6 Блудные сыны науки

Жил однажды человек, который был очень крупным специалистом по драконам.

Он самым тщательным образом изучил разновидности драконов, их признаки и привычки, умел прекрасно отличать один вид драконов от другого. Но, к сожалению, за всю жизнь ему ни разу не пришлось встретить ни одного дракона. И он не слышал, чтобы кто-то другой видел дракона. Когда же этот ученый приблизился к старости и утомился от вдумчивого изучения драконов, он стал обучать своему опыту молодых людей, чтобы и они так же хорошо разбирались в этой важнейшей области знания — драконологии.

Из книги В. П. Шелеста «Осколки»

История науки хранит в своей памяти следующий курьезный случай. В 1912 году немецкий физик (не теоретик!) Дж. Франк принимал кафедру физики в Пражском университете. Заканчивая беседу с ним, декан сказал:

— Мы хотим от вас только одного — нормального поведения.

— Как? — поразился Дж. Франк. — Неужели для физика это такая редкость?

— Не хотите же вы сказать, что ваш предшественник был нормальным человеком? — возразил декан…

А предшественником Дж. Франка был Альберт Эйнштейн.

Наука XX века требовала бунтарей, еретиков, радикалов, безумцев, восставших против очевидностей физики XIX века. Настоятельно требовалась и постепенно оформилась в физике (как из маленькой затравки в расплаве вырастает прекрасный кристалл) и совершенно новая, необычная профессия, профессия, требующая большого напряжения духовных сил, умения в мыслях ворочать целыми мирами, из мертвых математических символов и животворных фактов эксперимента лепить правильно работающую физику. Короче, наука требовала профессии физика-теоретика.

О добрых старых временах

Первыми задумались об устройстве мира и о своем месте в нем древние греки. Эти поиски они называли философией (буквально с греческого — любовь к мудрости или любомудрие).

И отголоски этой страсти к знаниям у древних эллинов живы в науке и сейчас. Еще и в наши дни на Западе ученый после защиты диссертации неважно, в области математики это или биологии — удостаивается степени доктора философии, хотя естественнее было бы употребить тут слова «доктор такой-то науки».

На фоне поисков, длящихся долгие тысячелетия, удивительно, что слово «ученый» — изобретение сравнительно недавнего времени.

В английском (видимо, и в других языках) еще века полтора назад этого слова не было. Тогда исследователей законов природы просто называли «людьми науки».

Даже в 1895 году лондонская газета «Дейли ньюс» объявляла слово «ученый» американским новшеством, а английский писатель-фантаст Г. Уэллс до конца своих дней считал выражение «человек науки» наиболее правильным.

Показательно и то, что еще пару веков назад тон в науке задавали непрофессионалы (сейчас бы их назвали дилетантами, любителями).

Открывший людям с помощью микроскопа мир микроорганизмов А. ван Левенгук был купцом, занимался торговлей мануфактурой и галантереей. Создатель учения о фотосинтезе Дж. Пристли был священником. Один из основоположников термодинамики, С. Карно, был профессиональным военным.

Ах, эти блаженные дни, дни юности науки! В созданном людьми науки «Лунном обществе» (Англия) живо и непринужденно обсуждались проблемы не только научные.

Изобретатель паровой машины Д. Уатт спорил о музыке с крупнейшим астрономом и музыкантом В. Гершелем. Э. Дарвин размышлял об эволюции теорию которой суждено было создать его внуку Ч. Дарвину, — а по пути домой сочинял стихи.

Но времена менялись. Постепенно в Англии — она была тогда самой развитой капиталистической державой — стали возникать чисто научные учреждения: Лондонское королевское общество, позднее — Королевский институт. В 1900 году была основана Британская академия…

На смену широким дискуссиям за бокалом доброго вина, которые некогда велись при мягком свете свечей, пришли все более специальные доклады на собирающих множество людей семинарах, коллоквиумах, конференциях и симпозиумах. Для специалиста той или иной науки это удобный способ отвести душу, вдосталь наговориться на своем ученом, тарабарском для посторонних жаргоне, обсудить во всех деталях и подробностях проблему необнаруженных кварков, синтез аминокислот или особенности строения усиков у дрозофилы.

Трудно точно сказав, когда в науке началась эра специализации. Но она началась, и наука все более стала напоминать сокровищницу за семью печатями, доступную лишь избранным, где хранятся сундуки с драгоценностями и бирками «Физика», «Химия», «Бшшния»…

Каждый сундук заперт на замок с секретом, открыть его может только тот, кто посвящен в тайну его механизма. А в сундуках — множество ящиков и ящичков с надписями: «Ядерная физика», «Кристаллография», «Цитология», «Биофизика».

Кое для кого «специализация» — бранное слово. Такие считают: ученый обязан быть универсалом, должен выходить за тесные рамки своей профессии, а главное — активно вторгаться в жизнь. Это еще одна тенденция науки, яркая примета нашего времени.

Дитя века телевидения

Худой, бледный, лысеющий профессор занимает место перед телекамерой. Растерянно жмурясь от ослепительного света, он неловко разворачивает заранее составленный текст и прерывистым голосом слово в слово перечитывает его содержание.

Заметно нервничая, он торопливо отвечает на вежливые вопросы репортеров, пересыпая свою речь туманными техническими и научными терминами.

Интервью, к счастью, длится недолго, и ученый наконец получает возможность незаметно ускользнуть в любезную его сердцу лабораторию, где, окруженный рядами колб и пробирок, в насыщенной едким запахом формалина атмосфере он может спокойно отдаться делу своей жизни.

Таков привычный классический образ ученого.

Так было, так есть, но вряд ли все это сохранится и в будущем. Наука непрерывно и очень быстро меняется, и сейчас на авансцену выходят ученые совершенно нового типа.

Профессор Стэнфордского университета (США) биолог, специалист по чешуекрылым насекомым П. Эрлих в научном мире известен своими исследованиями в области антологии и демографической биологии. Он автор ряда учебников и около сотни научных работ. Все это дает основание считать его полноценным ученым.

Однако среди широкой аудитории его имени сопутствует совсем иная слава. Его перу принадлежат несколько бестселлеров — его книги «Демографическая бомба» (1968), «Как остаться среди живых» (1971) и «Конец эры благосостояния» (1974) разошлись многомиллионными тиражами.

Знаменит П. Эрлих и как популярный лектор, и как энергичный пропагандист своих научных взглядов. Широко пользуясь методами коммерческой рекламы, он настойчиво требует решительного обуздания демографического взрыва.

П. Эрлих не принадлежит к числу ученых, робеющих перед ярко освещенной рампой эстрады, его не смущают переполненные аудитории или дотошные телерепортеры и журналисты. Беседуя с корреспондентами или обращаясь к миллионам телезрителей, он мастерски сочетает природные данные оратора с эффектными жестами и умением вовремя сгустить краски, чтобы с большим драматизмом подчеркнуть мысль.

Живость, непринужденность, едкий юмор, дерзкое инакомыслие, яркость образов — характерные черты стиля его выступлений. Вот краткий образчик его речи:

— Утверждать, что проблема демографического взрыва касается только недоразвитых стран, это все равно, что говорить сидящему рядом с тобой пассажиру: «Берегитесь, ваша честь, корабль тонет…»

Однако П. Эрлих не только дитя века телевидения и массовой продукции дешевых книжных изданий. Он еще и порождение серьезных качественных изменений, которые претерпевает сейчас вся наука.

И ученые нового типа (П. Эрлих лишь наиболее яркий их представитель) пытаются приспособиться к процессу модернизации науки. Они нащупывают новые пути влияния и новые каналы связи между наукой и обществом.

Сейчас многие ученые решительно поднимают свои голос в борьбе за мир. Так, академик М. Марков — также и председатель Советского Пагуошского (Пагуош — местечко в Канаде, где было положено начало ежегодным встречам ученых, выступающих за предотвращение мировой термоядерной войны и научное сотрудничество) комитета, автор многих статей, где говорится об ответственности ученых за сохранение человечества.

Другие исследователи отдают свое время популяризации научных знаний. Среди них примечателен А. Азимов, в прошлом профессор биохимии (Бостонский университет, США), а ныне широко известный писатель-фантаст. Им же написано больше сотни (!) научно-популярных книг.

Пока сами ученые взваливают на свои плечи дополнительное бремя забот. При этом, конечно, они вынуждены быть непрофессионалами: дилетантами от политики, от журналистики и т. п. Но, видимо, положение это временное. Скорее всего в будущем университеты будут готовить людей, соединяющих в одном лице ученого и популяризатора, ученого и специалиста по научной рекламе, ученого-международника и так далее.

Мы видим: сейчас в науке есть ученые самых разных стилей, окрасок и мастей. И все же среди этой пестроты трудно не приметить стоящую особняком удивительную фигуру Теоретика.

Скитающийся на чужбине

Когда-то любой физик был одновременно и экспериментатором и теоретиком. Он не только открывал, но и математически формулировал законы природы.

Яркий пример такого совместительства дал И. Ньютон. Ведь он открыл закон всемирного тяготения, разложил солнечный луч на составные цвета и в то же время создал новые разделы математики, быстро ставшие основным оружием физики, — дифференциальное и интегральное исчисления.

Так было. Однако физика ныне настолько разрослась, забралась в такие теоретические выси и эмпиреи, мир физических представлений стал настолько изощренным, что возникла настойчивая нужда в особом сословии физиков — так появились физики-теоретики.

Зачем нужны физики-теоретики — об этом горячо спорят и сейчас. И неудивительно: физик-теоретик похож и на палеонтолога, который пытается восстановить облик мамонта по нескольким костям; и на следователя, обязанного по двум-трем, часто второстепенным уликам раскрыть сложное преступление; и на конструктора, который из имеющихся у него немногих стандартных деталей норовит скомпоновать будущую чудо-машину; и на криминалиста, старающегося воссоздать портрет человека, которого он никогда не видел.

Так и физик-теоретик: из немногих экспериментальных фактов он хочет создать свою версию, свою конструкцию какой-нибудь очередной неуловимой невидимки (кварки?) микромира.

Да и что такое теория — тут также есть о чем поразмыслить. Одни утверждают: она-де обязана раскрыть нам глубинную простоту и стройность мироздания там, где нетеоретик видит лишь бессмысленное нагромождение явлений.

Другое мнение о пользе теорий: они должны подсказывать, какие нужно поставить новые эксперименты.

Эта миссия явно не по нутру теоретикам. Теория не служанка эксперимента, недовольно ворчат они…Теория должна охлаждать горячие головы… Не допускать потери времени на опыты заведомо бесполезные… Теория то, теория се… Споры идут, а теория меж тем высится, как некий прекрасный интеллектуальный собор, воздвигнутый, как говаривали в старину, во славу божию и приносящий глубокое удовлетворение и его архитекторам-теоретикам, и толпе «верующих».

Запутаны и связи теоретической физики с математикой. Физики охотно пользуются математическим аппаратом, берут и самые тонкие ее разделы, но обращаются с ними очень своеобразно.

Математик — так считает польский писатель-фантаст С. Лем — похож на портного-безумца. Он словно бы ничего не знает ни о людях, ни о птицах, ни о растениях.

Его будто бы и не интересует мир — он шьет одежды.

Для кого? Он не ведает, не думает об этом. Он заботится лишь о последовательности, симметрии и о прочих странных правилах шитья.

Готовую продукцию портной-математик относит на громадный склад. Там залежи одежды. Всякой. Одни костюмы подошли бы осьминогу, другие деревьям и бабочкам. Есть образчики и для людей, кентавров, единорогов и для таких созданий, которых даже трудно себе представить. Безумие?

И да, и нет. Ибо физики, перетряхивая груды «пустых одежд», созданных математикой, взяли, например, матричное исчисление и создали (фактически это сделал в 1925 году В. Гейзенберг) квантовую механику — эту основу для физики элементарных частиц.

Главное различие между физиком-теоретиком и математиком в методе мышления. Первый мыслит индуктивно — от частного к общему, идет к обобщениям от догадки, он знает, что его взгляды всегда приближенны и потом их наверняка придется пересматривать. Физик-теоретик все время как бы решает невообразимой сложности уравнение, единственным корнем которого являются фундаментальные законы, правящие миром.

Не то — математик. Его стихия — дедукция: он предпочитает искать общее, а уж из него вылавливать частное; да, собственно, частности его не так уж и волнуют, частности он оставляет другим.

Подведем итоги наших размышлений. Непростое положение у физика-теоретика. Ни физики-экспериментаторы, ни математики не признают этого иммигранта за своего.

Экспериментаторам теоретическая деятельность кажется подозрительной и малоплодотворной; она-де не прибавляет новых законов в копилку знаний. Математикам же не по душе то, что физик-теоретик, говорящий на языке математики с заметным акцентом, часто действует недостаточно строго и что у него нет тех красивых и головоломных проблем, которыми так богата Топология, Теория чисел и другие «горячие точки» новейшей математики.

Вот и оказался теорфизик, так сказать, в положении блудного сына, убежавшего из отчего дома — физической лаборатории — и скитающегося на чужбине, перебиваясь подаянием (что-то даст очередной «решающий» эксперимент!).

Лаборатория — в авторучке

«Хотя имена великих ученых-теоретиков хорошо известны, — пишет шведский физик-теоретик, лауреат Нобелевской премии X. Альфвен, — не каждый представляет себе, каким образом они работают. Часть их работы напоминает деятельность художника: и художник и ученый отделяют существенное от хаоса чувственных восприятий и представляют это существенное в возможно более концентрированной и элегантной форме. Подобно тому как художник выражает свои мысли и чувства в красках, скульптор — в глине, музыкант — в звуках, так и профессионал от искусства науки использует формулы и законы, которые, подобно всякому обогащенному отражению окружающего нас мира, являют собой степень красоты. Высочайшая похвала, которую теоретик может заслужить, показывая вновь выведенную формулу, это восторженный возглас его коллеги: «Как она красива!»

Подобные мысли не всегда были общепринятыми.

Вначале века один из великих теоретиков физики, человек, объяснивший смысл загадочной энтропии, австриец Л. Больцман, провозгласил: «Оставим изящество портным и сапожникам!..»

Все это похоже на давний спор о физиках и лириках — заметит читатель. Нет, не совсем так. И вообще не будем отвлекаться, а лучше повнимательнее приглядимся к действиям теоретика. Вот он что-то рассказывает, стоя у черной доски. В руках — исписанные листочки бумаги да мел. Еще указка — и это все его оружие.

Однажды спросили А. Эйнштейна, где находится его лаборатория. Он быстро вынул из нагрудного кармана авторучку и сказал: «Вот здесь».

Конечно же, обладают теоретики и особыми профессиональными секретами. «Чем сложнее рассматриваемая система, — любил повторять член-корреспондент Академии наук СССР, автор первых отечественных курсов теоретической физики Я. Френкель (1894–1952), — тем, по необходимости, упрощеннее должно быть ее теоретическое описание… Физик-теоретик в этом отношении подобен художнику-карикатуристу, который должен воспроизвести оригинал не во всех деталях, подобно фотографическому аппарату, но упростить и схематизировать его таким образом, чтобы выявить и подчеркнуть наиболее характерные черты…»

Может показаться, будто физик-теоретик (лист бумаги, авторучка, собственная голова) ярый индивидуалист, отшельник-анахорет. Ничуть! Как никто другой (чтоб разум не затупился?), нуждается он в постоянных контактах с коллегами.

Директор Международного центра теоретической физики в Триесте (Италия) пакистанец А. Салам вспоминает: «Я был тогда единственным физиком-теоретиком в стране. Ближайший коллега находился в Индии. Вы не представляете себе, что это такое. Физик-теоретик просто обязан иметь возможность беседовать, спорить и даже кричать, если необходимо. Я помню, как однажды мне позвонил Вольфганг Паули. Он находился тогда в Бомбее. Он сказал, что чувствует себя очень одиноко и хотел бы, чтобы я приехал к нему поговорить. Я сел в самолет и вылетел в Бомбей. Когда я постучался в дверь его номера, оп пригласил меня войти и, забыв поздороваться, быстро заговорил: «Проблема заключается в следующем. Если мы возьмем члены с производными в действии по Швингеру…»

Да, какими бы абстрактными материями ни занимались физики-теоретики, ничто человеческое не чуждо и им. Так, многие из них были хорошими спортсменами.

Страстным альпинистом был академик, лауреат Нобелевской премии И. Тамм (1895–1971) (недавнее первое восхождение на Эверест советские альпинисты совершили под руководством сына И. Тамма, тоже физика, доктора наук и тоже неуемного альпиниста).

Н. Бор был в молодости футболистом такой высокой квалификации, что национальная сборная не раз доверяла ему защиту своих ворот. Когда в 1922 году Нобелевский комитет отметил его высокой наградой, одна датская газета писала: «Известному футболисту Н. Бору присуждена Нобелевская премия».

О выдающихся физиках-теоретиках прошлого Н. Боре, В. Паули, Э. Ферми, наших советских — Л. Ландау, И. Тамме, Я. Френкеле, И. Померанчуке можно было бы поведать много интересного. Эти фигуры достойны бронзы и мрамора. Но автору хотелось бы снизить пафос, убрать патетику. И просто рассказать о работе физика-теоретика, живущего среди нас, дать его по возможности в действии. И еще показать, что дорога в микромир, охота за кварками и другими диковинными частицами неожиданно вывела исследователей на бескрайние просторы космоса.

Андрей Линде

Я вышел на станции метро «Юго-Западная» и сел в автобус. Он долго, минут сорок, увозил меня все дальше от центра города. Почти у Московской кольцевой дороги, рядом с лесной рощицей, стоял 16-этажный дом-башня.

Лифт поднял меня на 13-й этаж, я позвонил. Дверь открыл А. Линде, молодой физик-теоретик.

Гипотезу о «горячей» Вселенной выдвинул в 1946 году физик-теоретик Г. Гамов (1904–1968). Он-то первым и заговорил о физике, обусловившей расширение Вселенной.

Гипотеза Г. Гамова, неоднократно уточнявшаяся и выдержавшая экспериментальную проверку, оставляла открытыми вопросы о сверхранних состояниях Вселенной.

Но можно ли и насколько приблизиться к нулевому моменту, моменту «пуска» Вселенной?

Еще десять лет назад сверхплотным веществом считалось вещество с плотностью 1014 - 1015 граммов в кубическом сантиметре, с плотностью, незначительно превосходящей ядерную. А как описать состояние материи, в котором Вселенная находилась в начальные доли секунды, было совершенно неясно. Теперь, после работ А. Линде, А. Старобинского и других (в основном советских) теоретиков, уже удается описать свойства вещества с плотностью, почти на 80 порядков превосходящей ядерную!

Биография А. Линде предельно проста. Родился в 1948 году. В 1972-м окончил физфак МГУ. С 1985-го — сотрудник отдела теоретической физики (руководит им академик В. Гинзбург) Физического института имени П. Н. Лебедева АН СССР (ФИАН), где работает и сейчас В 1978-м вместе со своим бывшим научным руководителем Д. Кпржницем за цикл работ награжден премией имени М. В. Ломоносова АН СССР. В 1983-м защитил докторскую диссертацию на тему «Фазовые переходы в теории элементарных частиц и космология».

Андрей из семьи ученых: отец — известный радиотехник, профессор; мать доктор наук, крупный специалист по космическим лучам.

И семья у А. Линде получилась чисто научной. УКена тоже доктор наук, тоже физик-теоретик, специалист по квантовой гравитации.

Биография А. Линде коротка, совсем несоизмерима ни с предметом его занятий — вся Вселенная, да еще и расширяющаяся! — ни с тем, что сулят его раооты науке.

— В космологии, — рассказывал А. Линде при нашей встрече, — существует много вопросов, ответить на которые прежде даже не пытались. Почему, к примеру, во Вселенной есть вещество и отсутствует антивещество?

Почему Вселенная в больших масштабах очень однородна и изотропна? Подобные вопросы долгое время казались почти метафизическими. И ответ на них обычно базировался на так называемом антропном принципе. Говорилось, что в анизотропной и неоднородной Вселенной, не содержащей избытка вещества над антивеществом, не могла бы возникнуть жизнь, и никто не мог бы задавать подобные вопросы. Такой ответ довольно остроумен, но не вполне удовлетворителен. И объяснить многое из этой кажущейся метафизики смогла только теория элементарных частиц…

В 1922 году советский ученый, ленинградец А. Фридман (1888–1925) предложил модель нестационарной Вселенной. (К сожалению, А. Фридман умер, так и не узнав о научной революции, вызванной двумя его короткими статьями, не узнал он и о том, что его модель была подтверждена наблюдениями американского астронома Э. Хаббла в 1929 году, не узнал он и о присуждении ему посмертно премии имени В. И. Ленина, 1931 год.)

Фридмановская модель «расширяющейся Вселенной» объяснила многое, но она ничего не говорила о периоде очень-очень ранней Вселенной, о том, что происходило сразу же после Большого Взрыва. Этот пробел восполнен новым сценарием (наиболее полно он изложен в докторской диссертации А. Линде) «раздувающейся Вселенной», тому отрезку в жизни Вселенной, который предшествовал фридмановскому.

У А. Фридмана темп расширения Вселенной постепенно замедляется. У Линде радиус Вселенной, начиная от минимального, быстро нарастает («раздувается», как растущий пузырь) по экспоненциальному закону, что напоминает неудержимый рост цен с постоянной годичной скоростью инфляции. Отсюда и другое название для этого периода развития — «инфляционная Вселенная».

Конечно, инфляция не может продолжаться бесконечно долго: все длилось кратчайшие доли секунды, но в них уложились события огромного для Вселенной значения. Вот точные данные, которые не могут не казаться совершенно фантастическими. За время 10-30 секунды из точечной области размером меньше 10-33 сантиметра (!) возникли просторы протяженностью в 10 миллиардов световых лет (1028 сантиметров)!! И все вещество, содержащееся внутри наблюдаемой части нашей Вселенной (1045 тонн), возникло из крохи, имеющей не более чем 10-5 грамма вещества!!! Противоречия с законом сохранения энергии? Их нет. Все явилось результатом огромной работы, которую совершили гравитационные силы во время раздувания Вселенной.

После завершения этого процесса Вселенная разбилась на большое количество областей. В каждой из них свойства элементарных частиц и законы их взаимодействия друг с другом различны (наш счастливый жребий!). Этих областей мы не видим, так как размеры каждой (в том числе и той, где мы живем) во много раз превышают размеры наблюдаемой нами части Вселенной…

Наша беседа с А. Линде продолжается. То, о чем рассказывает Андрей, очень непросто, и я тут вовсе не пытаюсь притворяться шибко понимающим. Я возбужден не только тем, что воочию вижу, как на листе бумаги под быстрым карандашом А. Линде извивается и трепещет «траектория» эволюционирующей во времени Вселенной. Не только тем, что нити микромира и макромира оказались завязанными в одном хитро запутанном клубке. Больше всего, пожалуй, меня будоражит сидящий против меня за столом Андрей: он сам представляется мне огромной нерешенной загадкой.

Я думаю о необычности его профессии — профессии физика-теоретика, — об исследователях, поневоле вынужденных работать в одиночку («мы одиночки», несколько раз повторял он) годами — среди библиотечных полок, с редкими вылазками на семинары, где можно выслушать приговор коллег, — вынашивающих свои мысли («Месяц читаю одни детективы, — признался Андрей, — у меня сейчас творческий тупик»). Думаю и о том, как же ему все-таки удается (какие тут особые приемы, подходы, правила научной «игры») держать Вселенную на кончике пера.

Я соприкоснулся с большой (и профессиональной и личной) тайной, и это взволновало меня. Как вообще может крошка человек, плывущий в головокружительных просторах космоса на небольшом суденышке — Земле, вращающейся вокруг одной из миллиардов звезд, как может человек, заключенный в этой мельчайшей частичке Вселенной, изучать всю ее остальную бескрайнюю часть?

Догадываться о ее прошлом и будущем? И не просто догадываться, но творить твердое знание? И даже замахиваться — сколько научной смелости тут требуется! — на то, чтобы в конце концов объяснить, откуда же берутся эти вселенные?

Нечто по имени Ничто

В нашей беседе с А. Линде очень часто и так ж эдак мелькало, уходило и возвращалось все вновь и вновь одно и то же слово. Как жужжащий шмель, оно то влетало, то вылетало из нашего разговора. Как необходимая приправа, без которой пища не пища, оно имело самое непосредственное отношение к теме, слово это было — вакуум.

Пустоту, мы помним, в науку ввел Демокрит. Его атомы разделены пустотой. И нож, по мнению Демокрита, режет хлеб только потому, что идет через пустое пространство.

Умозрительные (чисто философские) рассуждения Демокрита постепенно обрастали подробностями. Аристотель отрицал пустоту, но она тревожила его воображение, пройти мимо этого понятия крупнейший энциклопедист древности никак не мог. Он писал: «Надо признать, что дело физика — рассмотреть вопрос о пустоте, существует она или пет и в каком виде существует или что она такое…»

За признание пустоты в физике (о, эта интуиция великих умов!) боролся французский философ и математик Р. Декарт (1596–1650). Вот его слова: «Все пространства, которые обычно считают пустыми и в которых не чувствуется ничего, кроме воздуха, на самом деле так же наполнены, и притом той же самой материей, как и те пространства, где мы чувствуем другие тела…»

Этот перечень цитат, где прозревается грядущее научное и практическое значение вакуума, можно было бы легко продолжить, сославшись на Б. Паскаля, И. Ньютона, Д. Менделеева и других ученых.

Да, предсказывая вакууму большое будущее, корифеи науки не заблуждались: вакуум становится сейчас непосредственным объектом многих исследований физиков во всех концах мира. (Не теряют времени и популяризаторы науки: в нашей стране уже появилась книжка с названием «Нечто по имени Ничто». Правда, смысл этого заголовка — но таков уж вакуум! — мало изменится, если поменять местами слова Нечто и Ничто.)

Отчего же это Ничто, это вроде бы полное отсутствие чего бы то ни было, стало таким наполненным и полновесным? Да потому, что вакуум (чаще для солидности теперь говорят о «физическом вакууме») предстал перед учеными отнюдь не пустым.

А. Линде: «Вакуум — это то, что лишь выглядит как пустота. Под микроскопом, если выражаться фигурально, он буквально кипит, выбрызгивая элементарные частицы…»

Действительно, физический вакуум заполнен частицами особого рода, исчезающими сразу же после своего рождения. Одновременно существующими и нет, воистину эфемерными.

Такие почти-частицы в физике носят название виртуальных. Их вроде бы невозможно зафиксировать. Но — опять парадокс! — эти призраки микромира, почти фантомы, тем не менее могут взаимодействовать с частицами реальными, настоящими, влиять на их поведение.

Вот оно, «окошко» в вакуум, в это загадочное и, казалось бы, неуловимое Нечто.

В последние годы очень много внимания вакууму уделяет паш ведущий космолог академик Я. Зельдович. Совсем недавно торжественно отмечался его 70-летний юбилей (родился в 1914 году). Однако этот ученый (трижды Герой Социалистического Труда) полон неиссякаемой творческой энергии и в силе и быстроте мышления не уступает молодым физикам-теоретикам. (Считается, что карьера физика-теоретика, как и звезды балета — хотя для балерины, может быть, мускулы ног важней нейронов головы! — заканчивается к 30 годам: он-де «сжигает» свои лучшие мозговые клетки. Я. Зельдович своим примером опровергает это, конечно же, вздорное мнение.)

Я. Зельдович много пишет о вакууме, и тон его выступлений становится все более уверенным. Вначале он только ставил вопросы (одна из его статей в журнале «Успехи физических паук» называлась «Теория вакуума, быть может, решает загадку космологии», 1981 год), но теперь уже почти не сомневается, что в вакуумном океане рождаются ке только элементарные частицы — эти крохотные островки среди бушующих стихий, — но и целыа материки вселенные.

Что же все-таки было в момент команды «старт»?

Я. Зельдович верит: развитие теории квантовой гравитации приведет к возможности квантового флуктуационного рождения Вселенной, ее создания из вакуума. «Вещество Вселенной родилось из ничего, — повторяет он и тут же спешит добавить: — И это не противоречит физическим законам».

…Вселенная тогда клокотала, как кипящий чайник

Мы продолжаем разговор о Вакууме (это слово, как и слово Вселенная, давно уже следует писать с большой буквы), Вакууме, который не следует путать с пустотой.

Д. Киржниц (родился в 1926 году), физик-теоретик, доктор физико-математических наук, профессор, заведующий сектором теории сверхпроводимости в ФИАНе, после окончания физфака МГУ в 1949-м несколько лет работал в промышленности. На заводе, когда Д. Киржниц определялся на работу, расспросив молодого человека и узнав, что он занимался поляризацией вакуума, в отделе кадров рассудили просто: решили дать ему в руки кисточку и определить к вакуумным приборам замазывать трещинки…

В судьбе теоретика всякое бывает! Но именно Д. Киржниц первым высказал оригинальную мысль о том, что физический вакуум может проявлять свойства сверхпроводимости. Вместе с А. Линде (1972) он показал, что система уравнений, описывающих сверхпроводимость в металле, практически неотличима от системы уравнений, характеризующих вакуум. Что при определенных обстоятельствах вакуум может резко изменять свои свойства, испытывать фазовые переходы. За это позднее исследователи и были удостоены Ломоносовской премии.

Сверхпроводимость, это необычное свойство проводника вовсе не оказывать сопротивления электрическому току, — явление уникальное. Однако вакуум тут выказывает еще более поразительные качества: он, оказывается, изолятор для токов электромагнитных и сверхпроводник для токов слабого взаимодействия. Так сказать, един в двух лицах!

Сверхпроводимость характеризуется критической температурой. Выше этой точки сверхпроводимость исчезает, внутреннее состояние проводника перестает быть упорядоченным (в вакууме, как оказалось, виртуальные частицы тоже отнюдь не находятся в состоянии хаоса). Так вот, для металлов критическая температура не превышает что-то около 25 градусов выше абсолютного нуля (шкала Кельвина). А в вакууме — он и тут ставит рекорд критическая температура, как показали расчеты, равна 1016 градусов!

Где же найти подобные чудовищные и даже еще более высокие температуры? Где? Их имела Вселенная сразу же после «первовзрыва», когда физический вакуум не был сверхпроводником, а обладал совсем другими свойствами. И это обстоятельство проливает свет не только на ход формирования Вселенной, но и на историю элементарных частиц. Попробуем это объяснить.

Результат деятельности трех из четырех основных сил природы — сильных, слабых и электромагнитных — можно наблюдать совокупно в любом акте радиоактивного распада атомов.

Tут сильное (ядерное) взаимодействие обусловливает «слипание» протонов и нейтронов, покидающих разваливающийся атом в виде ядер атомов гелия а-частиц.

Слабое взаимодействие побуждает нейтрон ядра к распаду: так возникают электроны — р-частицы. А электромагнетизм проявляет себя в испускании квантов света — у-лучей.

Прежде все эти фундаментальные силы казались ученым совершенно независимыми. Однако теперь теория «Великого объединения» сделала эти различия иллюзорными, мнимыми. В момент Большого Взрыва, при сверхвысоких температурах, различия сил не существовало, их разделение произошло позже.

К моменту времени 10-35 секунды после Большого Взрыва вследствие расширения температура вещества понизилась до 1016 градусов. И вот тут произошло первое разделение сил: сильные взаимодействия отделились от электрослабых. Что и привело к выделению отдельно кварков и лептонов.

Это был скачок в эволюции Вселенной, сопровождавшийся фазовым переходом. Высвободившаяся при этом из вакуума гигантская энергия (перекачка энергии из вакуума в вещество) перешла в кинетическую энергию пузырьков повой фазы, подобно тому как это происходит при бурном вскипании сильно перегретой жидкости.

Вселенная тогда буквально клокотала, как кипящий на плите чайник!

И этот фазовый переход не был в истории Вселенной единственным. Позднее, ко времени 10-10 секунды после «пуска», произошел новый фазовый переход: здесь уже электрослабое взаимодействие «раскололось» на слабые ядерные силы и силы электромагнитные. В результате все окружающие нас частицы, кроме фотонов и нейтрино, приобрели собственную массу…

Так творился наш мир.

Работы советских физиков-теоретиков открыли совершенно новую страницу в изучении Вселенной. Стали понятны причины и истоки гармонии Вселешюп. Никакой господь-бог не подгонял, не шлифовал, не прилаживал мировые константы. Они так топко согласованы, увязаны друг с другом потому, что имеют общие корни и совместную историю. «Расслоение» сил, формирование спектраэлементарных частиц, возникновение химических элементов — все это жестко и в то же время непринужденно запрограммировано в длительной эволюции Вселешк/й.

Содержание двух последних глав свидетельствует, что существует глубокая взаимосвязь между современной космологией и астрофизикой и новейшей фшпкой элементарных частиц. Космология и астрофп мша устанавливают определенные ограничения на число и свойства элементарных частиц, а экспериментально подтвержденные положения физики элементарных частиц позволяют находить новые пути для решения космологических проблем, связанных прежде всего с происхождением вещества во Вселенной.

Вообще чем дальше развивается естествознание, том все более очевидным становится зыбкость и условность границ (не тут ли главный порок сверхспециализации?) отдельных научных разделов. Космос соединяется с микромиром, Вселенная кипит, словно чайник, — эти и им подобные примеры наглядно иллюстрируют единство наук.

Загрузка...