Сенсорные сигналы несут в мозг внешнюю информацию, необходимую для ориентации во внешней среде и для оценки состояния самого организма. Эти сигналы возникают в воспринимающих элементах (рецепторах) и передаются в мозг через цепи нейронов и связывающих их нервных волокон сенсорной системы. Процесс передачи сенсорных сигналов сопровождается их многократными преобразованиями и перекодированием на всех уровнях сенсорной системы и завершается опознанием сенсорного образа. Этим процессам посвящён ряд обзорных работ [Черниговский, 1960; Физиол. сенсорн. систем, 1971, 1972, 1975; Кейдель, 1975; Сомьен, 1975; Тамар, 1976; Батуев, Куликов, 1983; Глезер, 1985; Дудел и др., 1985, Хьюбел, 1990; Физиол. зрения, 1992].
Основные функции сенсорной системы. Каждая сенсорная система выполняет ряд основных функций, или операций с сенсорными сигналами. Эти функции таковы: обнаружение сигналов, их различение, передача, преобразование и кодирование, а также детектирование признаков сенсорного образа и его опознание. Обнаружение и первичное различение сигналов обеспечивается уже рецепторами, а их детектирование и опознание – нейронами корковых уровней сенсорной системы. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех уровней системы.
Рецептором называют специализированную клетку, эволюционно приспособленную к восприятию из внешней или внутренней среды определённого раздражителя и к преобразованию его энергии из физической или химической формы в форму нервного возбуждения.
Классификация рецепторов основывается, в первую очередь, на характере ощущений, возникающих у человека при их раздражении. Различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, проприои вестибулорецепторы (рецепторы положения тела и его частей в пространстве). Обсуждается вопрос существования специальных рецепторов боли (см. гл. 4). Рецепторы разделяют, кроме того, на внешние, или экстерорецепторы, и внутренние, или интерорецепторы. К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые и осязательные рецепторы. К интерорецепторам относятся вестибулорецепторы и проприорецепторы (рецепторы опорно-двигательного аппарата), а также интерорецепторы, сигнализирующие о состоянии внутренних органов [Черниговский, I960].
По характеру контакта с внешней средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные – возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые и тактильные).
В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы можно классифицировать следующим образом: 1) фоторецепторы; 2) механорецепторы, к которым относятся рецепторы слуховые, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; 3) хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; 4) терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны) и 5) болевые (ноцицептивные) рецепторы.
При действии стимула в рецепторе происходит преобразование энергии внешнего раздражения в рецепторный сигнал (трансдукция сигнала). Этот процесс включает в себя три основных этапа: 1) взаимодействие стимула с рецепторной белковой молекулой, которая находится в мембране рецептора; 2) усиление и передачу стимула в пределах рецепторной клетки и 3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).
Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор – при действии одиночного кванта света.
Абсолютная чувствительность сенсорной системы основана на её свойстве обнаруживать слабые, короткие или маленькие по размеру раздражители. Абсолютную чувствительность измеряют порогом той или иной реакции организма на сенсорное воздействие. Чувствительность системы и порог реакции – обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Порогом реакции считают ту минимальную интенсивность, длительность, энергию или площадь воздействия, которая вызывает данную реакцию. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5–0,75 (правильный ответ о наличии стимула от 1/2 до 3/4 случаев его воздействия). Более низкие значения интенсивности считаются подпороговыми, а более высокие – надпороговыми. Оказалось, однако, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения; см. гл. 12). Такие подпороговые, или субсенсорные реакции впервые были описаны Г.В. Гершуни, который обнаружил их у людей, контуженных на войне. Если снизить интенсивность света настолько, что человек уже не может сказать, видел ли он вспышку или нет, то от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал. На такой процедуре основано действие «детектора лжи».
Сказанное означает, что сенсорный порог – понятие конвенциональное, т.е. зависит от его точного определения, или соглашения (конвенции) между людьми. Всегда должно быть точно условлено, по какой именно реакции измеряется порог, какая величина этой реакции или вероятность её появления будут считаться пороговыми. Это означает, что должны быть чётко определены критерии порога. Очевидно, что у одного и того же человека может быть измерено много отличающихся друг от друга абсолютных порогов сенсорной чувствительности для одного и того же органа чувств в зависимости от того, какая реакция и какой критерий этой реакции избраны для оценки. Таким образом, тот или иной порог – одна из условных точек континуума стимулов, или «сенсорного ряда».
В любой сенсорной системе, как и в технических средствах связи, существуют так называемые «шумы». Шумом можно считать любое событие в сенсорной системе, не связанное непосредственно с передачей и переработкой данного сенсорного сообщения, но влияющее на него. В качестве примера сенсорного шума можно привести «темновой свет» сетчатки глаза. Он возникает без какой бы то ни было стимуляции в результате спонтанного теплового распада молекул фотопигмента в рецепторах сетчатки. Ясно, что такие шумы мешают обнаруживать, передавать и анализировать сенсорные сигналы. Накладываясь на сигналы, шумы их искажают. Кроме того, возникает опасность так называемых «ложных тревог» или, наоборот, пропуска стимула. В первом из этих случаев человек сообщает о наличии сигнала, принимая за него тот или иной шумовой эффект. Во втором случае он не замечает реального сигнала, замаскированного шумом. В результате этого порог реакции повышается.
Теория обнаружения «зашумлённых» сигналов в применении к восприятию человека предложена В. Таннером и Дж. Светсом [Tanner, Swets, 1954]. Они считали, что обнаружение сенсорного сигнала зависит как от дисперсии (ширины распределения) величины шумового эффекта и флуктуирующего полезного сигнала, а также степени перекрытия этих распределений, так и от критерия принятия решения, связанного с личностью испытуемого (осторожность или решительность, установка, уровень и концентрация внимания ( СНОСКА: Роль избирательного внимания для обнаружения слабых и зашумлённых сенсорных сигналов прекрасно иллюстрируется известным «эффектом вечеринки с коктейлем» (cocktail party effect). Заинтересованный слушатель иногда может разобрать разговор людей, отделённых от него толпой громко разговаривающих участников вечеринки. Выделить подобный разговор с помощью приборов пока невозможно, а нейрофизиологические механизмы этого эффекта неясны .) и т.п.). Особенно сильно влияние шума на обнаружение слабых сигналов: они то воспринимаются, то не воспринимаются при повторных тестах. Поэтому порог реакции становится вероятностным понятием. Это означает, что при одиночном тестировании его нельзя определить: необходимо оценить вероятность появления реакции в серии предъявлений стимула (обычно не меньше 10 идентичных стимулов). Если оказалось, что вероятность ответа на этот стимул больше порогового критерия (например, она равна 0,75, т.е. правильные ответы получены в 3/4 случаев предъявления стимула), то интенсивность стимула снижают и серию предъявлений повторяют. Так делают до тех пор, пока вероятность реакции не снизится заведомо ниже порогового критерия. Наиболее точное определение порога возможно по кривой зависимости величины или вероятности реакции от интенсивности стимула (рис. 3.1). На этом рисунке показано, что эта кривая имеет в типичном случае «S-образную форму и по ней можно точно установить значение сенсорного порога, используя тот или иной, заранее оговорённый, критерий.
Рис. 3.1. Определение абсолютного порога реакции по зависимости вероятности правильного ответа о наличии сигнала, т.е. его обнаружения, от силы раздражителя (психометрическая функция). В качестве критерия порога здесь выбрана вероятность правильного ответа, равная 0,75
На обнаружение сигнала существенное влияние оказывают процессы пространственной и временной суммации. Они сводятся к способности сенсорной системы накапливать энергию сигнала, распределённую по некоторой зоне в пространстве рецепторов или во времени. Так, увеличение до определённого предела размера сенсорного стимула или его длительности снижает порог. Этот предел называют критическим размером, или же критической длительностью стимула.
Дифференциальная сенсорная чувствительность основана на способности сенсорной системы к различению сигналов. Важная характеристика каждой сенсорной системы – способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в нём участвуют нейроны всех отделов сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое человек может заметить (дифференциальный или разностный порог).
Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определённую долю (закон Вебера). Так, усиление давления на кожу руки ощущается, если увеличить груз на 3% (к гирьке весом в 100 г надо добавить 3 г, а к гирьке весом в 200 г надо добавить 6г). Эта зависимость выражается следующей формулой: dI/1 = const., где I – сила раздражения, dI – её едва ощущаемый прирост (порог различения), const – постоянная величина (константа). Аналогичные соотношения получены для зрения, слуха и других органов чувств человека.
Зависимость силы ощущения от силы раздражения (закон Вебера–Фехнера) выражается следующей формулой: Е = a log I + b, где Е – величина ощущения, I – сила раздражения, а и b – константы, различные для разных модальностей стимулов. Эта формула показывает, что ощущение усиливается пропорционально логарифму интенсивности раздражения. Кроме того, современная психофизиология для оценки силы ощущения использует также методы сенсорного шкалирования, т.е. субъективной оценки человеком силы своего ощущения путём его сравнения с ранее созданным эталоном или набором таких эталонов. Отношение между ощущением и стимулом в этом случае выражается степенной функцией (закон Стивенса), Сравнение логарифмической функции закона Вебера – Фехнера и степенной функции закона Стивенса показало, что в основной, рабочей части диапазона интенсивностей эти функции дают количественно близкие оценки.
Ранее говорилось о различении силы раздражителей.
Пространственное различение сигналов основано на характере распределения возбуждения в слое рецепторов и в нейронных слоях сенсорной системы. Так, если два раздражителя возбудили два соседних рецептора, то их различение невозможно: они сольются и будут восприняты как единое целое. Необходимо, чтобы между двумя возбуждёнными рецепторами находился хотя бы один невозбуждённый.
Временное различение двух раздражений возможно, если вызванные ими нервные процессы не сливаются во времени, а сигнал, вызванный вторым стимулом, не попадает в рефракторный период от предыдущего раздражения. Нейрофизиологической основой временного разрешения являются так называемые циклы возбудимости, или циклы восстановления ответов. О них судят по величине ответа на второй из двух последовательно предъявленных стимулов. При коротких интервалах между стимулами ответа на второй из них может не быть вообще (абсолютный рефракторный период). У человека по поведенческим реакциям этот период может длиться от нескольких десятков до 100 и более миллисекунд. При больших интервалах ответ на второй стимул появляется, но величина его меньше, чем на одиночный стимул (относительная рефрактерность). И, наконец, при ещё больших интервалах восстановление второго ответа заканчивается, и он сравнивается с ответом на одиночное раздражение.
На временном взаимодействии между последовательными раздражителями основана так называемая «сенсорная маскировка». Она лежит в основе многих сенсорных эффектов и широко используется в психофизиологических экспериментах. Сама маскировка прямо связана с попаданием одного из стимулов в рефракторную фазу цикла возбудимости после первого раздражения. Различают прямую маскировку, при которой тормозится ответ на второй стимул, и обратную маскировку, при которой второй стимул как бы прерывает или мешает обработке информации о первом сигнале. Эффективность как прямой, так и обратной маскировки тем больше, чем короче интервал между стимулом и «маской», а также чем более сходны эти два сигнала по своим свойствам. В качестве «маски» часто используют стимул, состоящий либо из шума, либо из набора хаотично распределённых элементов основного раздражителя.
Процессы передачи и преобразования сигналов обеспечивают поступление в высшие сенсорные центры наиболее важной (существенной) информации о сенсорном событии в такой форме, которая удобна для надёжного и быстрого анализа. Что следует считать существенной информацией? В разных условиях и ситуациях это понятие может меняться. Однако имеется некоторое общее свойство, которое универсально отличает существенную информацию от несущественной. Это – степень её новизны. Ясно, что новые события при прочих равных условиях информационно важнее для организма, чем привычные. Поэтому эволюционно было выработано свойство прежде всего и быстрее всего передавать в мозг и перерабатывать информацию об изменениях в сенсорной среде. Эти изменения могут быть как временными, так и пространственными.
Среди пространственных преобразований выделяют изменение представительства размера или соотношения разных частей сигнала. Так, в соматосенсорной и зрительной системах на корковом уровне значительно искажаются геометрические пропорции представительства отдельных частей тела или частей поля зрения. В зрительной коре резко расширено представительство информационно наиболее важной центральной ямки сетчатки, ответственной за детальное «поточечное» описание изображения при относительном сжатии проекции периферии поля зрения («циклопический глаз»). В соматосенсорной коре также преимущественно представлены наиболее важные для тонкого различения и организации поведения зоны тела – кожа пальцев рук и лица («сенсорный гомункулюс»; см. гл. 4). Различные проекционные корковые зоны, например зрительной системы (а их насчитывают несколько десятков), отличаются характером ретинотопии, т.е. представительства разных частей сетчатки. Так, имеются зоны, в которых представлен только центр сетчатки, или, наоборот, только её периферия. Это связано со специфическим участием каждой из зон в зрительном восприятии: обслуживанием преимущественно предметного зрения или обработкой информации о движениях стимулов в поле зрения.
Для временных преобразований информации во всех сенсорных системах типично сжатие, или временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях системы к коротким (фазическим) пачечным разрядам нейронов высоких уровней.
Ограничение избыточности информации. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Примерно то же самое, пусть несколько медленнее, могло бы происходить при работе и других сенсорных систем. Огромная избыточность первичных сенсорных сообщений, идущих от рецепторов, ограничивается путём подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве (см. ранее). Например, на сетчатку глаза или на кожу длительно действует неизменный стимул большого размера. Для того чтобы постоянно не передавать в мозг информацию от всех возбуждённых рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем об окончании раздражения, причём до коры доходят сообщения только от рецепторов, которые лежат по контуру возбуждённой области.
Кодированием называют совершаемое по определённым правилам преобразование информации в условную форму – код. В сенсорной системе сигналы кодируются двоичным кодом, т.е. наличием или отсутствием электрического импульса в тот или иной момент времени [Сомьен, 1975]. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передаётся в виде отдельных импульсов, а также групп, или «пачек» импульсов. Амплитуда, длительность и форма каждого импульса одинаковы, но количество импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» (pattern) пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбуждённых нейронов и их расположением в нейронном слое.
Особенности кодирования в сенсорных системах. В отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе подобного декодирования не происходит. Ещё одна важная особенность нервного кодирования – множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частота и число импульсов в пачке, число возбуждённых нейронов и их локализация в слое.
В коре мозга сигналы кодируются также последовательностью включения параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов возбуждённых нейронов, изменением их числа. В коре одним из основных используемых способов становится позиционное кодирование. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определённого нейрона или небольшой группы нейронов, расположенных в определённом месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной коры означает, что в определённой части поля зрения появилась световая полоска определённого размера и ориентации. Возбуждение определённых нейронов височной коры сигнализирует о появлении в поле зрения знакомого лица. Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду.
Детектированием называют избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Осуществляют такой анализ нейроны-детекторы, избирательно реагирующие лишь на определённые свойства стимула. Так, типичный нейрон зрительной коры отвечает разрядом лишь на один из наклонов (ориентацию) световой полоски, расположенной в определённой части поля зрения [Хьюбел, 1990]. При других наклонах той же полоски ответят другие нейроны. Такие нейроны называют детекторами первого порядка, так как они выделяют наиболее простые признаки сигнала. В высших отделах сенсорной системы сконцентрированы детекторы высших порядков, ответственные за выделение сложных признаков и целых образов. Примером могут служить детекторы лиц, найденные в нижневисочной коре обезьян (предсказанные много лет назад Ю. Конорским, они были названы «детекторами моей бабушки»). Многие детекторы формируются в раннем онтогенезе под влиянием внешней среды, а у части из них детекторные свойства заданы генетически.
Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т.е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его со множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т.е. мы осознаём, чьё лицо видим перед собой, кого слышим, какой запах чувствуем. Нейрофизиологические механизмы опознания сенсорных образов исследованы пока недостаточно.
Опознание часто происходит независимо от изменчивости сигнала. Мы надёжно опознаём, например, предметы при различной их освещённости, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный к этим изменениям) сенсорный образ.
При опознании сенсорных образов возможны ошибки. Особую группу таких ошибок составляют так называемые «сенсорные иллюзии». Они основаны на некоторых побочных эффектах взаимодействия нейронов, участвующих в обработке сигналов, и приводят к искажённой оценке образа в целом или отдельных его характеристик (размер, соотношение частей и т.п.). Пример иллюзии последнего типа представлен на рис. 3.2.
Рис. 3.2. Пример одной из простейших зрительных иллюзий: длина горизонтальных отрезков на верхней и нижней фигурах кажется различной, хотя на самом деле они равны
Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сенсорная адаптация – это общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Существует общая, или глобальная, и локальная, или селективная адаптация. Общая, или глобальная, адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности всей сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды). Локальная, или селективная, адаптация сводится к снижению чувствительности не всей сенсорной системы, а какой-либо её части, подвергнутой длительному действию стимула. Так, порог реакции оказывается избирательно повышен для изображения решётки с определённой пространственной частотой (определённым периодом чередования чёрно-белых полос). Пороги реакций на соседние пространственные частоты при этом не изменяются [Глезер, 1985]. Локальная адаптация часто используется в психофизиологических работах для выявления так называемых «сенсорных каналов», ответственных за обработку сведений о том или ином признаке сигнала.
Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Заметная адаптация не развивается только в вестибулои проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро и медленно адаптирующиеся. Первые после развития адаптации практически вообще не сообщают в мозг о длящемся раздражении, у вторых эта информация передаётся, хотя и в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.
В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счёт нисходящих влияний со стороны более высоких на более низкие её отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Кроме того, состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозный характер, т.е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.
Общее количество эфферентных нервных волокон, приходящих к элементам какого-либо нервного слоя, как правило, во много раз меньше количества его собственных нейронов. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идёт об общем снижении чувствительности значительной части нейронного слоя.
Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в ретикулярной формации. В коре мозга происходит интеграция сигналов высшего порядка. В результате множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. В особенности это свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кросс-модальное) взаимодействие на корковом уровне создаёт условия для формирования «схемы мира» (или «карты мира») и непрерывной увязки, координации с ней собственной «схемы тела» данного организма.
Переработка информации в сенсорной системе осуществляется с помощью процессов возбудительного и тормозного межнейронного взаимодействия. Это взаимодействие осуществляется по горизонтали, т.е. в пределах одного нейронного слоя, и по вертикали, т.е. между нейронами соседних слоёв. Возбудительное взаимодействие по вертикали заключается в том, что аксон каждого нейрона, приходя в вышележащий слой, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя. В результате подобного взаимодействия формируются так называемые рецептивные и проекционные поля сенсорных нейронов, играющие ключевую роль в переработке сенсорных сигналов.
Совокупность рецепторов, сигналы с которых поступают на данный нейрон, называют его рецептивным полем. В пределах рецептивного поля происходит пространственная суммация, т.е. ответ нейрона увеличивается, а порог его реакции снижается при увеличении площади светового пятна или участка стимулируемой кожной поверхности. Проекционным полем сенсорного нейрона называют совокупность нейронов более высокого слоя, которые получают его сигналы. Наличие у нейронов проекционных полей обеспечивает сенсорной системе высокую устойчивость к повреждающим воздействиям и способность к восстановлению функций, нарушенных патологическим процессом. Связано это с тем, что локальное возбуждение рецепторной поверхности потенциально может возбудить довольно обширную группу нейронов верхнего слоя или слоёв системы. Это увеличивает вероятность восприятия такого раздражения, хотя и связано с «дефокусировкой» (размыванием его центрального отображения). Вмешательство торможения, ограничивающего зону возбуждения, обычно автоматически осуществляет «фокусировку» этой зоны.
Рецептивные поля соседних нейронов частично перекрываются (рис. 3.3). В результате такой организации связей в сенсорной системе образуется так называемая «нервная сеть». Благодаря ей повышается чувствительность системы к слабым сигналам, а также обеспечивается высокая приспособляемость к меняющимся условиям путём адаптивных переключений связей и обучения.
Горизонтальная переработка сенсорной информации имеет, в основном, тормозный характер и основана на том, что обычно каждый возбуждённый сенсорный нейрон активирует тормозный интернейрон. Интернейрон, в свою очередь, подавляет импульсацию как самого возбудившего его элемента (последовательное, или возвратное, торможение), так и соседей по слою (боковое, или латеральное, торможение).
Рис. 3.3. Схема рецептивного ( а ) и проекционного (б ) полей сенсорного нейрона и нервной сети ( в ). Направление потока импульсов показано стрелкой. Показаны только возбудительные межнейронные связи. Возбуждённые нейроны в последовательных слоях (1–5) сети ( в ) зачернены
Сила этого торможения тем больше, чем сильнее возбуждён первый элемент и чем ближе к нему соседняя клетка (рис. 3.4). Латеральное торможение впервые было описано Г. Хартлайном в сложном глазу морского ракообразного мечехвоста. Это один из ведущих механизмов, осуществляющих большую часть операций по снижению избыточности и выделению наиболее существенных сведений о раздражителе.
Рис. 3.4. Схема бокового или латерального торможения (по Хартлайну). Зачернёнными кружками изображены возбуждённые светом элементы. Дугами над нейронами показаны взаимные тормозные связи. Видно, что элемент, расположенный на границе освещённой области, возбуждён сильнее своих соседей слева, так как он не тормозится справа. В то же время первый невозбуждённый элемент, расположенный на границе неосвещённой области, заторможён со стороны своего левого возбуждённого соседа сильнее, чем остальные неактивированные светом элементы