Понятие бесконечности — это неотъемлемая часть человеческой мысли. Весьма вероятно, что мы имеем некое врожденное неясное представление о бесконечности, которое постоянно сопоставляем с противоположным ему четким представлением о конечности, являющейся частью нашей природы. В философии и богословии размышления о бесконечности могут быть необязательными и ситуативными, но в математике ее исследование всегда было и остается насущной необходимостью.
Известен анекдот о некоем преподавателе математики, которому нужно было в первый раз объяснить студентам, что такое бесконечность. Он взял коробку с мелками, достал один и начал рисовать прямую на доске. Дойдя до края доски, он продолжил вести линию по стене, затем по полу и, не останавливаясь, вышел из аудитории и исчез из вида в конце коридора, продолжая вести линию. Дивленные студенты ждали, что будет дальше. Спустя некоторое время прозвенел звонок к концу лекции.
Преподаватель исчез. Последним, кто его видел, был вахтер. Преподаватель шел по улице и, не отрывая мела от асфальта, по-прежнему чертил линию. Прошло три дня, и руководство университета решило найти преподавателю замену. Через несколько месяцев, к удивлению студентов, преподаватель вернулся. Он оброс бородой, за спиной у него был рюкзак, в руке он держал кусочек мела. Он вошел в класс, по-прежнему чертя на полу линию, дошел до доски и, наконец, остановился. Усталый преподаватель повернулся к студентам и сказал: «Эта линия невероятно велика, но она — ничто в сравнении с бесконечностью».
Неизвестно, какое решение приняло руководство университета — возможно, преподавателя поместили в лечебницу. Также неизвестно, поняли ли студенты, что такое бесконечность. Однако преподавателю удалось выразить одно: бесконечность неизбежно связана с чем-то исключительным и даже шокирующим.
Существует множество удивительных историй, цель которых — дать нам представление о бесконечности. В религиозном контексте бесконечность обычно связана с вечностью и вечными муками. Пытка может быть долгой, но рано или поздно она прекратится, адские муки, напротив, длятся целую вечность. Чтобы описать вечность, обычно приводилась аналогия с неким титаническим трудом — например, сбором песка на огромном пляже по одной песчинке каждые сто лет. Один из наиболее любопытных образов бесконечности таков: представьте, что Земля — это стальной шар, и один раз в миллион лет голубь слегка гладит его крылом. Когда шар сотрется и превратится в бесконечно малую точку, пройдет вечность. Все эти истории обычно рассказывают детям, чтобы дать им представление (увы, неизбежно пугающее) о том, сколь велика бесконечность.
Я впервые осознал, что такое бесконечность, ребенком, когда оказался между двумя параллельными зеркалами в кабине лифта. «Что это?» — спросил я. Отец взял меня за руку и ответил: «Это бесконечность». С тех пор бесконечность для меня подобна далекой, удивительной и пугающей стране, по которой лучше всего путешествовать, если кто-то держит тебя за руку.
Для всех нас бесконечность находится где-то далеко, в совершенно недостижимом месте, и в лучшем случае вызывает страх, в худшем — безмерный ужас. Однако альтернатива бесконечности также не слишком обнадеживает. Если Вселенная конечна, что находится за ее пределами? Ответ: Ничто, с большой буквы. И это «Ничто» еще невероятнее, чем бесконечность.
Иллюстрация Гюстава Доре к «Аду» — первой части «Божественной комедии» Данте Алигьери. Дантовский ад был синонимом бесконечных страданий и вечных мук.
По определению из словаря, «бесконечность» обозначает нечто чрезмерно великое, необычайно большое или продолжительное. Однако мы часто используем это слово, говоря «бесконечное пространство», «бесконечно много раз», «бесконечное время», «бесконечное терпение». Все мы понимаем смысл этих выражений, но если мы попробуем разобраться, что же имеется в виду на самом деле, то увидим, что наши способности размышлять о бесконечности ограничены, и мы быстро переходим к банальностям и клише, которые никак не помогают нам приблизиться к пониманию сути бесконечности. Это понятие имеет философскую природу: размышлять о бесконечности означает философствовать, а для таких размышлений нужно иметь какую-то отправную точку. Проще всего будет обратиться к словарю.
В толковом словаре русского языка слово «бесконечность» имеет четыре значения.
1. Отсутствие конца, предела наличию каких-либо однородных объектов в пространстве или последнего момента осуществления каких-либо процессов.
2. Пространство, не имеющее видимых границ, пределов.
3. Условная величина, которая больше любого наперед заданного значения (обозначается знаком ).
4. Техн. Знак, метка, показатель условной величины, обозначающей предельную дальность действия прибора (используется в оптике, механике).
Проанализируем эту статью не с лингвистической, а с математической точки зрения и постараемся как можно ближе подойти к истинному значению этого слова.
Первое определение гласит, что бесконечность — это нечто, не имеющее конца, пределов. Сделаем несколько замечаний. Во-первых, обратим внимание на тонкое различие: когда мы говорим, что бесконечность не имеет конца, то мы утверждаем, что она существует и у нее отсутствует конец. Когда мы говорим, что бесконечность не может иметь конца, то утверждаем, что если она существует, то ее предел недостижим. Вам может показаться, что это различие несколько натянуто, однако в нем проявляется разница между потенциальной и актуальной бесконечностью — двумя понятиями, о которых мы подробнее поговорим чуть позже.
Во втором определении речь идет скорее о чувствах и ощущениях. Третье определение ближе всего к строгому математическому определению бесконечности. Обратите внимание на знак бесконечности, об истории возникновения которого мы поговорим далее.
Когда мы говорим «вечная любовь», то имеем в виду временной аспект бесконечности. Если же мы скажем, что Вселенная бесконечна, то речь идет о ее пространственном аспекте. Это определение по-прежнему расплывчато и по ощущениям напоминает вид звездного неба в безлунную ночь: его чернота кажется нам беспредельной. Поэтому очевидно, что если мы хотим говорить о бесконечности, то первое, что мы должны сделать, — это выбрать в качестве отправной точки некий конкретный объект, и, хотя это может показаться парадоксальным, поскольку математика носит абстрактный характер, лучшей отправной точкой станет ряд натуральных чисел.
Как известно, нет ничего более «натурального», чем натуральное число, и в любой развитой культуре известен ряд чисел 1, 2, 3, … Когда заканчивается этот ряд? Разумеется, никогда. Но почему? Потому что мы всегда можем прибавить к последнему числу единицу и получить следующее число. Как вы увидите чуть позже, за этим ответом скрывается достаточно точное определение понятия «бесконечность». Как бы то ни было, ответ «никогда» имеет в том числе временной аспект.
Точно так же можно сказать, что мы «всегда» сможем добавить к этому ряду еще одно число. Если мы будем приписывать к натуральному ряду числа, держа в руке часы, то увидим, что не только этот ряд, но и время, затраченное на его написание, будут бесконечно большими, что часто становилось причиной серьезных неудобств при изучении бесконечности.
* * *
ЗНАК БЕСКОНЕЧНОСТИ
Круг, изображаемый на иконах над головами святых, символизирует вечность. Латинское слово caelum означает и «небосвод», и «круг». Эта бесконечная кривая, которую можно обойти бесконечное число раз за бесконечное время, символизирует вечность. Аналогично в некоторых языческих верованиях в качестве символа святости вместо круга использовался знак бесконечности. В большинстве версий карт Таро на первой карте над головой Мага изображен знак бесконечности. Этот символ, который многие ошибочно называют «перевернутой восьмеркой», представляет собой так называемую «лемнискату Бернулли». Он был введен британским математиком Джоном Валлисом (1616–1703). Согласно другой версии, этот знак происходит от буквы М (обозначавшей тысячу), написанной курсивом, и Валлис, который также был филологом, начал использовать этот знак для обозначения очень больших чисел.
На карте Таро над головой Мага изображен знак бесконечности.
* * *
Проведем небольшой мысленный эксперимент. Предположим, что у нас есть мяч, который обладает следующими свойствами: всякий раз, когда он падает на пол, он отскакивает на высоту, в два раза меньшую, чем высота, с которой он упал. Если, например, мяч упал с высоты двух метров, он отскочит от пола на метр, затем на 50 см и т. д. Допустим, что нам нужно решить следующую задачу. Мы бросаем мяч с высоты 10 м. Какое расстояние пройдет мяч к тому моменту, когда он остановится? Нельзя сказать, что эту задачу невозможно решить, ведь мы понимаем, что в определенный момент мяч перестанет подпрыгивать — он не может подскакивать вечно. С другой стороны, можно предположить, что пройденный им путь будет бесконечно большим, так как делить пополам можно бесконечно, и всякий раз результатом деления будет все меньшая и меньшая величина. Это типичный парадокс, связанный с бесконечностью (далее мы рассмотрим его подробнее), в котором фигурирует новое для нас понятие бесконечно малой величины.
Остановится мяч или же он будет бесконечно долго подпрыгивать на бесконечно малую высоту?
Следовательно, мы можем представить себе бесконечность не только как нечто необъятное, но и как нечто бесконечно малое. Представьте себе отрезок, разделенный на две части. Каждую из них, в свою очередь, можно разделить еще на две части и т. д. По крайней мере теоретически мы можем делить отрезок бесконечное число раз и всякий раз будем получать все более и более мелкие отрезки. Есть ли этому предел? Нет, ведь подобно тому, как мы всегда можем добавить еще одно число к натуральному ряду, так и в этом примере мы всегда можем разделить полученный отрезок еще раз. Таким образом, «бесконечность» может относиться как к чему-то бесконечно большому, так и к бесконечно малому.
Первые рассуждения или размышления о бесконечности, как и о других важнейших понятиях философии, берут начало в древнегреческой культуре. Как известно, одной из многих заслуг греческих философов было создание собственного философского языка. Они обозначали идеи конкретными словами, сформировав философскую терминологию, такую же точную, как научная терминология (или даже более точную), так как в конечном итоге последняя произошла от первой. В нашем случае ключевым понятием является «апейрон» — слово, происходящее от греческого рérаtа, что означает «предел». Следовательно, нечто, не имеющее pérata, называется апейрон (ápeiron) — «бесконечное, беспредельное».
В греческой философии это «беспредельное» приобрело особое значение: под ним понималось не столько нечто неограниченное, как в наши дни, а источник всего сущего. За этим понятием скрывалась следующая идея: все сущее определяют прежде всего его пределы. Эта идея распространялась как на живые, так и на неживые объекты. Если мы представим себе произвольный объект, например стол, то первое, на что мы обратим внимание, — это не его назначение, а границы, которые отделяют его от всего остального. Живая клетка существует потому, что у нее есть мембрана, отделяющая ее от окружающей среды. Таким образом, можно утверждать: все на свете существует в своих пределах и благодаря им. Апейрон подобен некой неопределенной субстанции, в которой зародилось все сущее, когда в этой субстанции возникли границы, или пределы. Как следствие, причина существования апейрона — скорее присутствие чего-то неопределенного, нежели безграничного.
Поэтому неудивительно, что апейрон считался не только источником живительной силы — ему также приписывалась способность наделять вещи определенными свойствами. Так апейрон и, как следствие, представление о бесконечности в различных религиозных учениях стали связывать с Богом.
Возникла некоторая неоднозначность и даже противоречие: апейрон как основа всего сущего связан с первородным хаосом, то есть с чем-то плохим, нежелательным, чем-то, что не является частью нашего существования. Отсюда и неоднозначность понятия «бесконечность»: его можно связывать как с чем-то божественным и недостижимым, так и с чем-то беспорядочным, хаотичным — чистым злом.
Об этой негативной трактовке бесконечности, сохранившейся в нашей культуре, Хорхе Луис Борхес писал: «Существует понятие, искажающее и обесценивающее другие понятия. Речь идет не о Зле, чьи владения ограничены этикой; речь идет о бесконечности».
Другая трактовка понятия «апейрон», которая ближе к примитивной трактовке бесконечности, связана с евклидовым пространством, то есть с безграничным геометрическим пространством. Следуя логике Платона, Аристотель не верил в существование бесконечного пространства. Он считал, что пространство — это место, которое может быть занято предметом, вне зависимости от того, находится в нем сейчас какой-либо предмет или нет. Следовательно, бесконечное пространство может быть занято бесконечно большим предметом, что невозможно.
В рамках этой логики считалось, что звезды и планеты движутся по идеальным окружностям, так как их движение непрерывно, и если бы их траектории были прямолинейными, то они были бы бесконечно протяженными. Это представление о мире впоследствии перенял Коперник и даже сам Кеплер, которые разделяли эту точку зрения на пространство и бесконечность.
В Элейской школе, к которой принадлежали Парменид (530–460 гг. до н. э.) и Зенон (490–430 гг. до н. э.), реальность, Вселенная не могли иметь начала, а следовательно, и конца. Об этом Парменид писал: «…Все едино, недвижимо и бесконечно, так как по другую сторону его предела находилась бы пустота». Это заводит нас в тупик, поскольку пугающая бесконечность в этом случае сменяется столь же пугающей пустотой.
Некоторые понятия недоступны нашему пониманию, но тем не менее они существуют. Между страхом абсолютного ничто и страхом бесконечности нет особой разницы. По сути, это две стороны одной и той же монеты, хотя бесконечность обычно представляется более пугающей, поскольку она в некотором смысле ближе к нам. Мы не можем представить, что пространство, в котором мы живем, является конечным. Когда кто-то пытается представить, что наше пространство конечно, сразу возникает вопрос: «А что находится за его пределами?» Ответом не может быть: «Ничто». Там должно находиться другое пространство, пусть и пустое. Ответ на этот вопрос прост. Мы не знаем, что такое «ничто», а бесконечность, порой воображаемая, нас окружает постоянно, переставая быть просто понятием или концепцией. Присутствие бесконечности и сопутствующих ей вопросов во всех культурах ясно говорит о том, что, нравится нам это или нет, она является частью нашей природы, как жизнь, смерть или время.
Согласно Аристотелю, бесконечного пространства не существует. Он считал, что бесконечное пространство может быть занято только бесконечно большим предметом, которого не существует. Этот мраморный бюст Аристотеля является римской копией с греческого оригинала, выполненного в бронзе Лисиппом в 330 г. до н. э.
Предположим, что мы проводим на полу прямую линию так, что если мы сделаем шаг вперед, то перешагнем ее. Это потенциально возможное действие. Совершив его и оказавшись по другую сторону линии, мы сделали этот потенциал актуальным.
Существует четкая разница между потенциально возможным действием и действием совершенным. Например, может случиться так, что я захочу перешагнуть линию, но произойдет землетрясение и в полу образуется огромный разлом, который не позволит мне сделать этот шаг.
Мы говорим, что последовательность натуральных чисел 1, 2, 3, 4, … является бесконечной. Изначально это никто не подвергает сомнению, поскольку для любого числа n мы всегда можем получить следующее число n + 1, сколь бы велико ни было n. Однако одно дело — иметь возможность выполнить подобное действие, и совсем другое — совершить его в реальности и получить результат. Это очень тонкое различие. Возможность совершить действие определяет потенциальную бесконечность, а результат такого действия — актуальную бесконечность. Слова, обозначающие два различных типа бесконечности, не совсем удачны или, по меньшей мере, не до конца понятны. Возможно, более уместно (но также не совсем удобно) было бы называть потенциальную бесконечность теоретической, а актуальную — истинной бесконечностью.
Никто не может записать все целые числа — это неоспоримый факт. Так же верно, что никто никогда не видел две параллельные прямые, поскольку прямые бесконечны и мы можем видеть лишь их отрезки. Значит ли это, что параллельных прямых не существует? Они существуют настолько же, насколько существуют прямые вообще, но есть ли на самом деле бесконечная прямая? Евклид в своей известной книге «Начала» пытался рассматривать эту тему, поскольку, упоминая о прямых, он говорил об отрезках, чья длина может быть произвольно большой. Это весьма явная параллель с потенциальной бесконечностью.
Принятие актуальной бесконечности — не просто вопрос выбора, вкуса или предпочтений. Это нетривиальная философская задача. Следует учитывать, что в математике (ив науке вообще) до конца XIX века признавалось существование только потенциальной бесконечности. В философской школе Аристотеля был негласный запрет на использование актуальной бесконечности. «Невозможно чтобы бесконечность существовала в действительности как нечто сущее либо как субстанция и первоначало, — писал он и добавлял: — А что много невозможного получается, если вообще отрицать существование бесконечного, — [это тоже] очевидно», поскольку бесконечность «существует потенциально […] благодаря прибавлению или делению».
Так, по Аристотелю, отрезок нельзя рассматривать как бесконечное множество точек, выстроенных в линию, однако допускается деление отрезка пополам неограниченное число раз.
Мы задали перечисленные ниже вопросы о бесконечности обычному человеку, не имеющему специального математического или философского образования. Отвечать требовалось быстро, не раздумывая, в соответствии со «здравым смыслом», который является отражением наших культурных представлений.
* * *
БЕСКОНЕЧНОСТЬ И ОТЦЫ ЦЕРКВИ
В Средневековье споры об актуальной бесконечности не могли вестись в математической плоскости, поскольку бесконечность считалась свойством исключительно божественного и, следовательно, о ней могли рассуждать лишь богословы. Как говорил Аврелий Августин, «бесконечен лишь Бог и его мысли». Удивительно, но несмотря на это церковные сановники отрицали, что Бог способен создать актуальную бесконечность. Фома Аквинский в своем труде «Сумма Теологии» показал: хотя Бог всемогущ и бесконечен, он не может создать нечто абсолютно безграничное. Этот вывод можно оправдать, только если признать, что актуальная бесконечность в богословии равносильна абсолютному злу.
* * *
Вопрос: Что такое бесконечность?
Ответ: Что-то, что никогда не заканчивается.
Вопрос: И что это означает?
Ответ: Что ее части можно пересчитывать бесконечно долго.
Вопрос: Почему счет никогда не закончится?
Ответ: Потому что последнего числа не существует.
Вопрос: Откуда вы знаете?
Ответ: Я не могу это доказать. Я в это верю.
Вопрос: Иными словами, речь идет о вере.
Ответ: Не совсем. Я знаю, что каким бы большим ни было число, я всегда могу прибавить к нему другое число.
Вопрос: Я не согласен с этим. Даже если всю жизнь вы будете заниматься исключительно подсчетами, ваша жизнь конечна, и вы не сможете складывать числа неограниченное время.
Ответ: Это не важно — подсчетами могут заниматься несколько поколений людей.
Вопрос: Но жизнь на Земле также не вечна. Даже время существования самой Солнечной системы четко отмерено.
Ответ: Все равно. Не нужно, чтобы кто-то выполнял эти подсчеты в действительности. Достаточно знать, что это можно сделать. Даже если бы на Земле не было людей, это можно было бы сделать. Если никто не может сделать что-то, это не означает, что это «что-то» не существует.
Вопрос: Таким образом, бесконечность — это нечто, существующее независимо от нас.
Ответ: Разумеется.
В этих вопросах и ответах скрыты основные различия между актуальной и потенциальной бесконечностью. Тот, кому мы задали эти вопросы, очевидно склоняется к точке зрения Аристотеля.
* * *
НА КОСТЕР РАДИ БЕСКОНЕЧНОСТИ
В 1600 году Джордано Бруно (1548–1600) совершил «грех», представив, что мы живем в бесконечном пространстве, содержащем бесконечное множество миров. Затем он сделал ошибку, высказав эти мысли публично, за что был сожжен на костре. До этого он семь лет провел в заключении и перенес всевозможные пытки. Это доказывает, что, во-первых, Бруно был абсолютно уверен в своей гипотезе о бесконечности и в своем праве на свободу мысли и, во-вторых, идти против большинства в ту эпоху было опасно. Печальный парадокс заключается в том, что в настоящее время научное сообщество достигло определенного консенсуса и склоняется к мысли о том, что наша Вселенная может быть конечной. Вывод: идея — это всего лишь идея, ради нее можно поставить под удар авторитет, но не жизнь. Идея того не стоит.
Бронзовый барельеф итальянского скульптора Этторе Феррари (1848–1929), на котором изображен суд римской инквизиции над Джордано Бруно. Кампо деи Фиори, Рим.
* * *
Мы знакомимся с потенциальной бесконечностью уже в первые годы обучения в школе. Бесконечность связана с понятием счета и, следовательно, с натуральным рядом, а также с циклическими процессами, связанными с течением времени: за днем следует ночь, за ночью — день и т. д. Наши представления о бесконечности обычно остаются неизменными, и если они вступают в противоречие с интуицией, то это не ведет к каким-то заметным потрясениям. В действительности же они остаются более или менее неизменными потому, что мы редко используем их при решении каких-то сложных задач.
С актуальной бесконечностью дело обстоит совершенно иначе: она фигурирует во многих математических задачах, причем появляется внезапно, не оставляя времени на подготовку, поэтому неизбежно возникают противоречия, которые порой очень сложно преодолеть. Этот конфликт проявляется особенно остро, когда мы начинаем изучать математический анализ. Были проведены и до сих пор ведутся исследования, цель которых — определить, как и когда следует объяснять фундаментальные понятия при изучении математики и, в частности, математического анализа.
Для неспециалистов поясним, что математический анализ обычно начинают преподавать в старших классах, затем он изучается в течение двух-трех лет практически на всех технических факультетах вузов.
* * *
ПРИНЯТИЕ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ
Большинство опросов, проведенных среди населения, показывают, что 50 % опрошенных не признают существования актуальной бесконечности. Интересно, что эта точка зрения не меняется с возрастом. Иногда случается так, что даже преподаватели, объясняющие студентам материал, для понимания которого актуальная бесконечность играет определяющую роль, лишь «следуют правилам игры», но в глубине души считают, что актуальная бесконечность как таковая не должна существовать.
* * *
Попытка включить теорию множеств в курс средней школы в рамках программы современной математики, по мнению многих преподавателей, оказалась неудачной. Возможно, причина в том, что теория множеств представляет для математиков интерес в качестве теоретической базы, но сама по себе недостаточно широко применяется на практике. В результате большинство преподавателей ограничивались объяснением самых основ, в частности понятия принадлежности к множеству или включения множеств, которые интуитивно понятны и не требуют какого-то особого математического языка. Напротив, как вы увидите в следующих главах этой книги, понятие мощности множества (числа элементов множества) представляет особый интерес, особенно когда рассматривается мощность бесконечных множеств. В этом случае речь всегда идет об актуальной бесконечности, и возникает противоречие со здравым смыслом, так как в теории множеств рассматриваются множества, части которых равны целому. А ведь эту идею отверг еще Евклид в «Началах», категорически заявив, что «целое больше, чем его часть», и звучит это совершенно логично.
Еще одно противоречие возникает, когда выясняется, что ограниченные множества могут быть бесконечными, так как в нашем представлении бесконечность не имеет границ.
Как вы увидите далее, элементарная логика, или то, что порой называют интуицией, может обмануть, когда речь идет об актуальной бесконечности. Причина в том, что при рассмотрении некоторых понятий мы не до конца понимаем их и многое принимаем на веру. Трудности, возникающие у студентов-математиков при изучении актуальной бесконечности, сравнимы с трудностями, которые испытывают студенты-физики при изучении квантовой механики. Классический пример из квантовой механики выглядит так. Допустим, у нас есть ящик с двумя отверстиями, в котором находится шар. Если мы будем перемещать ящик произвольным образом, можно ожидать, что шар выпадет из него через одно из двух отверстий. При определенных перемещениях мы даже сможем вычислить вероятность того, что он выпадет через конкретное отверстие. Намного сложнее представить, что шар выпадет через оба отверстия одновременно. Но в квантовой физике такой вариант возможен, хотя он полностью противоречит интуиции. Речь не идет о том, чтобы понять это явление само по себе, так как всем известно, что означает: «шар выпадает через два отверстия сразу». Правильнее было бы сказать «я не верю» вместо «я не понимаю».
Нечто подобное происходит и с актуальной бесконечностью. Когда мы говорим, что крошечный отрезок прямой содержит бесконечное множество точек, мы понимаем, о чем идет речь. Другое дело, верим мы в это или нет.
* * *
«ИСЧИСЛЕНИЕ ПЕСЧИНОК» АРХИМЕДА
Слова для обозначения больших чисел (миллион, миллиард и т. д.) были введены французским математиком Никола Шюке (ок. 1445–1488) в 1484 году. Суффиксом — иллион он обозначал число М = 106 (в этой системе обозначений M1 — миллион, М2 — биллион, М3 — триллион и т. д.). В системах счисления древности очень большие числа обычно не рассматривались.
В древнегреческой системе счисления максимально возможным числом было 100 миллионов. Архимед создал знаменитый трактат по арифметике под названием «Исчисление песчинок», в котором, помимо прочего, привел теоретические подсчеты общего числа песчинок на Земле. Его истинной целью было показать, что возможно создать систему счисления для подсчета объектов, которых, как может показаться, бесконечно много, но в действительности это не так.
Система Архимеда была основана на последовательных степенях мириады (Ω), равной 10000. Максимально возможное число в этой системе счисления равнялось — это очень и очень большое число. Неизвестно, почему Архимед остановился именно на нем, хотя никто не мешал ему двигаться дальше.