. Яблоко Исаака Ньютона, дуэли Яноша Бояи, отречение Галилео Галилея, гибель юного Эвариста Галуа, «эврика» Архимеда — все эти (и — увы! — часто только эти) разнообразные картины возникают в нашем сознании, когда речь заходит об ученых и их творчестве. В общем истинная романтика науки, романтика повседневного труда, несмотря на частые призывы помнить о ее существовании, как-то мало завоевала право на жизнь. Впрочем, это относится не только к науке. Штурм Джомолунгмы привлекает наше внимание куда больше, чем восхождение на какой-нибудь безвестный пик, даже если там были проявлены мужество и стойкость не меньшие, чем при покорении высочайшей вершины нашей планеты. То, что люди могут серьезно интересоваться такой ерундой, как выяснение проблемы — «кто первый вступил на вершину: Тенсинг или Хиллари?», очень четко рисует характер интересов многих «поклонников» альпинизма. Точно так же иные «болельщики от науки» увлекаются не работой, а «шумовыми эффектами».
Многие из «интересующихся физикой» знают имя Майкельсона не как одного из самых трудолюбивых и тонких экспериментаторов в истории науки, а как автора опыта, приведшего к созданию теории относительности.
Результат и только результат окружает имя Майкельсона ореолом святости в сознании очень большого числа «культурных» людей.
А вот что писал о своем опыте сам Майкельсон уже много лет спустя после окончания работы:
«Предполагали, что в случае, если этот опыт приведет к положительному результату, он даст возможность определить не только движение Земли по ее пути (вокруг Солнца. — В. С.), но и ее абсолютное движение в эфире. По различным веским причинам полагают, что Солнце, а за ним и все планеты движутся в определенном направлении через пространство со скоростью примерно 30 километров в секунду. Эта скорость не вполне точно определена, и я надеялся, что при помощи этого опыта мы будем иметь возможность измерить скорость движения всей солнечной системы в пространстве. Но так как результат опыта оказался отрицательным, задача еще ждет своего решения. Этот опыт имеет для меня исторический интерес, ибо именно для решения указанной задачи был изобретен интерферометр.
Вероятно, всякий согласится, что произведенная нами работа в достаточной степени вознаградила нас за отрицательный результат опыта тем, что привела к изобретению интерферометра».
Этот отрывок продиктован не только скромностью большого человека. Майкельсон был действительно очень разочарован отрицательным результатом своего эксперимента. Он рассчитывал одновременно установить движение солнечной системы в системе отсчета неподвижных звезд и подтвердить теорию неувлекаемого эфира.
Ни того, ни другого добиться не удалось. Опыт показал только, что теория неувлекаемого эфира не оправдывается. До создания теории относительности было еще очень далеко, и Майкельсон мог только констатировать, что результат опыта совершенно непонятен. Поэтому его разочарование было и искренне и естественно. Впрочем, он утешался тем, что изобрел действительно замечательный прибор — интерферометр.
Вообще стоило бы детально разобрать не только идею, но и теорию опыта Майкельсона. Но следует помнить, что точная теория этого эксперимента сравнительно мало напоминает общепринятую в изложениях схему. Достаточно заметить, что в первом сообщении сам Майкельсон приводит ошибочный расчет.
Если на основе теории неувлекаемого эфира правильно вычислить предполагаемый эффект, результат окажется вдвое меньше рассчитанного Майкельсоном.
Как указывает Майкельсон, идея опыта принадлежит Максвеллу, а схема (именно схема!) установки весьма проста.
По теории неувлекаемого эфира скорость света относительно эфира совершенно не зависит от движения источника относительно эфира. (Точно так же, как скорость звука в атмосфере не зависит от движения источника звука относительно атмосферы[48].) И если теория неувлекаемого эфира правильна, то должен существовать следующий любопытный эффект.
Рассмотрим источник света и зеркало, жестко закрепленные друг относительно друга. Они, естественно, как и всё в мире, погружены в море неувлекаемого эфира. Если эта система движется относительно эфира со скоростью V, то можно легко убедиться, что свет затратит на путь туда и обратно время, отличное от времени, которое требуется ему на тот же путь в случае, когда эта система покоится относительно эфира.
Собственно, на этом и основан эксперимент Майкельсона. В теории неувлекаемого эфира «строгое» описание опыта выглядит так[49].
По спокойной воде буксируется квадратный плот. (Квадратным он взят только для простоты дальнейших расчетов.)
Скорость плота относительно воды — V.
Из точки А одновременно бросаются в воду два спортсмена: пловец № 1 и пловец № 2. Оба имеют одинаковую скорость — с.
Пловец № 1 плывет к точке Д; пловец № 2 — к точке В. Достигнув этих точек, они поворачивают назад и плывут в точку А. Конечно, c > v, в противном случае плот просто уплывет от обоих спортсменов.
Требуется подсчитать время, которое затратил на свой путь каждый из пловцов. Задача, как видите, доступна семикласснику. Позвольте поэтому привести ее решение без пояснений.
Для пловца № 1:
1) tАДА = tАД + tДА;
2) c · tАД = l + v · tАД, tАД = l/c – v;
3) c · tДА = l – v · tДА, tДА = l/c + v;
4) tАДА = l/c – v + l/c + v = 2cl/c2 – v2 = 2l/c · 1/(1 – v2/c2).
Здесь 2l/c = t0 — время, которое затратил бы пловец на путь туда-обратно, если бы плот не двигался.
Если v/c << 1, то 1/(1 – v2/c2) ≈ (1 + v2/c2)[50]. Тогда время, затраченное пловцом № 1 на путь, равно:
tN1 = t0(1 + v2/c2).
Для пловца № 2 решение чуть-чуть сложнее. Кратчайшим путем из А в В будет гипотенуза треугольника АВВ1, где В1 — то положение, которое занимает конец плота в момент, когда пловец № 2 доплывает до В.
Если пловец № 2 умный, он с самого начала рассчитает свой путь, сделает упреждение на снос плота и «поплывет по гипотенузе». То же самое можно сказать о его обратном пути из В в А.
Время пути находится просто:
1) tАВА = tАВ + tВА = 2tАВ.
2) с2 · t2AB = l2 + v2 · t2АВ, t2АВ = l2/(c2 – v2);
3)
Снова, если v/c << 1, то
И окончательно в этом случае:
tN2 = t0(1 + v2/2c2).
(Заметим, что это время меньше, чем время пловца № 1.)
Как видите:
tN1 – tN2 = t0 · v2/2c2.
Пловец № 1 оказывается в менее выгодном положении, чем пловец № 2. Он вернется назад позже. Если плот повернется на 90°, не изменяя направления движения, пловцы обменяются ролями: № 1 окажется в роли № 2, а № 2 — в роли № 1. Тогда, естественно, пловец № 2 отстанет от пловца № 1.
А теперь достаточно:
заменить воду неувлекаемым эфиром;
плот — прибором Майкельсона, несущимся сквозь эфирное море вместе с Землей;
пловцов — световыми лучами.
И мы получим схему опыта Майкельсона.
Аналогия здесь совершенно точная. В нашем примере строго изложена элементарная теория опыта Майкельсона с точки зрения гипотезы неувлекаемого эфира. Но повторяю, реальная картина существенно усложняется из-за аберрации и преломления света в оптических приборах.
Итак, чтобы убедиться в движении Земли сквозь эфирное море, надо взять источник света и зеркало и измерить время, которое тратит световой луч на путь туда-обратно (см. рисунок на стр. 228). При вращении платформы прибора мы согласно сделанному расчету должны уловить, что время пути светового луча изменяется.
Наибольшее время на путь туда-обратно свет затратит, когда плечо AB параллельно движению Земли сквозь эфир; наименьшее — когда это плечо перпендикулярно (в этом случае «эфирный ветер» только несколько «сдувает» в сторону световой пучок). Если мы эту разницу поймаем, то убедимся в движении Земли сквозь эфир. Все очень просто.
Правда, если учесть, что предполагаемая разница времен составляла 1/100 000 000 времени пути светового луча[51], а свой путь в приборе (несколько метров) он пробегает примерно за стомиллионную долю секунды, может быть, станет яснее, насколько «прост» был опыт Майкельсона.
Максвелл считал практическое осуществление своей идеи абсолютно безнадежным делом, и это совершенно понятно. Ведь необходимая относительная точность измерения (10–8) означает, например, что интервал в несколько тысяч лет надо замерить с точностью до одной секунды.
Или другое сравнение.
Разница времен, которую взялся уловить Майкельсон, по порядку меньше времени, необходимого электрону, чтобы сделать один оборот вокруг ядра.
Трудно даже представить все невероятные препятствия, стоявшие на пути Майкельсона.
Может быть, достаточно указать только одно «симпатичное» обстоятельство. База прибора имела длину примерно 1 метр. Для того чтобы замечать изменение времени движения луча света с точностью 10–8, надо быть убежденным, что длина пути светового луча остается неизменной, по крайней мере с точностью 10–9. Иначе время пути светового луча могло бы меняться просто из-за изменения длины базы. Точность же 10–9 означает, что расстояние в 1 метр может изменяться не больше чем на 10 ангстрем! Напомним, что 10 ангстрем — это линейный размер 3–4 атомов, поставленных рядом.
Следовательно, малейший толчок, ничтожное изменение температуры — и база изменилась бы на значительно большую величину. На прибор Майкельсона в буквальном смысле слова нельзя было дышать! Чтобы избежать сотрясений, Майкельсон работал в подвале на тумбе, врытой в землю. Каменная плита, на которой была смонтирована установка, была положена на круглую деревянную пластину, плавающую в сосуде, наполненном ртутью.
Сотрясение удалось ликвидировать. Но как измерить время пути светового луча? Любые попытки непосредственного измерения обрекали, конечно, опыт на полную неудачу. И Майкельсон применил очень изящный прием. Он использовал эффект интерференции.
…Если пучок света раздвоить, а потом снова свести два полулуча в одну точку, на экране будет наблюдаться определенное чередование интерференционных полос.
На рисунке показан тот способ разделения луча, который использовал Майкельсон. Слабо посеребренная пластина частично отражает и частично пропускает свет.
Колебания в обоих световых лучах строго когерентны (синхронны), и, попадая на экран, световые волны интерферируют. Если разность путей строго постоянна, интерференционная картина, видимая в окошечко интерферометра, неизменна, поскольку она полностью определяется разностью времен хода световых пучков. Стоит чуть-чуть изменить разность путей, как характер наблюдаемых интерференционных полос изменится. Чему равно это самое «чуть-чуть»? Оказывается, можно добиться почти невероятной относительной точности — 10–10!
Это и использовал Майкельсон. В приборе он разделил пучок света на два взаимно перпендикулярных луча, а затем свел их вместе. В окошечке интерферометра наблюдалась какая-то интерференционная картина, чередование интерференционных полос. Пока все внешние условия оставались неизменными, интерференционные полосы также не изменялись. Майкельсон добился, что они оставались неизменными по нескольку часов.
Если теория неувлекаемого эфира верна, то, как мы видели, свету совсем не безразлично, распространяется он параллельно движению Земли сквозь эфир или перпендикулярно. На один и тот же путь он затратит различное время. Поэтому при повороте прибора на 90° («пловец № 1» и «пловец № 2» меняются местами) должно наблюдаться изменение интерференционной картины. И тем не менее…
Уже в первом своем опыте Майкельсон установил, что при повороте прибора на 90° никакого ожидаемого систематического смещения интерференционных полос не наблюдается. Результат прямо противоречил выводам теории.
…Когда речь шла о такой важной проблеме, как теория эфира, казалось бы неоднократно подтвержденная, отрицательный результат опыта в первую очередь вызывал сомнения в том, насколько чисто был сделан эксперимент.
Между прочим, С. И. Вавилов замечает, что точность измерений в первом опыте была слишком мала и Майкельсон скорее угадал, чем строго обосновал правильный вывод. Поэтому прежде всего Майкельсон решил проверить собственные наблюдения.
Через шесть лет (он совместно с Морлеем) повторяет свой опыт на более совершенной установке. На этот раз он как будто безусловно убеждается в отсутствии эффекта. Однако были высказаны новые сомнения.
К работам, имеющим такое значение, как опыт Майкельсона, физики вообще относятся крайне недоверчиво. И опыт Майкельсона со все возрастающей точностью повторяли еще много раз, вплоть до 1927 (!) года.
Конечный приговор всей совокупности экспериментов гласил: «Майкельсон прав! Никакого эффекта движения Земли сквозь эфир нет, никакого „эфирного ветра“ не существует!»
Заметьте — 1927 год! Прошло уже 40 лет со времени первого опыта Майкельсона и 22 года от дня создания теории относительности. Уже проделаны десятки различных экспериментов, подтверждающих эту теорию. Но результат Майкельсона все снова и снова настойчиво проверяют ученые.
Подобная скрупулезная придирчивость очень характерна для физики вообще. Нет такого общего положения в ее истории, которое не подвергалось бы самой жестокой экспериментальной проверке, и трудно сказать, когда, наконец, наступает тот благословенный для теории момент, когда можно считать, что она безусловно справедлива…
Из опыта следовало, что гипотеза неувлекаемого эфира в чем-то несправедлива, в чем-то ее надо менять. Этот вывод и сделал Майкельсон. Но он не знал, чтó именно несостоятельно в теории неувлекаемого эфира. Может быть, эфир увлекается только у поверхности Земли? А опыты проводились в подвальном помещении.
Майкельсон допускал эту возможность.
«…Безнадежно пытаться решать вопрос о движении солнечной системы по наблюдениям оптических явлений на поверхности Земли. Но не исключено, что даже на умеренной высоте над уровнем моря, например на вершине какой-нибудь уединенной горы, относительное движение можно заметить при помощи аппарата вроде описанного в наших опытах».
Впоследствии опыт Майкельсона был повторен на вершине горы и даже на воздушном шаре. Результат по-прежнему был отрицателен.
Несколько раз возникали сомнения в правильности расчета и в обработке данных эксперимента. Снова и снова проверяли работу Майкельсона, пока не убедились окончательно в отсутствии «эфирного ветра».
Помимо опыта Майкельсона, были проделаны многие отличные по своей идее «опыты второго порядка». И все они давали отрицательный результат.
Уже была создана теория относительности, уже все стало понятным, уже эфир был выброшен «в ту мусорную кучу, где давно гнили флогистон, теплород, horror vacui»[52], как четко сформулировал один из ученых начала XX столетия, а экспериментаторы снова и снова проверяли результат Майкельсона. И трудно сказать, в каком году и в какой именно день подобная инспекция перестала представлять научный интерес.
Всегда наступает какой-то момент, когда совершенно законное вначале критическое, недоверчивое отношение к новой теории переходит в закостенелый консерватизм. Но когда именно он наступает, сказать трудно. Во всяком случае, теория относительности «вышла чистой» после такого «перекрестного допроса с пристрастием», после стольких вызовов к судейскому столу эксперимента, что можно быть уверенным в ее абсолютной «порядочности».
Теперь остановимся и посмотрим, что, собственно, сделано.
Мы очень поверхностно проследили развитие теории эфира и убедились, что после опыта Майкельсона — точнее, после второй работы Майкельсона и Морлея (1887 г.) — необходимо какое-то существеннейшее изменение этой теории.
Какое именно, мы не знаем. Причем, хотя мы и зашли в тупик с гипотезой эфира, мы успели убедиться, что многие факты эта гипотеза объясняет очень хорошо и наглядно. Если вы «привыкли» к эфиру, если вы почувствовали некоторую симпатию к этой гипотезе — возможно, станет яснее, почему уничтожение эфира означало революцию в физике.
С нашей точки зрения гипотеза эфира — некоей загадочной субстанции — представляет только исторический интерес. Но, представив, почему был дорог эфир для физиков, мы лучше поймем, что сделал Эйнштейн.
Теорию относительности можно разбирать, совершенно не касаясь эфира. Возможно, тогда даже легче усвоить постулаты Эйнштейна. Но было бы очень жаль утерять перспективу. В самом начале книги говорилось, что постулаты Эйнштейна очень просты. Разрешите теперь взять эти слова назад.
Теория Эйнштейна очень стройна, изящна по своей структуре.
Постулаты Эйнштейна, пожалуй, значительно естественней и сформулированы намного более четко и строго, чем вся классическая физика.
Все эффекты, все существующие эксперименты теория Эйнштейна объясняет совершенно непринужденно.
Наконец, теория относительности непосредственно использует только опытные факты и в этом смысле непосредственно вытекает из опыта.
Но при всем этом для меня лично остается абсолютной загадкой, как двадцатипятилетний юноша Альберт Эйнштейн пришел к своей теории.
Пожалуй, малоубедительно соображение, что после работы Майкельсона теория относительности оставалась единственным выходом.
Было очень много возможностей исправления теории эфира. Их использовали, добивались известных успехов.
Лоренц, например, пытался объяснить опыт Майкельсона, сохранив эфир, сохранив почти все основы классической физики.
Ритц построил теорию, в которой эфир, правда, отбрасывался, но зато сохранялась неизменной классическая механика.
С точки зрения своей эпохи Эйнштейн пошел самым невероятным путем.
И создание теории относительности, пожалуй, в первую очередь обусловлено теми непостижимыми качествами ее автора, которые можно называть, можно объяснять, но нельзя воспринять.
И мне кажется, что среди многих бессмысленных занятий почетное место занимают попытки проанализировать в деталях механику мышления гения. Что касается мнения самого Эйнштейна, то он обычно объяснял, что думал над этими вопросами примерно десять лет. Точные слова Эйнштейна приведены в следующей главе; причем хотелось бы обратить внимание на ту замечательную наивность, с которой Эйнштейн пишет: «Интуитивно мне казалось ясным с самого начала…»
Покончим с эфиром. Вот резюме Майкельсона, которое довольно верно отражает состояние проблемы непосредственно перед созданием теории относительности:
«Ряд не зависящих друг от друга рассуждений приводит нас к заключению, что среда, в которой распространяются световые волны, не представляет обычной формы вещества.
Несмотря на то, что мы весьма мало знаем об этой среде, мы все-таки можем сказать, что про обыкновенную материю мы знаем еще меньше…
Явление аберрации звезд можно объяснить при помощи гипотезы, что эфир не принимает участия в движении Земли вокруг Солнца. Между тем все попытки проверить эту гипотезу дали отрицательные результаты, вследствие чего мы можем сказать, что весь вопрос пока еще находится в неудовлетворительном состоянии».