Велико в жизни и хозяйственной деятельности человека значение всех тех явлений, которые имеют отношение к температуре и теплоте. Подвигом Прометея считается то, что титан подарил людям огонь. При помощи огня человечество научилось не только готовить пищу, но и расчищать лес под посевы, обрабатывать металл. Сейчас понятия температуры и теплоты, а также связанные с ними явления окружают нас повсюду. Двигатели внутреннего сгорания, ракеты, атомные реакторы, электрокамины и многое другое — все это так или иначе связано с теплом. Поэтому в начале Нового времени в физике оформилось самостоятельное направление, известное как учение о теплоте.
Учение о теплоте чаще всего называют в наши дни молекулярно-кинетической или просто кинетической теорией. Слово «кинетический» в переводе означает «относящийся к движению», а слово «молекула» буквально переводится как «массочка», т. е. крайне малая масса. Молекулы являются мельчайшими частицами вещества, сохраняющими его химические свойства. Если преобразовать молекулу, то вещество подвергнется химическому превращению и станет новым соединением. Однако молекулы обладают еще и физическими свойствами, которые тесно связаны с тепловыми процессами и явлениями. Кроме того, в данных процессах принимают участие прочие частицы, слагающие тела: атомы, ионы, электроны и др.
Изучение температуры тел тесно связано с познанием природы теплоты вообще. Еще в эпоху античности мыслители-натурфилософы задавались вопросом о том, что есть тепло и нагретость. Эти ученые выдвигали самые разнообразные умозрительные гипотезы, зачастую совершенно невероятные. Только в позднем средневековье утвердилось представление о температуре как о степени нагретости тела. Подобные представления привели к изобретению термометра, а он позволил приоткрыть завесу тайны, связанной с другими загадками температуры и теплоты.
Новые открытия позволили усовершенствовать конструкцию термометра и разработать калориметрические приборы. Множество открытий принес XVII в., за время которого был совершен скачок в науке о теплоте. Выдающийся английский философ и ученый Ф. Бэкон, а вслед за ним и основатель картезианства, французский мыслитель и математик P. Декарт придерживались весьма своеобразного представления о теплоте и температуре. В то время эти понятия частично смешивались, поскольку оба феномена были взаимосвязаны и представляли собой две стороны одного явления.
Тем не менее гипотеза Бэкона и Декарта была близка к истине. Они связали нагретость и тепло с незримым движением частиц — атомов и корпускул, из которых состоят физические тела. Но многие в то время придерживались галилеевской теории теплорода, которая восторжествовала в науке в XVIII столетии. Согласно этой теории, которая была неверной, теплота представляет собой как бы невесомую жидкость, перетекающую от одних тел к другим, сообщая им некоторую температуру.
Гипотетическую невесомую жидкость, которая в действительности не существовала, окрестили теплородом. Против теории теплорода выступали выдающиеся отечественные ученые того времени, в первую очередь М. В. Ломоносов и Г. Рихман, которые первыми начали проводить калориметрические исследования. Рихман в 1744 г. вывел формулу для вычисления степени нагретости смеси любого количества масс воды, имеющих неодинаковые температуры. Основываясь на этой формуле, шотландец Дж. Блэк обнаружил «скрытую теплоту льда», иными словами, теплоту плавления льда.
Ломоносов, сотрудничая с Рихманом, сформулировал основные положения молекулярно-кинетической теории. Он первым начал отличать атомы от молекул, внеся порядок в учение о теплоте. Несмотря на старания прогрессивных ученых, теория теплорода просуществовала в физике необычайно долго. Лишь промышленный переворот в XVIII–XIX вв. положил конец безраздельному господству ложной теории: она не могла реально объяснить преобразования теплоты в работу и наоборот, а именно эти процессы находились в центре внимания инженеров — создателей паровых машин.
К кинетическому учению вновь вернулись, оно стало непрерывно совершенствоваться. Физики догадались, что степень нагретости означает выражение внутренней энергии тела, заключающейся в хаотическом движении молекул. Такое беспорядочное движение частиц получило название теплового, но нередко его именуют броуновским по имени английского ботаника P. Броуна, который мог наблюдать под микроскопом последствия движения молекул воды. Хотя броуновское движение и имеет одинаковую природу с тепловым, в действительности оно есть следствие теплового.
Хаотическое тепловое движение характерно для всех объектов, включая твердые тела. Степень свободы у частиц твердого тела невелика, оттого их тепловое движение представляет собой ритмичные колебания вокруг одной точки. При нагреве внутренняя энергия тела меняется, его частицы начинают двигаться быстрее. В конечном итоге прежние связи разрушаются, таким образом твердое тело переходит в жидкость с повышением температуры. В жидкости велики силы сцепления, но они допускают большую подвижность молекул. С этой особенностью связано присущее жидкостям свойство текучести.
Броун, разумеется, не мог наблюдать перемещений молекул, а лишь видел при помощи микроскопа смещения ничтожно малых растительных спор в воде. Подвижные водные молекулы ударяли по спорам растений. Суммарный удар большого числа молекул с одной стороны заставлял каждую спору двигаться в противоположную сторону, куда ударов приходилось меньше. Точно таким же образом молекулы соударяются одна с другой. Во время подобных соударений происходит обмен энергией. Всякому случалось опускать в горячий чай холодную ложечку, чтобы она его остудила.
Данный пример демонстрирует одно из неизбежных последствий молекулярного теплообмена. Быстрые молекулы горячей воды ударяют в ложечку и расшатывают ее молекулы. Энергия водных частиц растрачивается, и чай действительно немного остывает, а вот ложечка при этом обычно сильно нагревается. Получается, что горячее то тело, молекулы которого имеют наибольшую скорость (максимальную энергию). Но это касается однородных тел. Воду можно перевести в газообразное состояние, если нагреть ее до температуры +100 °C, при которой человек получает ожоги.
Однако водяной пар является газом, как и воздух, состоящий из смеси газообразных азота и кислорода. Тем не менее температура воздуха сравнительно низка, она не поднимается выше +56 °C. Дело в том, что молекулярное строение воздушных газов отлично от воды. Связи между их частицами непрочны и разрушаются уже при отрицательных температурах. Поэтому кислород становится газом при -182,96 °C, а азот — при -195,8 °C. В целом воздух как сложная смесь кипит при температуре -193 °C (все величины даны для нормального давления).
Частицы в газах обладают максимальными скоростями в мире молекул, однако разные газы получаются при разных температурах. Кипение каждого вещества происходит, если сообщить телу некоторое количество энергии. Обычно говорят о теплоте кипения. Точно так же существует теплота плавления, обнаруженная Блэком. Здесь-то как раз и проявляется разница между температурой и теплотой. Чтобы нагреть тело до определенной температуры, требуется сообщить ему некоторое количество энергии, т. е. какое-то количество теплоты.
Однако для перевода тела в новое агрегатное состояние (твердого — в жидкость, жидкости — в пар) недостаточно нагрева до температуры плавления или кипения. Нужно сообщить еще некоторое количество теплоты (энергии), которое пойдет на разрыв связей между молекулами. Вода кипит при температуре +100 °C. Однако легко представить, как надолго затянется попытка полностью перевести воду в пар посредством кипения.
Чтобы вода выкипела, мало сообщить ей температуру кипения. Требуется придать жидкости количество теплоты, необходимое для выкипания — превращения всего объема воды в пар. Оттого, к слову, ожоги от пара гораздо болезненнее, чем ожоги от кипятка. Пар обладает большим запасом энергии, т. е. большим количеством теплоты.
Кому-то может показаться, что энергия теплота тождественны. Отчасти так оно и есть. Теплота представляет собой т. н. тепловую энергию, особую разновидность энергии вообще. Этот вид энергии можно перевести в другие виды. На этом принципе основано строение всех тепловых машин: выделяемая ими теплота преобразуется в механическую энергию, которая становится работой.
Воздух насыщен водяным паром. Как же получается, что человек не обжигается этим паром. Причин тому несколько, и открыты они были учеными не сразу. Следует сказать, что молекулы пара затрачивают свою энергию вследствие соударений с «холодными» воздушными молекулами. В результате скорость движения водяных частиц в атмосфере резко падает, пар остывает. Оттого в высших ее слоях протекают процессы конденсации, осаждения капельной влаги. Вода возвращается в жидкое состояние. Из бесчисленных мельчайших капелек складываются облака.
Второй причиной является то, что мы не ощущаем ударов отдельных молекул, а газы в атмосфере сильно перемешаны. Поэтому конденсация влаги протекает лишь на больших высотах, где падение температуры воздуха более чем заметно. Смешение молекул с разными скоростями приводит к тому, что средняя скорость частицы воздуха резко отличается от максимально и минимально возможных значений. Получается, что воздух состоит из усредненных молекул, определяющих его температуру, которую можно ощущать и измерить.
То же самое касается и всех остальных веществ в любом из агрегатных состояний. Внутри жидкости, газа и твердого тела (даже химически однородного, т. е. состоящего из одинаковых молекул или одинаковых атомов) всегда найдутся быстрые частицы и медленные. Любопытно, что нередко разница оказывается весьма существенной. Некоторые молекулы при средней температуре тела +20 °C двигаются неактивно: эти «ленивцы» преодолевают за единицу времени такое же расстояние, какое соответствует морозу в -50–100 °C. Зато наиболее быстрые движутся на скоростях, отвечающих жаре в +100–150 °C. Известны и более существенные расхождения.
Если бы ученые располагали прибором, способным отсортировать молекулы по скоростям, то обычным воздухом в комнате (а стало быть, при комнатной температуре) удалось бы вскипятить без проблем 100 г воды. К сожалению, такой прибор невозможен. Он называется «демоном Максвелла», поскольку впервые именно английский физик Дж. Максвелл открыл разделение молекул по скоростям и указал на невозможность создания такого устройства. В природе не существует фильтра для быстрых и медленных молекул.
Человек изобрел немало способов измерять температуру окружающих его тел. До нашего времени сохранились несколько градусных шкал температуры, построенных на основе первых термометров самого разного устройства. Поразительно, что элементарный градусник не является больше научным инструментом, хотя первоначально был таковым. Ныне он нашел широчайшее применение в промышленной химии, технике, метеорологии, ветеринарии и, конечно же, в медицине.
Изобретателем замечательного измерительного прибора, полезного всем, являлся знаменитый человек. Самый первый градусник, как принято считать, создан великим механиком и астрономом Г. Галилеем, который разработал немало самых разнообразных технических приспособлений для проведения замеров во время своих экспериментов. Устройство Галилея, вошедшее в историю под названием термоскопа, сконструировано в 1597 г.
Галилеев термоскоп не был проградуирован, так что мы не имеем полного права называть устройство градусником. Он представлял собой полый стеклянный шар, соединенный трубкой с водным сосудом. Воздух в шаре при изменении температуры сжимался или расширялся, и вода то поднималась в трубке, то опускалась.
Официальное мнение относительно первенства Галилея в изобретении термометра спорно. Галилеево устройство, скорее всего, было первым научным инструментом, послужившим основой для создателей последующих моделей.
Первый настоящий термоскоп был сконструирован александрийским механиком Героном. Принцип действия термометра Герона был схож с принципом действия термометра Галилея. Воздух в шаре с водой от нагрева расширялся и вытеснял воду наружу: она выливалась через особую трубочку в блюдце. Оба термоскопа являлись одновременно и бароскопами, потому что сильно зависели от атмосферного давления. Оно вносило погрешности в измерения. Сегодня удалось подсчитать, что изобретатели обманывались на 10 °C, хотя не подразумевали об этом, да и не смогли бы проверить сами себя.
Более совершенные термометры, нередко снабженные градуированными шкалами, созданы во второй половине XVII в. Среди них — термометр Флорентийской академии опыта, а также градусник Санторио. Итальянец Санторио был врачом и применял свой самодельный градусник для измерения температуры у пациентов. То есть изобретатель впервые нашел одну из областей практического применения термометров.
Принцип действия всех термометров был абсолютно одинаков. При нагреве некоторая мерная жидкость меняет объем — расширяется или сжимается. Столбик этой жидкости движется вдоль градуированной шкалы и показывает, насколько нагрета или охлаждена жидкость. Создать градусную шкалу долгое время не удавалось. Для этого требовалось выполнить два условия. Во-первых, нужно было найти в природе какую-то постоянную температуру, которая послужит эталонной отметкой. Во-вторых, требовалось четко определить величину одного градуса посредством мерного вещества.
Первое условие было выполнено тогда, когда удалось эмпирическим путем установить несколько стабильных температур — человеческого тела, смеси льда и воды, водяного пара, а также некоторых других. Для тела здорового человека характерно наличие одной постоянной температуры. Сколько не измеряй ее термометром заданной конструкции, показания прибора останутся прежними. То же касается смеси льда и воды. Замерзающая вода имеет неизменную температуру, равно как, впрочем, и водяной пар. Позднее физики научились находить и другие постоянные температуры.
Один из самых ранних термометров, оказавших влияние на развитие современной техники измерения температуры, был создан Реомюром. Его шкала, получившая название шкалы Реомюра, была градуирована при использовании всего одной постоянной точки. За эту точку была принята температура плавления льда, которую Реомюр обозначил как 1000 градусов. Она равна температуре замерзания воды (смеси воды и льда).
Мерной жидкостью в термометре Реомюра служил спирт, имеющий такую плотность, при которой его коэффициент расширения равняется 0,0008. При нагревании или охлаждении на 1 градус Реомюра спирт менял объем на 0,0001 часть. Измерив с помощью своего термометра температуру кипения воды, физик получил величину 1080 градусов. Изобретатель исходил из предположения, что при каком угодно нагревании тепловое расширение мерной жидкости протекает равномерно.
Поскольку пользоваться такой шкалой было неудобно, то со временем ее заменили на обновленную. Новая градуировка принимала за 0 градусов Реомюра температуру плавления льда, а за 80 градусов — температуру кипения воды. Хотя размер градуса остался прежним, основанным на спиртовом коэффициенте, нынешние термометры Реомюра в действительности ртутные.
Голландский стеклодув Фаренгейт, шкала которого получила еще большее распространение в разных странах, в первую очередь в англоязычных, отталкивался в своих исследованиях от капризов природы. Зимой 1709 г. в Данциге были отмечены самые крепкие за последние 100 лет морозы. Поэтому Фаренгейт выбрал в качестве постоянной точки для градуирования шкалы своего термометра минимальную температуру, которую ему удалось получить при охлаждении на морозе смеси из нашатыря, поваренной соли и воды.
Однако Фаренгейт на этом не остановился и взял для дальнейшего градуирования вторую постоянную точку. В своем выборе ученый последовал примеру великих физиков (в т. ч. Ньютона), конструировавших свои термометры на основе величины нормальной температуры человеческого тела. Причиной тому, впрочем, было не единственно подражание. В то время многие медики ошибочно полагали, будто воздух не нагревается в естественных условиях выше температуры тела человека. В противном случае люди бы погибли, т. к. кровь якобы не может существовать в жидком виде при температуре среды, равной ее собственной температуре.
Таким образом, вторая постоянная точка шкалы оказалась также косвенно связанной с воздухом. На шкале были отмечены минимальная и максимальная температуры воздуха в естественных условиях. Интервал между двумя точками Фаренгейт разбил на 24 деления — градуса. Поскольку полученный отрезок оказался чрезмерно велик, то впоследствии Фаренгейт поделил каждый градус еще на 4 и новый отрезок стал называть градусом.
Всего между постоянными точками шкалы находится 96 градусов. Температура кипения воды равняется 212 градусам. Следует заметить, что изобретатель придерживался в корне ошибочного мнения о постоянстве изменения объема при тепловом расширении, как и Реомюр. То есть оба считали, будто от нагрева или охлаждения на 1 градус объем меняется на строго заданную долю. В настоящее время известно, что изменение объема протекает не всегда одинаково. Фаренгейт допустил и другую ошибку. В то время было принято считать нормальной температурой человеческого тела +35 °C, именно эту отметку и взял за основу изобретатель.
Шкала А. Цельсия, предложенная им в 1742 г., была гораздо более удобна. Прежде всего, эта шкала была стоградусной, т. е. рассчитанной на небольшой спектр температур. В пределах ее отметок объем мерной жидкости (ртути) меняется на строго определенную величину при изменении нагретости на 1 градус. Это коэффициент теплового расширения. За основу были выбраны наиболее известные своим постоянством температуры таяния льда и кипения воды, впервые найденные физиками X. Гюйгенсом и P. Гуком в середине XVII в. В современной физике стоградусная шкала не заняла ведущих позиций, хотя и является очень важной.
Однако она широко применяется в медицине. Температуру человеческого тела во множестве стран измеряют по шкале Цельсия. Любопытно, что традиционные термометры Цельсия вскоре будут заменены на электронные, показывающие точную температуру на табло. Лишь значение градуса останется прежним. Созданы самые разные модели электронных термометров, среди них наиболее примечателен «шумовой» градусник. С повышением температуры тела человека молекулы в клетках начинают активнее двигаться, колебаться. В результате они создают сотрясения, генерирующие неслышимые шумы. Ученым удалось зарегистрировать молекулярный шум человеческого организма и измерить по этому шуму температуру с помощью электронной аппаратуры.
Современная физика пользуется шкалой У. Томсона (лорда Кельвина). Численно 1 градус Кельвина (1 К) равен 1 градусу Цельсия, поскольку стоградусная шкала была весьма удобна в практических работах. Но шкала Кельвина имеет одну постоянную точку. Это т. н. абсолютный нуль, при котором молекулярное движение полностью прекращается. Данная температура равна -273,15 °C. Отрицательных температур на шкале Кельвина нет. Посредством такой шкалы можно измерять термодинамическую температуру, определяющую количество переданной от тела к телу тепловой энергии.
Термодинамикой называется наука, изучающая все энергетические процессы в природе, опираясь в первую очередь на молекулярно-кинетическую теорию. Термодинамика рассматривает все физические тела как сложные системы частиц или как составные элементы большой системы тел. Превращения энергии в таких системах определяют специфику протекания внутренних процессов. Конечным итогом процессов нужно считать превращение всех видов энергии в теплоту и достижение системой теплового равновесия. Как и почему это происходит, объясняют три закона, или начала, термодинамики.
Энергия — это способность тела совершать работу, хотя, естественно, наличие энергии вовсе не означает, что тело непременно будет работать и работать. Если какой-то человек математик, то это еще не означает, что он постоянно решает задачки. Если батарейка от электронных часов пригодна к использованию, то это не значит, что она должна быть немедленно использована.
Тем не менее всякий вид энергии можно превратить при определенных условиях в работу. На человека в нашу эпоху работает тепловая, ядерная, электрическая, механическая и прочие формы энергии. Все перечисленные разновидности тесно взаимосвязаны, поскольку сравнительно легко превращаются друг в друга. Ядерная энергия на АЭС превращается в тепловую, нагревающую воду. Последняя превращается в пар, который порождает механическую энергию турбины, вырабатывающей электроэнергию.
Электроток приходит с АЭС в наши дома, где превращается в волновую энергию светового излучения, когда мы зажигаем лампочки. Или вновь превращается в механическую энергию, когда мы включаем пылесос. Электричество приводит во вращение лопасти винта, порождающее потоки воздуха. Так совершается полезная работа. Нетрудно заметить, что полезная работа всегда соответствует переданной энергии. Работа атомного реактора — нагреть воду. Работа водяного пара — привести в действие турбину. Работа турбины — выработка электрического тока. Работа тока — вращение якоря в обмотке мотора пылесоса. Работа служит количественной мерой передачи энергии.
Фактически тела способны обмениваться энергией лишь тремя способами — посредством совершения друг над другом работы, посредством теплообмена или массообмена. Конечный итог всех превращений энергии и любой работы есть образование тепловой энергии. Все природные процессы завершаются получением тепла. Ядерная энергия целиком переходит в тепловую, часть которой уходит в окружающую среду, а другая в работу. Интересно, что на работу затрачивается меньше тепла, чем рассеивается во внешней среде.
Тепловую энергию практически невозможно использовать полностью, как, впрочем, и любой другой вид энергии.
Водяной пар, взаимодействуя с турбиной, отдает ей и окружающей среде часть тепла. От этого он охлаждается и постепенно утрачивает способность производить работу. В итоге пар совершает меньше работы, чем получил энергии. Турбина из-за трения переводит часть полученной энергии в теплоту, т. к. разогревает детали. Ее полезная работа опять уменьшается. Электрический ток изначально обладает сравнительно большой энергией, однако часть ее расходуется впустую.
Провода передачи оказывают сопротивление току, отчего он частично переходит в тепло. Уже меньшая часть электрической энергии поступает к бытовым приборам. Но и они не обладают способностью переводить все энергетические затраты в полезную работу: часть энергии непременно растрачивается на бесполезное тепло. Всякому известно, что мотор пылесоса от работы нагревается. Что касается лампы накаливания, то она получает излучение целиком за счет теплоты. В таких лампах нагревается вольфрамовая нить, которая начинает испускать световые волны.
Первые исследования по превращению теплоты в работу провел французский инженер С. Карно, опубликовавший свои воззрения относительно теории теплоты в книге «Размышления о движущей силе огня» (1827 г.). Он разложил тепловую машину на три ее важнейших компонента — нагреватель, рабочее тело и холодильник. Нагреватель дает тепловую энергию рабочему телу, однако такая передача происходит только потому, что теплота стремится перейти от горячего тела к менее нагретому (холодильнику).
Чем больше разница температур, тем интенсивнее перетекание теплоты. Разность энергетических уровней порождает работу. Точно так же высота плотины влияет на скорость падения воды, вращающей турбину. Чем горячее нагреватель в сравнении с холодильником, тем выше производительность рабочего тела. В паровой машине нагревателем служит котел, рабочим телом — расширяющийся от нагрева пар, толкающий под давлением цилиндр, а холодильником — окружающий воздух.
Отработанный пар выбрасывается в окружающую среду и рассеивается в атмосфере, отдавая ей свою энергию. Таким образом, для наибольшей эффективности работы тепловой машины температура котла (двигателя) должна быть намного выше температуры воздуха. Коэффициент полезного действия машины зависит от разности названных температур. Он никогда не может превышать 100 %, поскольку машина использует определенное количество тепловой энергии. Эта изначальная энергия и равняется 100 %. Свыше имеющегося машина использовать не может.
Кроме того, значительная часть теплоты должна перейти к холодильнику, иначе движение тепловой энергии остановится. Следовательно, рабочее тело получает намного меньше 100 %. Человеческий организм не является тепловой машиной, однако и для него справедливы законы сохранения энергии. Вот почему эффективность работы нашего тела составляет всего 30 %. Некоторые биологи полагают, что работа клеток, слагающих тело человека, гораздо выше и равняется 70 %. Скорее всего, так оно и есть, однако даже это число значительно ниже 100 %.
В общем виде закон сохранения энергии звучит следующим образом. Поступление к телу тепловой и любой другой энергии численно равняется изменению внутренней энергии тела и совершенной этим телом работы. Целиком превратить сообщенную энергию в работу невозможно. Ведь сначала требуется изменить внутреннюю энергию рабочего тела. Но даже если нам каким-то образом удалось полностью использовать внутреннюю энергию тела, то оно после этого вовсе перестанет совершать работу. Закон сохранения энергии, имеющий много формулировок, представляет собой первое начало термодинамики.
Карно утверждал, что в паровой машине тепло не потечет от холодильника к нагревателю. В дальнейшем физики P. Клаузиус и У. Томсон показали, что это утверждение справедливо для всех тепловых процессов. Теплота передается от тел только к менее нагретым телам. Данное утверждение представляет собой второе начало термодинамики. Доказывается оно сейчас посредством кинетической теории.
При соударениях молекулы обмениваются энергией. В результате они как бы делят ее поровну, отчего приобретают некую усредненную скорость. Усреднение скорости частиц и выравнивание температуры при теплообмене приводит к тому, что молекулам становится нечем обмениваться. Система пришла к тепловому равновесию. Медленные молекулы могут при соударениях с быстрыми «отбирать» у тех скорость, а вот наоборот происходить не может. Делится тот, у кого есть, что делить. Оттого теплота не течет от холодных тел к нагретым.
Любопытно, но сравнительно недавно — на рубеже XIX–XX вв. — научный мир был потрясен известием о «тепловой смерти» Вселенной. Некоторые физики проанализировали следствия из второго начала термодинамики и пришли к выводу, что рано или поздно придет время, когда беспорядочность теплового движения достигнет максимума. Тогда температуры во Вселенной сравняются, а значит, сравняются и энергетические уровни. Движение материи остановится, что приведет к ее самоуничтожению. Паника продолжалась до тех пор, пока австрийский физик Л. Больцман не показал, что беспорядок в микромире имеет предел.
Тепловое движение частиц хаотично, а не направленно. Потому-то они никогда полностью не рассеют энергию. Ведь для этого нужно сознательно выбирать способ движения. Частицы сознанием не обладают, что очевидно, и беспорядка не получится, если молекулярное движение имеет конечную цель. Таким образом, хаос спасает мир. Если в одном месте Вселенной произойдет выравнивание температур (частичная «тепловая смерть»), то в другом, напротив, возрастет разность энергетических уровней.
После приложения теории относительности Эйнштейна к космологии стало понятно, что объяснения Больцмана излишни. Даже частичная «тепловая смерть» не будет катастрофой. Колоссальные силы гравитации, сосредоточенные в массивных звездах и галактиках, имеют фантастически большой потенциал отрицательной энергии, которая будет сглаживать рост беспорядка.
Больцман является первооткрывателем энтропии. Он ввел это понятие для описания меры беспорядка в природе. Энтропия любой системы подвижных частиц безудержно стремится к максимуму. То есть частицы и были бы рады перемешаться до полнейшего хаоса и усреднить энергетический потенциал системы, однако до тех пор, пока энергия системы постоянна, беспокойные молекулы вынуждены идти в обход энтропии.
Мера беспорядка обусловлена вероятностью состояния системы, к которому пришли частицы. Это означает следующее.
Вероятность подразумевает число способов, которыми реализуется то или иное состояние. Представим себе грабителя, намеревающегося попасть в дом купца. Грабитель плюс купец, с точки зрения физика, — это система. Энтропия системы минимальна, пока та находится в порядке. Для этого грабитель должен находиться на улице, а купец должен запереться у себя дома. Но система стремится к беспорядку, т. е. грабитель стремится попасть в дом купца. Произойдет смешивание частиц и, увы, выравнивание энергии.
Грабитель знает, что в дом можно попасть через окно, чердак или дымоход. Таким образом, вероятность максимальной энтропии очень велика. Число способов, которыми система придет к беспорядку, равно 3. Однако, если бы купец забыл запереть дверь, то вероятность бы возросла. Все вещества ведут себя точно так же. Система молекул ни за что не придет к полнейшему беспорядку, но только к такой степени энтропии, которая наиболее возможна. В нашем случае грабителю легче попасть в дом через окно, но при этом он не может много унести с собой, поскольку уходить ему придется тем же путем. Энтропия максимума так и не достигнет.
Посмотрим, какие превращения происходят с веществом по мере увеличения беспорядка. Если нагреть лед, то он растает. Его молекулы перейдут к беспорядку. Однако лед не превращается в пар, хотя это состояние соответствует максимальной энтропии. Однако вероятность такого состояния без дополнительных порций энергии исчезающе мала. Поэтому вода как система молекул предпочитает благополучно пребывать в жидком состоянии.
Указанная причина объясняет, отчего на нашей планете преобладает вода в жидком агрегатном состоянии. Ее масса в тысячи раз превосходит суммарную массу ледников и водяного пара атмосферы, потому что данное беспорядочное состояние наиболее вероятно. На холодном Марсе преобладают ледники и, видимо, вечная мерзлота. Ледовые шапки активно испаряются под влиянием солнечного ультрафиолета. Здесь для воды такой путь увеличения энтропии наиболее вероятен. Жидкая вода на красной планете в нашу эпоху полностью отсутствует.
Третье начало термодинамики было сформулировано в 1906 г. немецким физико-химиком В. Нерстом. Оно гласит, что по мере охлаждения тела до абсолютного нуля энтропия данного тела также уменьшается до нуля. Это естественно, поскольку при абсолютном нуле тепловое движение частиц — даже колебания атомов в узлах кристаллической решетки — полностью прекращается. А это означает, что беспорядок системы сводится на нет. Оттого, кстати, получить абсолютный нуль невозможно. Процессы в природе направлены на увеличение беспорядка. Технически человек сможет сколь угодно близко подойти к заветной температуре, но полностью движение частиц не остановит.
Законы термодинамики формулировались в эпоху появления парового транспорта и автоматических заводских машин.
Проекты и разработки двигателей для различных механических устройств заинтересовали тогда многих и породили потребность в исследовании природы теплоты. Предприимчивые промышленники переставали мечтать о «вечном двигателе» и желали иметь на заводах реально действующее оборудование.
История изобретения тепловых двигателей чрезвычайно интересна и поучительна, поскольку является историей наоборот. То есть здесь изобретение как бы опережает открытие. Едва физики разработали термометрическую шкалу (1742 г.), заложили основы молекулярного учения о теплоте (1744–1750 гг.) и ввели в науку понятие удельной теплоты парообразования (1757–1760 гг.), как сразу же изобретатели начали трудиться над созданием тепловой машины.
Принципов работы подобных механизмов тогда попросту не существовало, не были открыты все фундаментальные газовые законы, никто не подозревал о связи теплоты и энергии. Получилось иначе. Инженеры начали старт к новым технологиям со скромной теоретической базы, которая разрасталась и пополнялась открытиями по мере совершенствования изобретений. В учении о теплоте теория и практика следовали бок о бок, взаимно обогащая друг друга.
Причины того, что практическое развитие тепловых двигателей несколько опередило теорию этих устройств, а затем следовало за ней по пятам, кроются в промышленном перевороте. Эпоха позднего средневековья и начала Нового времени ознаменовалась повсеместным распространением на производстве механизации. Однако механизация, всецело зависящая от мускульной силы, была одновременно и фактором, сдерживающим дальнейшее прогрессивное развитие индустрии. Первой тепловой машиной являлся паровой насос, причем одним из наиболее ранних устройств этого типа считается насос Сэвери, построенный в Англии в XVI столетии.
Пар из котла насоса Сэвери подавался через перегонную трубку, снабженную вентилем, в специальный резервуар, заполненный водой. Поступающий под давлением пар вытеснял воду вверх по трубке, оснащенной клапаном. Затем пар остывал и конденсировался.
Давление в этой трубке падало, но вода не опускалась обратно, т. к. тому препятствовал клапан. Зато снизу поступала вода, которую и призван был втягивать насос. Машина Сэвери предназначалась для откачки воды из шахт и применялась до середины XVIII в.
Несколько раньше, в 1763–1766 гг., русским изобретателем И. И. Ползуновым была сконструирована другая тепловая машина. Автоматический и непрерывно действующий паровой двигатель был рассчитан на приведение в движение станков, различных механизмов и подобных им устройств на алтайских металлургических и горнорудных заводах. Это была самая первая тепловая машина в истории, однако устройство сыграло, к сожалению, незначительную роль в развитии науки. О нем и его изобретателе никогда не узнали за рубежом и быстро забыли на родине.
Более совершенным паровым насосом, чем устройство Сэвери, явилась машина, изобретенная английским кузнецом Ньюкоменом. Она была оснащена главным элементом теплового двигателя — поршневым цилиндром, который отсутствовал у насоса Сэвери. Несмотря на явные преимущества перед ранними типами тепловых машин, двигатель Ньюкомена мог применяться лишь в насосных установках.
Он не был лишен принципиальных недостатков остальных паровых машин, не являлся автоматическим и действующим непрерывно. Машина работала лишь часть цикла, т. е. пока поршень шел вперед.
Обратного хода поршня обеспечить не удавалось. Кроме того, устройство работало при условии, что обслуживающий персонал открывал и закрывал вентили.
Паровой агрегат непрерывного действия был сконструирован только в 1782 г. Дж. Уаттом. Изобретатель понял, что машина для поддержания непрерывного функционирования должна выбрасывать пар по завершении хода поршня. На эту идею Уатта натолкнула, если верить историческому факту, прыгающая на кастрюле крышка. Пар выпускался специальным регулирующим устройством, отдаленно похожим на современный золотник.
Первым транспортным средством, которое было оснащено тепловым двигателем, стал пароход. Название машины отражает отличительную особенность его технического устройства. Обычно датой изобретения парохода называют 1807 г., что совершенно неверно. Еще в начале 1780-х гг. на американских реках Потомак и Делавер курсировали действительно первые пароходы, сконструированные почти одновременно Дж. Рамсеем и Дж. Фитчем. Причем испытания парохода Фитча прошли столь успешно, что судно в дальнейшем регулярно выполняло грузоперевозки между Трентоном и Филадельфией в течение 1790-х гг.
Пароход 1807 г. вошел в историю лишь потому, что принадлежал знаменитому изобретателю. Автор этой машины P. Фултон прославился благодаря своей творческой активности и стремлению получить признание. Известно, что Фултон предлагал пароход Наполеону Бонапарту. Несомненно, техническая новинка позволила бы императору победить своих противников, и течение истории приняло бы иной поворот.
Однако Наполеон отверг предложение Фултона, о чем горько пожалел впоследствии. Любопытен факт, который остался без внимания многих историков техники. Задолго до Фултона к Наполеону обращался со сходным предложением некий маркиз Ж. д’Аббан. Он пытался продемонстрировать императору действие своего пироскафа, который представлял собой довольно примитивный пароход. К слову, Наполеон отверг и это предложение, явно недооценив значения техники для ведения военных действий.
Любопытно и другое. Во время ссылки Бонапарта на остров Святой Елены неспокойный изобретатель вновь принимает участие в судьбе императора. Фултон предлагает для бегства Наполеона с острова свое новое изобретение — подводный пароход, первую в истории субмарину, известную под названием «Наутилус». Известно, что к постройке подводной лодки приступили, и грандиозный проект прервала лишь внезапная смерть Бонапарта в 1821 г.
Таковы причины, по которым механические создания Фултона неизменно обращали на себя внимание историков. Однако ученые, несмотря на интерес к личности неординарного изобретателя, допустили и здесь серьезную ошибку. Почти во всех справочниках и учебниках содержится информация, что детище Фултона называлось «Клермонт». На самом деле судно именовалось «Пароходом Северной реки». Ошибка объясняется тем, что первым портом, куда заходил фултоновский пароход, был город Клермонт.
Честь изобретения первого паровоза, послужившего основой для новых разработок, нашедших практическое применение, принадлежит англичанину Г. Стефенсону. Свой паровоз он построил в 1814 г. Любопытно, что во время опытных испытаний этого транспорта на специально сооруженной для этого железнодорожной ветке перед стефенсоновским паровозом шествовал человек. Скорость хода машины была смехотворной и позволяла легко обойти шагом первый паровоз. Человек-сопроводитель же (по профессии боксер) защищал устройство от разъяренных обывателей, которые сочли паровоз дьявольской машиной, отравляющей воздух.
Окрыленный успехом Стефенсон построил первую настоящую железную дорогу. Открытие этой дороги, над проектом которой Стефенсон работал еще с 1825 г., состоялось в 1829 г. Дорога связала города Ливерпуль и Манчестер. Первый проезд по ней носил характер технического состязания. К тому времени несколько других видных изобретателей создали свои паровозы.
На станции Рейнхилл состоялись паровозные гонки, в которых приняли участие 4 машины. Фактически должны были участвовать 5 паровозов, но отстраненный от состязания оказался лишь макетом: внутри устройства находились лошади. Паровоз Стефенсона назывался «Ракета» («Рокет»). Со стороны остальных изобретателей были выставлены паровозы «Упорство» («Персеверанс»), «Несравненный» («Сан-парей») и «Новинка» («Новелт»). Победила «Ракета», закрепив за своим создателем почетный титул первооснователя паровозного транспорта. Если нынешний век сотрясает компьютерофобия, то в те далекие времена многих охватила самая настоящая «паровозофобия».
Баварское медицинское общество резко критиковало новомодные транспортные средства, утверждая, что они вредят здоровью. Паровоз может вызвать у человека болезнь скорости. «Совершенно очевидно, — вынесли свой приговор доктора, — что быстрое движение должно вызвать у пассажиров заболевание мозга, своего рода буйное помешательство… Государство обязано защитить по крайней мере зрителей, ибо вид быстро мчащейся паровой машины может вызвать подобное заболевание у них».
Первый автомобиль, как и следовало ожидать, не был оснащен двигателем внутреннего сгорания. Это была паровая колесница, похожая на трехколесную телегу. Двигатель представлял собой паровой котел, сильно напоминающий чайник, который размещался в передней части машины. Создателем авто был французский изобретатель, капитан артиллерии Н.-Ж. Кюньо, который сконструировал свое детище в конце 1770-х гг. Уже в 1779 г., т. е. задолго до изобретения паровоза (!), машина была построена и использовалась как транспортное средство.
Вода в котле кипела не постоянно, а с перерывами в 15 мин. Четверть часа автомобиль двигался за счет накопленной энергии и покрывал за это время до 1 км. В течение последующих 15 мин воду вновь кипятили. Несмотря на сравнительный успех паровозной техники в начале 1830-х гг., паровые автомобили тогда не пользовались популярностью. Английское правительство издало к 1831 г. около полусотни указов, ограничивающих свободу передвижения посредством автотранспорта.
В 1865 г., когда паровоз и пароход окончательно отстояли свои позиции, автомобиль подвергся еще большим гонениям. Кульминацией этих гонений стал выход в свет «Закона о локомотивах». Изданный английскими властями, этот «Закон» строго регламентировал правила езды на авто. Ни один паровой автомобиль не мог в пределах города двигаться быстрее 4 км/ч (!), причем такую машину должен был сопровождать человек с флажком — всадник, который ехал перед автомобилем и оповещал о движении транспорта пешеходов и извозчиков.
Британские власти всячески препятствовали распространению паровых автомобилей и инженерным работам по их усовершенствованию.
Сходной позиции придерживались и прочие правительства во всем мире, хотя сегодня ясно, что паровой транспорт экологически чистый и безопасный. Помощниками правительств в начале XX столетия стали автомобильные магнаты — компании «Форд», «Олдс» и др. После того как паровой автомобиль победил на гонках во Флориде (США) в 1906 г., монополисты поняли, что проиграют в этой конкуренции. Паровой автомобиль развил скорость 205 км/ч, о чем в те времена не могли мечтать разработчики бензиновых двигателей.
Что касается бензинового двигателя, то он был изобретен только в 1868 г. французом Авелем. Судьба этого устройства интересна.
Когда закончились конструкторские работы по созданию «газолиновой повозки», как ее окрестили историки, началась франко-прусская война. Изобретатель, желая скрыть свое детище от прусской армии, зарыл повозку в защитный насыпной вал, перекрывавший неприятелю подступы к Парижу. После расчистки вала автомобиль обнаружить так и не удалось.
В течение длительного времени разработки в данном направлении не велись, и только расцвет нефтяной промышленности привлек внимание к газолиновым устройствам. Газовый четырехтактный двигатель внутреннего сгорания был впервые построен спустя 10 лет после машины Авеля. Автором проекта выступил в 1878 г. немецкий изобретатель Н. Отто.
Учение о теплоте успешно развивалось во многом благодаря прогрессу в ряде остальных физических наук. Фундамент теоретических и практических знаний ученых и изобретателей XVII–XIX вв. опирается на положения о способности водяного пара совершать работу и о молекулярном строении вещества. Однако эти положения и сами должны иметь некий базис. Таковой возник после открытия давления воздуха, а впоследствии дополнился изучением свойств газообразных веществ. Механика и кинетическая теория газов, бурно развивавшиеся с середины XVII в., обогатили представления физиков о процессах в системах молекул и способствовали разработке замечательных технических изобретений.
Термин «газ» ввел голландский химик Я. Ван-Гельмонт для обозначения всех веществ, пребывающих в газообразном состоянии. Это слово происходит от древнегреческого «хаос», которое имеет два значения — беспорядок и сияющее пространство. Ван-Гельмонт выбрал, в чем он сам впоследствии признавался, последний вариант. Тем самым химик намеревался уже в самом названии показать, что газ «ничем не отличается от хаоса древних».
Сегодня физикам известно, что для описания газа вполне подходят оба значения слова «хаос», потому что молекулы газа находятся в крайне беспорядочном состоянии. И все же мы всегда имеем дело с газом как сколько-нибудь упорядоченной физической системой. Дело в том, что подлинный беспорядок в газе возникает лишь во время рассеивания его в мировом пространстве.
Огромные, растянувшиеся подчас на сотни миллиардов километров туманные скопления холодного газа во Вселенной расширяются во всех направлениях, встречая лишь слабое сопротивление космической среды, а именно одиночных частиц и излучения. Молекулы и атомы расходятся по разным направлениям. Лишь конечность скорости препятствует стремительному рассасыванию газовых туманностей.
На Земле и других планетах газ пребывает в более или менее упорядоченном состоянии. Во-первых, благодаря силе тяжести, действующей на все без исключения планетные тела, газ здесь обладает весом. Далее (о чем уже сообщалось в разделе о давлении воздуха) в замкнутом пространстве газообразное вещество приобретает давление. Если в мировом пространстве значительно разреженные туманности не обладают реальной температурой, то газы в ограниченном объеме способны аккумулировать лучистую энергию солнца.
Температура, в свою очередь, влияет на давление. Например, земной воздух от неоднородного нагрева становится легче в одной местности и вытесняется более прохладным и тяжелым, поступающим из соседних регионов. Перемещения легких и тяжелых масс связаны с неравномерным распределением воздушного давления и порождают потому ветер и перемены погоды. Воспетые романтиками морские бризы являют собой типичный пример замены воздушных теплых и холодных масс на границе суши и моря в течение суток.
Не менее часто случается наблюдать и другой процесс. Знаете ли вы, отчего на больших высотах воздух холоден, хотя он там ближе к потоку солнечной энергии? Солнце не нагревает воздух напрямую, он получает солнечное тепло, отраженное землей или отданное океаном. Поэтому теплые массы воздуха скапливаются в приземном слое. Они легче, чем вышележащие холодные массы, а потому постепенно вытесняются ими. Легкий воздух вытесняется тяжелым вверх, расширяется в высших слоях атмосферы, где пространство больше, и оттого остывает.
Таким образом, система газообразного тела обладает еще одним параметром — объемом, который тесно связан с температурой и давлением. Плодотворно изучать свойства газов оказалось возможным лишь после того, как физики пришли к представлению о существовании трех названных параметров и вывели т. н. газовые законы. Эти законы провозглашают взаимосвязь между различными параметрами. Короткий рассказ о земной атмосфере и происходящих в ней явлениях убеждает, сколь разнообразны подобные взаимосвязи и как необходимо их изучение для познания физики газов.
Открытие атмосферного давления в середине XVII в. послужило отправной точкой для начала глубоких, всесторонних исследований свойств газа. Эти исследования были обусловлены также растущими нуждами промышленности, которая нуждалась в химическом производстве, а в дальнейшем начала использовать силу пара в тепловых машинах. Уже в XVII столетии был открыт один из классических газовых законов, вошедший во все учебники физики. Его авторами были англичанин P. Бойль и француз Э. Мариотт, которые почти одновременно и независимо друг от друга пришли к открытию этого закона.
Закон Бойля-Мариотта касается изменяющихся параметров газа постоянной массы, как, впрочем, и все остальные газовые законы. Масса должна быть постоянной, поскольку это означает неизменное количество молекул. Бойль и Мариотт проводили в целом сходные опыты, не имевшие принципиальных отличий. В частности, Бойль использовал изогнутую стеклянную трубку, которую заполнял ртутью через ее открытый конец, тогда как второй был запаян. Изгиб делил трубку на два неравных колена — длинное с открытым концом и короткое с запаянным концом.
По мере прибавления ртути в длинном колене жидкий металл оказывал все большее давление на воздух, который оказался «запертым» в коротком колене с запаянным концом. Поэтому Бойль имел возможность наблюдать процесс сжатия воздуха по мере возрастания давления. Рассчитать давление было нетрудно, поскольку объем добавленной в трубку ртути был ученому прекрасно известен. Измерения показали, что при неизменной температуре изменение давления обратно пропорционально изменению объема.
Закон Бойля-Мариотта имеет любопытные следствия. Например, этот закон гласит, что скорость истечения газа из емкости не зависит от давления этого газа. Внешнее давление, если оно меняется, будет оказывать влияние на истечение газовой струи, но никак не на собственное. Истечение газа в вакуум полностью подтверждает справедливость этого утверждения. Сжатый газ при любой силе сжатия вытекает с одинаковой скоростью. Причиной тому является взаимосвязь газовых параметров. Так как объем обратно пропорционален давлению, то плотность газа (масса на объем) прямо пропорциональна давлению.
Получается, что стоит сжать газ с большей силой, как пропорционально возрастает плотность и масса вещества истекающей струи. Масса и сила связаны по второму закону Ньютона. Их отношение дает ускорение. Поскольку масса и сила изменяются пропорционально друг другу, ускорение останется неизменным. А значит, и скорость струи газа не увеличится. Другим удивительным следствием газового закона является то, что он зачастую не соблюдается.
Рассмотрим другой пример. На дне океана находится пузырек воздуха. С какой глубины он сможет подняться? Всем прекрасно известно о страшном давлении воды на больших глубинах, способном раздавить корпус подводной лодки. Естественно, пузырек будет сжиматься, и на определенной глубине плотность воздуха сравняется с плотностью воды. Воздух перестанет быть легким, следовательно, пузырек не сможет всплыть.
Поскольку, согласно закону Бойля-Мариотта, плотность газа прямо пропорциональна его давлению, то не будет ошибкой предположить, что при давлении 81 040 кПа (в 800 раз больше атмосферного) воздух сожмется в 800 раз. Его плотность окажется в 1,03 раза выше плотности воды. Поскольку такое давление царит на больших глубинах Мирового океана (свыше 4000 м), то практически нигде здесь воздушный пузырек не может всплыть на поверхность. Однако в таких рассуждениях как раз и содержится ошибка.
Закон Бойля-Мариотта справедлив лишь для небольших давлений. При столь существенном сжатии он уже перестает действовать. Полностью соответствует закону идеальный газ — модель, в которой игнорируются размеры молекул и их взаимное отталкивание. В природе из всех реальных газов подобен идеальному только водород, и то его молекулы не позволяют свободно менять давление и плотность газа. Воздух же отступает от действия закона уже при сжатии до давления 20 260 кПа (в 200 раз больше атмосферного). Его плотность превосходит плотность воздуха при нормальном давлении всего в 190 раз.
Дальше отступления от закона Бойля-Мариотта становятся все более существенными. Под давлением около 81 МПа плотность воздуха возрастает примерно в 400 раз, что в 1,9 раза меньше плотности воды. Воздух становится практически несжимаемым при давлении 151 980 кПа. Чтобы довести его до плотности воды, потребуется приложить давление 506 625 кПа, т. е. свыше 500 млн Па! Таким образом, пузырек воздуха всплывет даже со дна Марианской впадины (11 022 м) — самого глубокого желоба Мирового океана.
К слову, все прочие газовые законы — Шарля и Гей-Люссака — справедливы также при низких давлениях и температурах, близких по значению к норме. Под нормой, а точнее, нормальными условиями в физике понимаются условия с температурой +20 °C и атмосферным давлением (101 325 Па, или приближенно 101,3 кПа). Вообще, оба названных газовых закона следует считать законами Гей-Люссака, именно так они и называются во многих книгах. Дело в том, что именно этот ученый вывел оба закона, хотя обоснован один из них (изохорический) был Шарлем.
Оба закона показывают изменение температуры сначала при постоянном давлении, а затем при постоянном объеме. Впоследствии, в середине XIX в., на основании найденных Бойлем, Мариоттом, Шарлем и Гей-Люссаком соотношений английский инженер Б. Клайперон и великий русский химик Д. И. Менделеев вывели объединенный газовый закон. Он гласит, что отношение произведения давления на объем к температуре газа есть величина постоянная.
Благодаря соотношению газовых параметров удалось объяснить принципы адиабатического процесса в газах, протекающего на больших высотах в атмосфере, когда расширяющийся воздух остывает. Изменение объема и давления этого воздуха происходит одновременно и вызывает вполне естественное изменение температуры. Кинетическая теория добавляет к этой зависимости свое толкование. Воздух затрачивает внутреннюю энергию на такое расширение. Поскольку нагретость газа является условной мерой энергии движения молекул, то падение энергии неизбежно приводит к понижению температуры.
Дизельный двигатель был сконструирован при попытках повысить коэффициент полезного действия обыкновенных автомобильных двигателей внутреннего сгорания. Если при адиабатическом расширении газа его температура сильно падает, то обратный процесс — сжатие — должен приводить к существенному повышению температуры. Чем горячее сжатый газ, тем быстрее он сгорает. Горение при высоких температурах повышает эффективность работы двигателя.
Но в двигателях внутреннего сгорания сильно сжимать газ невозможно. Если превысить нормальное сжатие более чем в 5 раз, то газ воспламеняется значительно раньше положенного времени. Горючее вещество детонирует, что может привести к взрыву.
Немецкий изобретатель P. Дизель в конце XIX в. сконструировал двигатель нового типа, где эта проблема решалась сама собой. Начальный вариант устройства был предложен конструктором в 1897 г. Двигатель Дизеля, называемый ныне просто дизелем, позволял развивать 10-кратное сжатие газа.
Любопытно, что самим газом является не горючее вещество, а просто воздух. Он разогревается настолько, что в нем самовоспламеняются капельки жидкого топлива (прежде это была главным образом нефть). Оно намеренно разбрызгивается через форсунку посредством нагнетаемого компрессором воздуха. Сегодня наличие такого компрессора не является обязательным, он отсутствует на многих моделях дизеля. Температура сжатого воздуха в дизеле составляет +600 °C. Двигатель не нуждается в системе зажигания и способен работать на неочищенном топливе, в т. ч. и на нефти. У дизеля есть и множество других достоинств.
Один из самых первых массовых дизельных двигателей был поставлен в 1921 г. на тракторе марки «Ланц-Бульдог» германского производства. Примечательной чертой раннего дизеля следует назвать особенности его работы. Двигатель запускался посредством 10-минутного разогрева головки цилиндра. Для этой цели тракторист использовал паяльную лампу.
Когда эта процедура была выполнена, тракторист нацеплял съемное рулевое колесо на ось маховика и раскручивал последний. Затем рулевое колесо возвращалось обратно на колонку. Чтобы двигатель начинал вращаться в обратную сторону, трактористу требовалось сбавить число оборотов до предельно минимального значения и резко дать газ. Только таким способом удавалось добиться движения трактора задним ходом.
В наше время обращение с двигателем значительно упростилось, хотя устройство по-прежнему требует от водителя высокой технической культуры. Устанавливать дизель на автомобили не совсем удобно, хотя ряд его несомненных преимуществ перед четырехтактным газовым двигателем заставил инженеров поработать и в данном направлении. Широкое распространение легковые автомобили на дизелях получили только в 1970–1980-е гг. Какова окажется дальнейшая судьба этого вида транспорта, покажет будущее.
Газовые законы обязательно учитываются при изготовлении кислородных и других газовых баллонов, манометров, судов на воздушной подушке и прочих устройств. Подводные исследования с аквалангом, организованные благодаря Ж.-И. Кусто, обязаны своим проведением физике газов. Если бы создатели приспособлений для подводного плавания не учли сжимаемости воздуха, то аквалангисты непременно погибли бы. Читатель наверняка удивится, когда узнает, что человек не может находиться на глубине свыше 2 м.
Уже глубина в 60 см плохо влияет на сердечную деятельность и дыхание, а метровые глубины для многих опасны. Так происходит, если ныряльщик дышит воздухом, давление которого равно атмосферному. Давление воды на грудную клетку человека значительно выше, и если оно не уравновешивается противодавлением, то это неизбежно приведет к физиологическим нарушениям. Данное утверждение было проверено учеными на себе в смелых опытах. Экспериментаторы пытались дышать атмосферным воздухом через соломинку, пребывая на глубине 2 м.
Баллоны акваланга заполняют сжатым воздухом, а для больших глубин, во избежание появления у аквалангистов кессонной болезни, используют смесь кислорода с гелием, т. н. гелиокс. Соотношение компонентов газовой смеси подбирается опять же таким образом, чтобы ее давление уравновешивало давление воды на тело ныряльщика.