Глава I МИР, В КОТОРОМ ВСЕ ПОНЯТНО, НО КОТОРОГО НЕТ

«Астрономия первая показала нам, что существуют законы, — писал в начале нашего века знаменитый французский математик и механик Анри Пуанкаре. — Наученные этим опытом, мы лучше разглядели наш собственный мир, где под кажущимся беспорядком нашли ту же гармонию, с которой нас познакомило изучение неба. Наш земной шар тоже подчиняется законам, но они более сложны, находятся в кажущемся противоречии друг с другом, и глаз, не привыкший к иного рода зрелищам, видел бы в мире один лишь хаос и царство случая и каприза».

Какое зримое, какое явственное, какое коренное различие!

Идеальный, но бесконечно далекий от нас мир небесных тел, и реальный, бесконечно близкий, определяющий все наше существование мир родной планеты. С одной стороны — движение миров, предсказуемое на сотни лет вперед, с другой — погода, которую не всегда удается предсказать с уверенностью даже на несколько суток вперед.

Значит, движение атомов и молекул на Земле подчиняется иным законам, чем в космическом пространстве? Значит, физика явлений изменяется по мере их удаления от нас? И если нет (ибо предполагать такую возможность было бы возвратом к тому самомнению, от которого человечество было отучено Коперником и Дарвином), то в чем же различие между движением тел в космосе и на Земле?

Мы не ошибемся, сказав: все это различие имеет своей причиной один-единственный физический процесс — понимаемое в широком смысле слова трение. То есть трение, понимаемое как процесс непосредственного превращения различных форм движения в тепловое движение. В представлении большинства людей трение — это процесс выделения теплоты между двумя движущимися относительно Друг друга твердыми поверхностями. Но ведь теплота выделяется и тогда, когда вязкая жидкость движется в трубе или в канаве. И тогда, когда в самой вязкой жидкости возникают турбулентные вихри. Поэтому такие процессы тоже можно назвать трением. Трением можно назвать и выделение теплоты в проводнике, по которому течет электрический ток. Наконец (пока мы просим читателей поверить нам на слово), трением можно назвать даже такой процесс, как движение теплоты от нагретого к холодному концу теплопроводного стержня.

Накладываясь на идеальные процессы — абстракции, исследованием которых занимается классическая механика, классическая электродинамика, классическая термодинамика, — широко понимаемое трение резко изменяет картину идеального мира, такого, каким он должен был бы быть, если бы в нем выполнялись законы только этих наук.

Действительно, в полном соответствии с законом сохранения энергии все формы движения могут сколь угодно долго и без малейших потерь переходить одна в другую. В принципе, такие взаимопревращения, не затухая, могут продолжаться вечно, и в этом смысле все формы движения равноправны. Но если в цепь, состоящую из механических, электромагнитных, химических и других элементов, включить звено, в котором есть трение, электрическое сопротивление или теплопроводность, картина меняется. Каждое из таких звеньев оказывается своеобразной ловушкой, в которой различные формы движения превращаются в тепловое. А это превращение принципиально отличается от остальных тем, что оно никогда не может быть полностью обратимым. Вот почему включение подобного звена в цепь взаимопревращений приводит к тому, что движение в цепи затухает, и тем быстрее, чем больше трение.

В действительности идеальных элементов, в которых трение отсутствовало бы полностью, нет. Поэтому во всякой реальной цепи, в каждом элементе с той или иной интенсивностью выделяется теплота, и всякий процесс поэтому со временем затухает. Чтобы возобновить или поддержать его, бессмысленно подводить к цепи выделившуюся из нее теплоту. Для этого надо питать ее либо электрическим током, либо приводить в движение механическим двигателем. Таким образом, трение, генерирующее в цепи тепловое движение, делает процесс необратимым. Именно в этой необратимости лежит фундаментальное различие между воображаемым идеальным миром, в котором все процессы полностью обратимы и вечны, и реальным, в котором все процессы в большей или меньшей степени необратимы и потому рано или поздно затухают.

Не случайно немецкий физик Макс Планк — глубокий знаток термодинамики и создатель теории квантов — не уставал твердить: «В теоретической физике будущего самой важной классификацией будет подразделение физических процессов на обратимые и необратимые».

«Различие между обратимыми и необратимыми процессами гораздо глубже, чем, например, между электрическими и механическими процессами».

«Это различие с гораздо большим правом, чем какое бы то ни было другое, может служить основанием для классификации всех физических процессов, и играет в физическом мировоззрении будущего главную и незаменимую роль».

Чтобы убедиться в правоте выдающегося термодинамика, попробуем представить себе, как выглядел бы окружающий нас привычный мир, если бы удалось устранить из него трение и сделать его полностью обратимым. Такой мир едва ли покажется вам проще, чем тот, в котором мы живем…

УСЛОЖНЯЮЩЕЕ ДЕЙСТВИЕ УПРОЩАЮЩИХ ОБСТОЯТЕЛЬСТВ

Если наблюдение движения звезд и планет в космосе породило представление об обратимом мире, как о мире стройных закономерных движений, то полеты в космосе показали, что мир этот отнюдь не проще, а, может быть, даже и сложнее нашего, земного. То, что на Земле не порождает никаких затруднений, порой превращается в настоящую проблему в космосе.

Замедлить движение автомобиля нетрудно — достаточно лишь нажать на тормоз, и кинетическая энергия движения автомобиля интенсивно превращается в теплоту. В результате тормозные колодки нагреваются, а скорость автомобиля уменьшается. Достаточно заглушить двигатели самолета, и скорость аппарата сразу же снижается из-за превращения его кинетической энергии в теплоту вследствие сопротивления воздуха.

Нетрудно изменить траекторию самолета, накренить его, компенсировать перемещение пассажиров в салоне с помощью рулей и элеронов. В космосе все это гораздо сложнее. Каждое перемещение космонавта вызывает противоположное ему перемещение всего корабля. Космонавт и его корабль как бы непрерывно «танцуют», то приближаясь, то удаляясь от их общего центра тяжести. Если мы хотим избежать этого, если мы хотим изменить ориентацию корабля в пространстве, каждое движение мы должны компенсировать струями газов, выбрасывая их в направлениях, строго противоположных перемещениям космонавтов. Эти порции газов, не тормозясь, уносятся в космическое пространство, и могут рассматриваться как своеобразный отпечаток всех совершенных космическим кораблем маневров.

В земных условиях этого не происходит, энергетический отпечаток полета не сохраняется, и даже теоретически невозможно установить, какие маневры совершал самолет. Почему? Да потому, что здесь действует могучий механизм необратимости. Струи отклоняемого рулями и элеронами воздуха, необходимые для изменения направления полета или ориентации аппарата в пространстве, быстро тормозятся в атмосфере. Из-за трения их кинетическая энергия переходит в тепловую, которая затем за счет теплообмена распространяется на всю атллосферу. В результате единственным следствием всех маневров самолета и вообще всего его полета оказывается ничтожное повышение температурь: всей земной атмосферы.

Избалованные этим драгоценным свойством нашей атмосферы, мы далеко не всегда представляем себе, от каких катастрофических последствий спасает нас необратимость происходящих на Земле процессов. Чтобы получить об этом хотя бы отдаленное представление, попробуем пофантазировать — что произойдет, если наложить запрет на все разновидности трения, если сделать невозможным прямой переход различных форм движения в тепловую и если предотвратить непосредственный теплообмен между горячими и холодными телами?

Прежде всего, окружающий нас мир станет, если так можно выразиться, «импульсным». Сейчас нам кажется естественным, что для движения автомобилей, кораблей, самолетов необходимы непрерывная работа их двигателей, непрерывное действие на них движущей силы колес, винтов, реактивных струй. В обратимом мире моторы не нужны. Все поездки и перевозки будут производиться катапультами. Они будут разгонять до нужной скорости экипажи, которые потом помчатся до нужного пункта назначения по инерции. В пункте назначения остановить их с помощью тормозов невозможно. Поэтому здесь придется ставить ловушку-катапульту. Улавливая экипаж, она будет обратимо запасать энергию в виде сжатого воздуха, пружин или поднятых грузов. Эта энергия может быть использована позднее для ускорения экипажа при отправлении.

Правда, такая картина наблюдалась бы лишь в идеальном случае. На практике — если бы она была возможной — мы наверняка столкнулись бы с неприятными вещами. Так, неизбежные неровности пути, направляющее действие рельсов или канатов на движение экипажа приводило бы к тому, что кинетическая энергия его поступательного движения непрерывно переходила бы в энергию всевозможных колебаний экипажа, в энергию звуковых колебаний рельсов и кузова.

И что самое страшное — эти колебания не затухали бы, а непрерывно усиливались. Прекратить их с помощью всякого рода демпферов, поглотителей, звуковой изоляции невозможно: все эти устройства работают на принципе необратимого превращения механических и звуковых колебаний в тепловое движение. Единственным спасением здесь могли бы быть, вероятно, какие-то аккумуляторы, способные запасать и сохранять энергию движений во вращающихся маховиках, пружинах и т. д. Из-за чисто механических потерь экипаж, выпущенный катапультой, не смог бы достичь пункта назначения без соответствующего запаса энергии на борту, также хранящейся в маховиках, пружинах или электромагнитных накопителях.

В обратимом мире воздух, как и все другие газы и жидкости, утратил бы свою вязкость и стал бы сверхтекучим. Поэтому самолеты в полете не испытывали бы лобового сопротивления. Зато сколько неприятностей доставило бы нам создание подъемной силы крыла! Энергия катапульты, разгоняющей самолет, затрачивалась бы не только на его ускорение, но и на создание незатухающего вихря, который, хотя и остается на аэродроме, необходим для того, чтобы на крыле возникла подъемная сила. Если нет концевых потерь — а это возможно лишь тогда, когда самолет летит между двумя стенками, касаясь их кончиками крыльев, — он может летать по инерции сколь угодно долго и сколь угодно далеко. Но если стенок таких нет, на кончиках крыльев воздух непрерывно перетекает снизу вверх и порождает длинные вихревые «усы». Сбегая с концов крыльев, эти «усы» уносят кинетическую энергию движущегося самолета, поэтому для компенсации потерь на борту самолета придется устанавливать непрерывно работающий двигатель.

Вихри и «усы» возникают не только в обратимом мире. Возникают они и у самолетов, летающих в нашей земной атмосфере. Но здесь вследствие необратимости они быстро исчезают: их энергия превращается в теплоту, атмосфера от этого нагревается и усиливается излучение тепла в космос. В обратимом мире кинетическая энергия неуничтожимых вихрей непрерывно накапливалась бы по мере развития авиационного транспорта, пока не было бы достигнуто состояние «постоянной нелетной погоды».

А реки? Если бы в привычном нам мире не было теплообмена, температура воды в низовьях рек вследствие нагрева от трения была бы выше, чем в верховьях. Нетрудно рассчитать, что ледяная вода, низвергаясь с высоты 42,7 км, у подножия такой небывалой горы начала бы кипеть. Действительно, работа, совершаемая при опускании 1 кг воды с высоты 42 700 м, равна 42 700 кгм. Разделив эту величину на 427 кгм/ккал — механический эквивалент теплоты, — мы получим 100 ккал.

А поскольку теплоемкость воды 1 ккал/кг°С, ясно, что температура воды, низвергшейся с такой горы, будет равна 100 °C. Пропустив поток через гидротурбины, мы могли бы в принципе сохранить температуру воды неизменной, зато каждый килограмм произвел бы колоссальную механическую или электрическую работу — 42,7 тыс. кгм! Отсюда вытекает неожиданный вывод — гидроэлектростанции вырабатывают электроэнергию за счет охлаждения воды. Вывод, способный озадачить гидроэнергетиков.

Теперь представьте себе, что вся эта энергия не превращается в тепло и не отбирается в виде электроэнергии. Непрерывно ускоряясь, мчалась бы сверхтекучая вода рек в Мировой океан, и, вливаясь в него, она порождала бы неуничтожимые, все время усиливающиеся течения и волны, ввергающие океан в состояние непрерывно крепнущего шторма.

В обратимом мире «импульсный» характер был бы свойствен не только механическим, но и электромагнитным движениям. Так, все электропроводники превратились бы в сверхпроводники и их сопротивление исчезло бы. Ом не смог бы открыть своего закона: в обратимом мире такого закона просто не существовало бы. Зато «не вмешивающийся» в течение тока сверхпроводник чрезвычайно облегчил бы Фарадею открытие законов электромагнитной индукции. Причем электродинамика в обратимом мире выступила бы в очищенном, идеализированном виде, не затемненная эффектами необратимости. Например, обычная электродинамика не симметрична: в ней постоянный электрический ток создает магнитное поле, а постоянное магнитное поле не порождает постоянного электрического тока. Поэтому для генерирования тока электротехники вынуждены помещать проводники в магнитное поле непрерывно меняющееся во времени, что и приводит к несимметричности электродинамических уравнений. В обратимом мире симметрия постоянного тока и постоянного магнитного поля восстанавливалась бы. Достаточно втолкнуть сверхпроводящее кольцо между полюсами постоянного магнита — и в кольце толчком, импульсом наводится постоянный ток, не нуждающийся для своего дальнейшего поддержания в непрерывном подводе энергии от аккумуляторов или генераторов.

Нагревание и охлаждение были бы настоящей проблемой в обратимом мире. Отсутствие теплообмена превратило бы стены домов, все вещества в абсолютные теплоизоляторы. Электроплитки и печи не смогли бы работать в обратимом мире — превращение электрической энергии в тепловую, как и горение топлива, безусловно запрещены. Впрочем, если бы даже они и работали, от них все равно не было бы никакого толку: из-за отсутствия теплообмена неопределенно долго могут соседствовать нагретый до миллиона градусов газ и стенки сосуда. Жидкий кислород можно смело хранить в одной банке с расплавленным чугуном, а человек с равным успехом мог бы купаться в расплавленной лаве вулканов и в ледяной воде арктических морей.

Одежда и жилище в таком мире, естественно, утратили бы одно из своих основных назначений — защищать человека от холода и жары. Температура, с которой младенец появляется на свет, в обратимом мире чудесным образом сохранялась бы на всю жизнь.

Итак, со всем, что касается выработки, передачи и сохранения энергии, со всем, что касается перемещения и транспортировки, в обратимом мире дело обстоит неплохо, хотя в обмен за это мы получаем некоторые неожиданные и весьма катастрофические последствия. Но дело не исчерпывается одними этими катастрофами. Вся беда в том, что требование обратимости, по сути дела, налагает запрет практически на любое потребление энергии.

Действительно, в обратимом мире различные формы движения можно сколь угодно долго и без всяких потерь превращать одну в другую, но их невозможно употребить на что-нибудь полезное для человека, так как в таком мире невозможна никакая обрабатывающая промышленность. Вдумайтесь, например, куда девается сейчас энергия, вырабатываемая электростанциями земного шара. Парадоксально, но факт: вся она превращается в теплоту на фабриках, заводах, шахтах. Но зато ценой такого превращения мы достигаем того, что из руды получается металл, из металлических листов — детали, из древесины — бумага, из волокон — ткани. Короче говоря, ценой превращения работы в теплоту мы необратимо преобразуем лицо нашей планеты.

Стоит лишь изгнать из окружающей нас природы необратимость — и привычный мир развалится на глазах. Ткани, веревки, канаты, бумага расползутся на отдельные волокна. Металлы станут абсолютно упругими, и их обработка будет невозможна. Гвозди и шурупы повыскакивают из стен, раскрутятся все винты и гайки, мгновенно соскользнет наземь все, что сейчас держится силой трения.

Больше того, обратимый мир оказался бы настоящей копилкой всех звуков, произведенных или произнесенных на Земле. Уже одно это сделало бы невыносимым наше существование, ибо негде укрыться от чудовищной какофонии, в которой соседствовали бы все удары грома, происшедшие на земле, все выстрелы и взрывы, все автомобильные, паровозные и пароходные гудки, разговоры и крики всех людей, когда-либо живших на нашей планете…

Вот от каких катастрофических последствий избавляет нашу жизнь необратимость, порождаемая трением — процессом непосредственного превращения различных форм движения в тепловое движение. Вот почему, если говорить не об идеальных процессах, нет ни одной области физики, к которой не имела бы отношения термодинамика — учение о теплоте.

Мы уже писали, что зарождение и развитие любого из разделов физики начиналось тем раньше и легче, чем меньше изучаемые в этом разделе процессы зависели от трения и чем, следовательно, проще было идеализировать их, то есть мысленно очистить от порождаемых необратимостью тепловых эффектов.

Чтобы оценить величие основоположников термодинамики, мы должны ясно понимать: им надлежало идеализировать, очистить от необратимости сами тепловые эффекты! Забегая вперед, скажем: им удалось установить, что тепловое движение наделено некоей двойственностью. С одной стороны, существует огромный класс явлений, в которых тепловое движение в принципе выступает, как говорится, «на равных» с другими формами движения и ничуть «не хуже» механического, электрического, магнитного, химического и т. д. С другой — есть множество процессов, в которых тепловое движение, порождаемое трением, играет особую роль, принципиально отличается от всех других форм движения. Другими словами: не всякий тепловой процесс должен быть необратимым, но всякий необратимый процесс должен быть тепловым. Идеализация, то есть устранение трения из всех изучаемых процессов, в том числе и тепловых, равнозначна превращению физики в некую обобщенную механику, в которой нет принципиального различия между механическими, электромагнитными, химическими, световыми и даже тепловыми процессами. Все эти процессы в обобщенной механике полностью обратимы и все формы движения полностью и без всяких потерь могут сколь угодно долго переходить одна в другую. Но прежде чем была достигнута такая ясность, создателям термодинамики пришлось пройти весьма мучительный путь, изобиловавший такими драматическими моментами, каких, быть может, и не найдется в истории других наук…

ПРИКЛЮЧЕНИЯ ТЕПЛОРОДА

Научные теории подобны мышам, утверждал некогда Вольтер. Как мышь может счастливо проскочить девять мышеловок и попасть в десятую, так и научная теория, удачно объяснившая девять фактов, может быть опровергнута одним-единственным десятым. Эксперименты баварского министра внутренних дел графа Румфорда как раз и оказались такой «десятой мышеловкой» для теории теплорода.

XVIII век вошел в историю физики как эпоха невесомых материй — импондерабилий. Будучи не в состоянии найти хоть что-нибудь общее в механических, оптических, электрических, магнитных явлениях, ученые тех времен с большой легкостью плодили всевозможные материи и жидкости — электрическую, магнитную, световую и т. д. Убедившись в безрезультатности всех попыток взвесить их, они пришли к выводу, что жидкости эти — невесомые. Была придумана соответствующая жидкость — теплород — и для объяснения тепловых процессов. Нужно признать: теплород сослужил хорошую службу науке. Он внес известный порядок в хаос накопленных к тому времени фактов. Он позволил выделить из массы явлений окружающего мира явления чисто тепловые. Следуя теории теплорода, плеяда блестящих экспериментаторов заложила основы современной калориметрии. И вольно или невольно мы и по сию пору отдаем дань уважения достижениям этой теории, когда произносим терм-ины «теплоемкость», «теплопроводность», «теплота парообразования», «теплота плавления». Но был один факт, который вызывал смутное беспокойство у сторонников теплородной теории. Факт этот — выделение теплоты при трении. Чтобы не отказаться от множества объясненных с помощью теплорода явлений, ученые попытались приспособить теорию и для толкования этого процесса.

Первое, что пришло им в голову, — рассматривать нагрев при трении как «выжимание» теплорода из тел. Позднее они стали более тонко объяснять этот эффект уменьшением теплоемкости при трении, а образование теплоты — освобождением теплорода из химически связанного состояния. Все это получилось так удачно, что из факта, противоречащего теории, трение превратилось в факт, подтверждающий ее.

И вот на тебе: Румфорд поставил опыты, убийственные для такой удобной теории. Он доказал: трением двух тел можно получать большие, быть может, даже неограниченные количества теплоты. Его эксперименты лишили хитроумные объяснения приверженцев теплорода всякого смысла. Убедительности румфордовских опытов способствовали их поистине министерские масштабы. Вместо пробирок, реторт, жаровен, характерных для научных лабораторий тех лет, баварский министр пользовался сверлильными станками, пушечными стволами и конями-тяжеловесами мюнхенского цейхгауза.

В одном из опытов тупое сверло, прижатое к бронзовой болванке с силой 4500 кг, уже через 30 мин, сделав всего 960 оборотов, нагрело ее почти на 40 °C. Откуда берется такое огромное количество теплоты? «Выжимается» из стружек? Но их слишком мало. Может быть, из воздуха, поступающего внутрь отверстия при сверлении?

Чтобы закрыть доступ воздуху, Румфорд поместил весь прибор в сосуд с водой. Медленно, со скоростью всего 32 об/мин начало вращаться сверло, и спустя два с половиной часа к величайшему изумлению окружающих вода в сосуде начала кипеть. Это убедило Румфорда в том, что из тела можно получать теплоту в неограниченном количестве «без перерыва или пауз и без всяких признаков ослабления или истощения». А такой вывод никак не мог быть увязан с теорией теплорода: то, что в неограниченном количестве может быть получено за счет движения, само должно быть движением. Следовательно, тепловые явления — явления движения.

И все-таки можно понять нежелание ученых признать опыт Румфорда. Невесомые материи сыграли очень большую роль не только потому, что позволяли произвести какую-то классификацию физических явлений. Оказывается, они позволяли довольно точно описывать явления до тех пор, пока не происходило взаимных превращений одних форм движения в другие, пока изучались процессы чисто электрические, чисто оптические, чисто тепловые. Поэтому вплоть до наших дней сохранили свою научную ценность данные электростатики, геометрической оптики, калориметрии, полученные на основе невесомых жидкостей еще в XVIII веке.

Но как только дело доходило до взаимопревращения различных форм движения, наука XVIII века заходила в тупик. Опыты с трением, в которых механическое движение переставало быть механическим и превращалось в теплоту, не случайно стали камнем преткновения для ученых того времени. Как ни парадоксально, эти опыты, которые для нас — ярчайшее подтверждение принципа сохранения, тогдашним ученым казались вопиющим нарушением именно этого принципа. Внутренним чутьем ученые всегда угадывали: материя не появляется из ничего, ее нельзя уничтожить без следа или сотворить в любых количествах. Этот неизреченный, не сформулированный точно принцип распространяли они, естественно, и на невесомые материи. Из того, что у них не было веса, вовсе не следовало, что их можно уничтожить. Количество теплорода, светового вещества, магнитной и электрической жидкости в окружающем нас мире должно оставаться постоянным. Да, они могут переходить из тела в тело. Да, они могут «скрываться» и «выжиматься», но они не могут быть ни уничтожены, ни созданы вновь.

Теперь мы можем понять чувства ученых XVIII века, на глазах которых под тупым сверлом непрерывно и в неограниченных количествах создавался теплород. Наверное, они чувствовали себя примерно так же, как современный ученый, перед которым поставили бы настоящий, без всяких обманов работающий вечный двигатель…

Итак, непонятная двойственность тепловых явлений дала о себе знать с самого начала. В отличие от всех других невесомых жидкостей теплород выступал в двух обличьях: то в виде неуничтожимой жидкости — в процессах теплопроводности, теплоемкости, плавления, то в виде особого сорта движения, которое можно было генерировать в процессах трения в любых количествах.

Взглянув на дело с современной точки зрения, мы должны отметить любопытную деталь: все эти процессы существенно необратимы. Так, в румфордовских опытах теплота добывалась с помощью трения — непосредственного превращения механического движения в тепловое. В процессах нагрева с помощью теплопроводности и теплоемкости срабатывал другой механизм необратимости — непосредственный теплообмен — передача теплоты от горячих тел к холодным. Выходит, в первых научных исследованиях тепловые процессы представали взорам ученых в неочищенном, завуалированном необратимостью виде. И необратимость так коварно упрощала тепловые явления, ее последствия казались столь естественными и принципиально свойственными тепловому движению, что очищение тепловых процессов от последствий необратимости мог произвести именно гений, достижения которого далеко не сразу могли быть восприняты не только его современниками, но и учеными последующих поколений…

Таланты Лазара Карно — видного деятеля Великой Французской революции и талантливого математика, механика и инженера — разделились поровну между двумя его сыновьями. Младший — Ипполит стал политическим деятелем, социологом, министром. Старший — Сади оказался гениальным ученым. Имя младшего гремело при жизни и было почти забыто после его смерти. Старший, наоборот, приобрел мировую известность через много лет после смерти. Славу ему принесла единственная опубликованная им в 1824 году книжечка в 40 страниц — «Размышление о движущей силе огня и о машинах, способных развивать эту силу». Говорили, что основную идею этого сочинения подсказал Сади его отец, который в своей книге «Основные начала равновесия и движения» писал: «…необходимо возвыситься до возможно большей общности, не останавливаться ни на какой конкретной машине, не пользоваться аналогиями, но исходить из основных аксиом механики». Хотя эта мысль действительно лежит в основе «Размышления о движущей силе огня», это нисколько не умаляет заслуг Сади Карно перед наукой. Идеализация, необходимая для анализа тепловых машин, потребовала от него такого проникновения в суть дела, такой смелости и глубины мышления, что подсказка, какой бы ценной она ни была, едва ли могла сыграть решающую роль.

Бросив свет понимания на работу тепловых двигателей, показав, что развитие их пойдет по пути повышения температуры пара, разъяснив, что простая, не сопровождающаяся повышением начальной температуры пара замена воды в паровых машинах ртутью, серой и другими веществами ничего не даст, Карно навсегда завоевал на свою сторону сердца инженеров-теплотехников. И этим оказал неожиданно мощную поддержку теории теплорода…

Как это ни удивительно, Карно — сторонник теории теплорода. По его убеждению, эта невесомая, но неуничтожимая материя может быть уподоблена воде, приводящей в движение мельничное колесо. Количество воды остается все время неизменным, работа же совершается за счет простого падения воды с высокого уровня на низкий. Чем больше напор — разность уровней, тем большую работу совершает один килограмм воды. В принципе, считал Карно, тепловые двигатели работают примерно так же. Разность температур в котле и в конденсаторе подобна разности уровней воды. Теплород эквивалентен воде, его количество неизменно, и в конденсатор попадает ровно столько теплорода, сколько выходит из котла. Приняв за аксиому неуничтожимость теплорода, Карно особенно ясно понял принципиальную важность разности температур в котле и в конденсаторе для работы тепловых машин. Подобно тому как огромные количества воды в океане бесполезны для получения работы, поскольку воде некуда стекать, так и огромные количества теплового движения, по сути дела, мертвы, если нет перепадов температур, нет стока для теплорода. Карно доказывал: мало иметь источники теплорода, надо еще иметь и резервуары, в которые он мог бы стекать.

При чтении «Размышления о движущей силе огня» видно, что Карно выступает прежде всего как инженер (кстати, он и был капитаном именно инженерных войск французской армии). Главное для него — исследование машины, то есть чисто инженерная задача. Очищение же тепловых процессов от необратимости — величайшее научное достижение — для него не более чем вспомогательный прием. Не удивительно, что успешное решение первой задачи поразило современников гораздо сильнее, чем гениальное решение второй.

После исследования Карно, еще больше укрепившись в мысли о неуничтожимости теплорода, ученые постарались не только отмахнуться от экспериментов Румфорда, но и долго отказывались всерьез обсуждать вдохновенные прорицания немецкого врача Роберта Майера и скрупулезные опыты манчестерского пивовара Джеймса Джоуля. Эти незнакомые и непохожие люди пришли к закону сохранения энергии независимо друг от друга. Оба они установили, что «движущая сила» сохраняется при изменениях любых форм движения. Однако Майер решил проблему в общем виде, взяв переход механической работы в теплоту как частный случай; а Джоуль, наоборот, — сначала экспериментально определил механический эквивалент теплоты, а потом высказал мысль, что, по-видимому, и при всех других превращениях «движущая сила» сохраняется.

Ученый мир по-разному отнесся к трудам этих непрофессионалов, не принадлежавших к ученой корпорации. Статьи Майера, появлявшиеся с 1842 года, просто никто не воспринял всерьез и не заметил: врач, берущийся учить физиков, новые взгляды вместо новых экспериментов… Нет, не стоит внимания! Сбросить же со счетов опыты Джоуля было не так-то просто.

В 1843 году британские ученые встретили сообщение Джоуля о том, что механическую работу можно превратить в теплоту, гробовым молчанием. Год спустя Королевское общество отказалось принять его статью, в которой в противовес Карно доказывалось, что пар, расширяющийся в цилиндре, теряет теплоту и что в конденсатор ее попадает меньше, чем выходит из котла. В 1845 году в Кембридже Джоуль делает доклад о том, что вода после водопада должна быть теплее, чем до него, и даже вычисляет этот прирост температуры для Ниагарского водопада — 0,11 °C. Еще через два года в Оксфорде он выступает с новым докладом, после которого собравшиеся физики обвиняют его в том, что свои слишком далеко идущие выводы он делает на основе каких-то сотых долей градуса.

Во время одного из этих выступлений и состоялась первая встреча Джоуля с молодым профессором Вильямом Томсоном — будущим лордом Кельвином. Слушая Джоуля, Томсон — знаток и поклонник Карно — испытал желание встать и доказать манчестерцу, что он не прав. «Но по мере того, как я слушал его, — вспоминал потом Томсон, — я понял: хотя в выводах Карно и есть зерно истины, от которого нельзя отказаться, Джоуль тоже прав и сделал великое открытие».

В течение нескольких лет Томсон, ставший другом Джоуля, не мог принять его взглядов. Он делал вместе с ним опыты, пытался измерять нагревание воды в водопадах, много размышлял о взаимопревращениях работы и теплоты. «Может оказаться, — думал он, — что разрешение этой проблемы потребует отказа от фундаментального положения Карно… Если мы сделаем это, мы столкнемся с бесчисленными новыми трудностями. Для их преодоления понадобятся новые эксперименты и перестройка всей теории теплоты до самых ее основ». И вот, когда Томсон, убежденный опытами Джоуля, уже начал сомневаться в принципе Карно, его родной брат Джеймс, основываясь на этом принципе, предсказал, что температура замерзания льда должна понижаться при увеличении давления. Тут только Томсон начал догадываться: быть может, принцип сохранения энергии не так-то уж противоречит принципу Карно. Но окончательно разрешить проблему довелось не ему…

Всего через несколько месяцев появилась статья немецкого физика Рудольфа Клаузиуса. «Вовсе не надо отбрасывать теорию Карно, — писал он. — Весьма возможно, что при получении работы оба процесса имеют место: какое-то количество теплоты подводится, какая-то часть передается от нагретого тела к холодному, и обе эти величины находятся в определенном отношении к произведенной работе».

Что же получалось?

Карно дал глубокие и правильные заключения о принципах работы паровых машин, считая, что теплород в них не уничтожается. А Клаузиус утверждал: эти глубокие и правильные заключения требуют, чтобы теплород в процессе получения механической работы в машинах уничтожался..

Сложилось положение, поистине труднодоступное для понимания. И тем не менее оно не было безнадежным…

СОМНОЖИТЕЛИ ТЕПЛОТЫ

Когда Сади Карно начал размышлять о движущей силе огня, ему прежде всего пришлось задуматься над тем; какой должна быть идеальная тепловая машина. Ему надо было в реальной, покрытой копотью, стучащей и вибрирующей машине увидеть никому еще не ведомую идеальную и указать на те особенности и процессы, которые отличают машины реальные от идеальных. И Карно сделал это в форме, изумительной по глубине понимания, ясности и краткости.

«В телах, употребляемых для развития движущей силы тепла, — писал он, — не должно быть ни одного изменения температуры, происходящего не от изменения объема… (выделено мной. — Г. С.). Всякое изменение температуры, обязанное не изменению объема, обязательно происходит от непосредственного перехода теплорода от более или менее нагретого тела к телу более холодному. Этот переход имеет, главным образом, место при соприкосновении тел с различной температурой: такие соприкосновения должны быть уменьшены насколько возможно». Чтобы оценить всю глубину и изящество формулировки Карно, нужно понять, что такое изменение температуры, происходящее не от изменения объема.

Всегда, когда мы, прикладывая усилия, производим какое-то перемещение, мы совершаем работу против тех или иных сил. Скажем, растягивая или закручивая стальной стержень, мы совершаем работу против упругих сил. Накачивая воздух в автомобильную камеру — против сил давления. Вталкивая электрически заряженное тело в электростатическое поле — против сил этого поля и т. д. Чтобы вычислить произведенную в каждом из этих случаев работу, нужно умножить обобщенную силу (силу, крутящий момент, давление) на разность соответствующих обобщенных координат (путь, угол поворота, изменение объема).

Наличие обобщенной силы — необходимое, но не достаточное условие для совершения работы. Вы можете с какой угодно силой давить на стержень, но если он не начал деформироваться, никакой работы не совершается. Поток пара, протекающий с огромной скоростью через турбину с заклиненным ротором, может создавать на валу огромный крутящий момент, но пока ротор не начал вращаться, турбина не совершает никакой работы. Давление в цилиндре двигателя может быть сколь угодно велико, но пока не начал изменяться рабочий объем, то есть пока не начал двигаться поршень, газ не совершает работы. Таким образом, чтобы система могла совершать работу, требуется наличие двух сомножителей: обобщенной силы и разности обобщенных координат.

И вот что важно: какие бы формы движения мы ни рассматривали — механические, электрические, магнитные, все они совершают, если так можно выразиться, одну и ту же — качественно — работу — механическую. Поэтому и совершение этой работы всегда связано с изменением объема или пространственного расположения частей системы. Если абсолютно жестко зафиксировать внешние координаты любой системы, она в принципе не сможет обмениваться работой с окружающей средой. Но такая фиксация не помешает системе взаимодействовать со средой принципиально иным способом — термическим. Как бы жестко ни были зафиксированы все внешние обобщенные координаты системы, это не сможет помешать ей получать или отдавать теплоту. Нужно только, чтобы между системой и окружающей средой существовала разность температур. И как для вычисления механической работы мы должны были обобщенную силу умножать на разность обобщенных координат, так и для вычисления термической работы — теплоты — мы должны термическую силу умножить на разность «термических» координат. Нетрудно сообразить, что термическая сила — это температура. А вот с термической координатой дело обстояло сложнее. Ее ввел в научный обиход Р. Клаузиус, который дал ей название энтропия.

Вот какой сюрприз преподнесло ученым тепловое движение! Почти сто лет они исследовали его, устанавливали законы, производили эксперименты, не подозревая о существовании такой важной величины. Поставьте-ка себя в положение людей, изучающих законы движения и не имеющих понятия о пространственных координатах! Правда, надо прямо сказать: энтропия относится к числу весьма загадочных величин главным образом потому, что она не поддается непосредственному измерению и может быть вычислена лишь косвенным путем. Но физический смысл этой величины прост: она — неотъемлемое свойство именно теплового движения. Если повышение температуры не всегда свидетельствует о подводе к телу теплоты, то увеличить энтропию тела невозможно никаким иным путем, кроме подвода теплоты — либо от другого тела, либо за счет внутренних необратимых процессов.

Эта важная физическая величина сразу же внесла стройность и ясность в понимание многих процессов. Так, в доте-плородный период большинство ученых отождествляло теплоту и температуру, считало, что это одно и то же. Теория теплорода провела между ними различие — и это ее огромная заслуга. Однако температура продолжала считаться главнейшим атрибутом теплового движения: ее повышение рассматривалось как важнейший признак подвода теплоты к телу. После введения понятия энтропии такое заблуждение стало невозможным. Как совершение механической работы нельзя себе представить без изменения обобщенных координат, так и обмен теплотой не может происходить без изменения энтропии. Поэтому о подводе или отводе теплоты следует судить не по изменению температуры тела, но по изменению его энтропии. Если энтропия увеличивается — это всегда означает, что к телу подводится теплота, если уменьшается — теплота отводится. Механическое сжатие и расширение, электризация, намагничивание, упругая деформация, то есть любое нетермическое воздействие, не влияют на изменение энтропии.

Отсюда вытекает неожиданное следствие: оказывается, можно менять температуру любого вещества, не подводя к нему теплоту! И действительно, если в идеально теплоизолированном сосуде сжать, к примеру, газ, его температура может быть доведена до сотен и даже тысяч градусов. Но поскольку такой нагрев производится не за счет подвода тепла, а за счет механического уменьшения объема, энтропия газа остается неизменной! Если сжатому и раскаленному газу дать возможность, не обмениваясь теплотой, расшириться до начального давления, он совершит механическую работу, в точности равную той, которая была затрачена на сжатие, и охладится при этом до первоначальной температуры. Таким образом, газ, заключенный в абсолютно непроницаемую для теплоты оболочку, представляет собой род идеальной пружины, воспринимающей, запасающей и полностью возвращающей назад всю подводимую к ней механическую работу. Такие теплонепроницаемые оболочки и протекающие в них процессы получили название адиабатических.

Но если можно повышать и понижать температуру газа не подводя и не отводя теплоты, то не должны ли существовать и такие процессы, в которых подвод и отвод теплоты не приводят к изменениям температуры? Такие процессы не только возможны теоретически, но каждый из нас сталкивается с ними ежедневно. Достаточно лишь взглянуть на чайник, стоящий на огне. Когда вода в нем начинает кипеть, температура перестает расти и сохраняется постоянной, хотя теплота к воде продолжает подводиться. Чтобы как-то объяснить это странное явление, шотландец Блек в XVIII веке ввел понятие «скрытой теплоты парообразования». Но, по правде говоря, трудно придумать что-нибудь менее скрытое, чем эта теплота. Когда при подводе теплоты температура тела остается постоянной, то есть когда процесс изотермический, — сильно увеличивается его объем, и вся подведенная к нему теплота превращается в механическую работу.

Вот теперь-то мы и можем оценить величие и гениальную проницательность Сади Карно. Во времена, когда ничего не было известно об энтропии и об ее связи с теплотой, работой и температурой, он сумел понять: чтобы в машине не было «ни одного изменения температуры, происходящего не от изменения объема», необходимо использовать в ней только изотермические и адиабатические процессы. Переведя это на современный язык, мы легко увидим, что означает это требование. По мнению Карно, в идеальной машине должно отсутствовать выравнивание температур путем непосредственного теплообмена, то есть теплообмена, не сопровождающегося соответствующим совершением механической работы…

Выходит, для построения — конечно, только воображаемого — идеальной тепловой машины не требуется ничего сверх того, что должно выполняться в обратимом мире. А именно: в ней не должно происходить непосредственного теплообмена между нагретыми и холодными частями и непосредственного превращения механического движения в тепловое. Таким образом, тепловая форма движения, будучи идеализирована, то есть очищена от необратимых процессов, оказывается ничуть не хуже других форм движения и вполне естественно и закономерно вписывается в картину обратимого мира.

Вот почему изучение теплового движения доставило ученым столько хлопот, недоумений и мороки, вот почему столько путаницы породил не очень четко определенный термин — теплород. Те ученые, которые исследовали необратимый процесс теплопроводности, получали убедительнейшие доказательства: теплород — неуничтожимая жидкость. Другие, изучая необратимое превращение механической работы в теплоту, получали не менее убедительные доказательства: теплород не жидкость, а вид движения и может быть получен в любых количествах. Наконец, третьи, сосредоточившие свое внимание на изучении обратимого превращения теплового движения в механическое, получали третий результат: при протекании идеальных — по-нашему, обратимых — процессов суммарное количество теплорода остается неизменным.

Зная разницу между работой, теплотой и энтропией, нетрудно истолковать эти опыты и показать: все были правы по-своему. Так, в процессах теплопроводности работа равна нулю, количество теплоты постоянно, а суммарная энтропия участвующих в процессе тел растет. При превращении работы в теплоту работа исчезает, теплота возникает, а суммарная энтропия тел, участвующих в процессе, растет. Наконец, в обратимых процессах преобразования теплоты в работу теплота исчезает, механическая работа возникает, а суммарная энтропия сохраняется постоянной. Таким образом, если ученые, занимавшиеся исследованием необратимых процессов, под термином теплород подразумевали теплоту, то Карно под этим словом подразумевал нечто сходное с энтропией, хотя, конечно, он и понятия о ней не имел. Тем не менее справедливо одно: если в трактате Карно слово теплород всюду заменить словом энтропия, справедливость всего в нем сказанного ничуть не пострадает…

Вот почему исследователи необратимых процессов были правы, когда говорили, что количество теплорода (читай теплоты) может оставаться постоянным в процессах необратимого теплообмена или безгранично возрастать за счет механической работы в процессах необратимого трения. Но и Карно был прав, когда утверждал, что теплород (читай энтропия) не исчезает в идеальной тепловой машине, а как бы перетекает с верхнего уровня на нижний. Разнобой в выводах свидетельствовал не о разнобое в природе вещей, а о разнобое в понимании термина теплород. Вот почему согласование опытов Джоуля и принципа Карно потребовало не перестройки теории теплоты до самых ее основ, чего так опасался Вильям Томсон, а выработки ясных и строго определенных научных понятий теплоты и энтропии.


По всем иллюстрациям этой книги вас проведут два героя. Один из них — Силач убежден во всемогуществе механического движения, другой — Огнепоклонник приписывает решающую роль тепловому движению. Кто из них прав? Оказывается, правы оба, ибо механическое и тепловое движения неразрывно связаны между собой. Чтобы убедиться в этом, проделаем вместе с нашими героями небольшое путешествие в мир термодинамики.


«Теплота — неуничтожимая жидкость — теплород, — заявляет Огнепоклонник — В этом меня убеждает эксперимент А Я беру металлический стержень, покрытый теплоизоляцией, и нагреваю один его торец, подводя теплород Измерения показывают, что весь подведенный теплород вытекает в атмосферу с противоположного торца. Значит, теплота неуничтожима и количество ее в природе неизменно».

«Это неверно, — возражает Силач — Я беру мельничные жернова и начинаю вращать один из них относительно второго (Б) Я не нагреваю жернова ни пламенем, ни горячим воздухом, я только изо всех сил кручу один из них Но посмотрите — оба жернова нагреваются. Выходит, я могу производить сколько угодно теплоты за счет механического движения Нет, теплота — не жидкость, а разновидность движения, и ее можно генерировать в любых количествах».

«Пожалуй, я готов согласиться с тобой, — задумчиво сказал Огнепоклонник — Ведь можно соорудить машину, которая будет выполнять обратную задачу генерировать механическую работу за счет теплоты (В) Но как тогда увязать между собой результаты всех этих экспериментов?»

Современная термодинамика дает такую увязку В случае А механическая работа равна нулю, количество теплоты — постоянно, а суммарная энтропия тел, участвующих в эксперименте, растет В случае Б подводимая к жерновам механическая работа полностью превращается в теплоту, а суммарная энтропия растет В случае В, когда речь идет об идеальном тепловом двигателе, в котором отсутствуют потери, подводимая к машине теплота полностью превращается в работу, а суммарная энтропия тел, участвующих в процессе, остается постоянной.

МЕХАНИКА АДИАБАТИЧЕСКАЯ И ИЗОТЕРМИЧЕСКАЯ

При изучении наследия Исаака Ньютона можно обнаружить один любопытный факт: попытавшись вычислить скорость звука в воздухе при 0 °C, великий механик получил величину 280 м/с, в то время как измеренная экспериментально, эта величина составляла 330 м/с. Ньютона так задело это несовпадение, что он, с гордостью говоривший о себе: «гипотез не измышляю», унизился до выдумывания весьма вычурных и искусственных гипотез, призванных объяснить это расхождение. Но даже нарушив свое научное кредо, он так и не сумел удовлетворительно объяснить несоответствие.

И как ни удивительно, в основе этой маленькой неудачи Ньютона лежало то же самое неосознанное и ясно не сформулированное убеждение, без которого было бы невозможно и его величайшее научное достижение — открытие закона всемирного тяготения. Убеждение это состояло в том, что мир, вселенная подчиняются законам, если так можно выразиться, изотермической механики, механики, в которой температура движущихся тел не зависит от их движения друг относительно друга. Сейчас мы знаем, что это не так, что вращение, скажем, Луны вокруг Земли вызывает приливы и деформацию земной оболочки, возникающее при этом трение превращает кинетическую энергию вращения Луны в теплоту, тормозит ее движение и нечувствительно меняет ее траекторию. Правда, эти изменения на протяжении жизни человечества столь ничтожны, что, пренебрегая ими, астрономы смогли построить свою изумительную небесную механику, точность предсказаний которой побудила ученых и механику земную строить по образцу и подобию небесной.

Перенесенная на землю небесная механика с ее ореолом идеальности заставила ученых считать, что идеальные механические процессы и на Земле не должны сопровождаться изменениями температуры, должны быть изотермическими. Поэтому, проводя в своих лабораториях чисто механические эксперименты, ученые и не думали выяснять, как изменяются температуры тел в ходе опыта. Но здесь положение было иное, чем на небесах, ибо две принципиально разные причины — обратимое адиабатическое сжатие и необратимое трение — приводили к одинаковому следствию — повышению температуры.

Вот почему в представлении ученых сложилось мнение, что стоит устранить трение в механических процессах — и будет тем самым устранено повышение температуры во взаимодействующих телах. Вот почему идеальная механика мыслилась как изотермическая наука. Вот почему распространение звука Ньютон считал процессом изотермическим и получил результат, не соответствующий действительности. И вот почему, наконец, французский механик Лаплас смог исправить ошибку Ньютона только тогда, когда ясно понял: распространение звука в газе — процесс адиабатический.

Справедливости ради надо сказать, что в окружающей нас жизни масштабы скоростей и энергии движущихся твердых тел чаще всего позволяют пренебречь адиабатическим изменением их температуры. В пределах упругости адиабатические изменения температуры многих металлов составляют не больше 1–2 °C. Живи мы на другой планете, где сила тяжести в сотни или тысячи раз превышает силу тяжести на Земле, и имей мы металлы идеально упругие, мы, возможно, своими глазами увидели бы, как вследствие адиабатического расширения и сжатия периодически раскаляется докрасна и снова охлаждается нить колеблющегося маятника. В наших же условиях температура тел вследствие адиабатического взаимодействия в большинстве случаев могла бы изменяться на 1–2 °C.

Теперь представьте себе, что бы произошло, если бы ученые вовремя обнаружили эти температурные изменения и установили их связь с механическим движением тел. Можно смело утверждать: классическая механика как наука сложилась бы на несколько десятилетий, а то и столетий позднее. Ведь тогда в набор чисто механических параметров, таких, как сила, пространственные координаты, время, скорость, ускорение, пришлось бы включить и такой существенно немеханический параметр, как температура. Температура потребовала бы предварительного уяснения множества других термодинамических понятий и зависимостей. Короче говоря, для того чтобы создать классическую механику, а может быть, и все остальные естественные науки, понадобилось бы прежде во всех деталях понять и разработать термодинамику.

Но зато, возникнув позже, классическая механика была бы свободна от тех понятий и представлений, которые некогда облегчили ее формирование, но которые потом породили немало споров и затруднений. Одно из таких понятий — потенциальная энергия.

Внутренняя энергия идеального газа не зависит от его давления — в справедливости этого фундаментального положения классической термодинамики Силач и Огнепоклонник убеждаются на собственном, опыте Чтобы выяснить, что важнее работа или теплота, они взяли устройство (А), состоящее из цилиндра с поршнем, изолированного снаружи с помощью надувной оболочки Внутри цилиндра — газ при атмосферной температуре и давлении Первым взялся за дело Силач Он нажал изо всех сил на поршень и с помощью механической работы сжал газ, повысив одновременно и его температуру, и его давление (Б). Но Огнепоклонник не растерялся тонкой иглой он проколол теплоизолирующую оболочку Нагретый при сжатии газ охладился до атмосферной температуры и отдал при этом в окружающую среду ровно столько теплоты, сколько Силач затратил работы на его сжатие (В). А раз так, то внутренняя энергия газа в положении А и в положении В одна и та же, хотя во втором случае давление газа выше.


Увидев лежащий на краю пропасти камень, мы говорим: в нем есть запас потенциальной энергии. Если сбросить его с высоты на дно пропасти, он может совершить механическую работу. Вода реки, стекая от верховьев к низовьям, тоже — считаем мы — обладает потенциальной энергией, равной ее весу, умноженному на разность уровней. Однако такое понятие, не вносящее затруднений в понимание механических процессов, в которых участвуют практически несжимаемые тела, вызывает затруднения, когда дело доходит до газов. По аналогии с грузом, лежащим на некоторой высоте над землей, мы стали говорить, что сжатый газ тоже наделен потенциальной энергией: расширяясь до атмосферного давления, он может совершить механическую работу. Но термодинамика утверждает, что это не так, что при одинаковой температуре в килограмме воздуха, сжатого до 100 атмосфер, содержится энергии не больше, чем в килограмме воздуха при атмосферном давлении…

Почему так? Да потому, что адиабатически сжимая газ, мы одновременно повышаем его температуру. Если теперь этот нагретый сжатый газ охладить до атмосферной температуры, от него будет отведена теплота. И вот что удивительно: количество этой теплоты в точности равно механической работе, затраченной на сжатие. Энергия, подведенная к телу в виде механической работы, полностью отведена от него в виде теплоты. Выходит, адиабатическим сжатием и последующим охлаждением мы изменим только давление газа, но отнюдь не «накачаем» его потенциальной энергией. И общность законов термодинамики такова, что это относится не только к газам, но и к жидкостям, и к твердым телам.

Об этом еще в прошлом веке догадывался русский физик Н. Умов. «… Когда одно явление исчезает, то должно появиться другое, равное ему по своей напряженности. Камень потерял живую силу, изменив свое положение относительно земли. Это новое положение указывает на то, что тело не осталось в том виде, как оно было прежде, что произошли изменения. Изменившееся положение камня есть признак происшедших перемен в явлении и не больше. Неужели в мертвом, геометрическом различии положений можно искать источник живой силы? Ясно, что нет; геометрия не создает вам движения, надо искать, следовательно, явление, которое по своей напряженности равнялось бы потерянной живой силе. Где же исчезнувшая живая сила? Где соответствующее ей явление?»

И далее Умов проницательно указывает, что вся механическая энергия, наблюдаемая нами в окружающем мире, есть энергия кинетическая. Но явления протекают в двух или более средах, из которых лишь одна находится в центре нашего внимания, в то время как все остальные не подлежат непосредственному наблюдению. Так вот, когда кинетическая энергия из наблюдаемой среды переходит в ненаблюдаемую, она кажется нам исчезнувшей, и мы принимаем за потенциальную энергию лишь след, оставленный энергией кинетической, или, как говорит Умов, «признак происшедших перемен».

Представление об обратимом адиабатическом мире дает прекрасную возможность проиллюстрировать эти мысли Умова. Говоря строго теоретически, ни в грузе, поднятом на высоту, ни в сжатой пружине, если их температура равна температуре окружающей среды, не запасено ровно никакой энергии. Все это — следы исчезнувшей кинетической энергии, «признаки происшедших перемен», запечатленные в измененной картине обобщенных сил. А где же кинетическая энергия, вызвавшая эти перемены?

Когда мы толкуем о потенциальной энергии груза, поднятого над землей, мы обычно умалчиваем о том, как он туда попал. А это вопрос далеко не праздный. Сжатый воздух или пружина, выбрасывающие груз на высоту, в обратимом мире охлаждаются. Это происходит потому, что механическая работа совершается газом или пружиной за счет внутренней энергии рабочих тел, за счет их теплового движения. Поскольку в обратимом мире теплообмен невозможен, пониженная температура пружины или газа может сохраняться сколь угодно долго, и все мыслимые в нем механические движения как бы оставляют после себя температурные отпечатки. Совокупность всех этих отпечатков полностью отображает картину всех происходящих в обратимом мире механических движений. Каждому ускорению соответствует понижение температуры, каждому замедлению — повышение. И как вечно и неуничтожимо в обратимом мире механическое движение, так вечна и неуничтожима в нем картина температурных отпечатков.

Но если движение прекращается, то без всякого следа исчезает и соответствующий ему температурный отпечаток. Представьте себе, что груз падает с высоты на пружину, некогда выбросившую его над землей. По мере сжатия кинетическая энергия груза уменьшается, передаваясь пружине, температура которой растет. В конечном итоге груз «вернется на круги своя» и займет в пространстве то самое положение, которое он занимал в самом начале, а температура пружины станет равной температуре окружающей среды. И после этого никакими способами не удастся выяснить, выбрасывался ли груз над землей или всегда находился на ее поверхности. Короче говоря, в обратимом мире, после того как все вернулось в первоначальное положение, не остается никаких следов происходившего, никаких остаточных изменений, по которым можно было бы судить о том, что происходило. Но зато в таком мире все может быть повторено снова бессчетное число раз.

Гораздо сложнее выглядел бы изотермический мир, в котором невозможно ни малейшее повышение или понижение температуры. Такой мир тоже может быть обратимым, но в отличие от адиабатического в нем каждое изменение механического движения должно было бы сопровождаться не перепадом температуры, а соответствующим изменением объема одного или нескольких находящихся в этом мире тел. Если, скажем, пружина в таком мире выбрасывает на высоту груз, то она, расширяясь изотермически, мгновенно «высасывает» из окружающей среды теплоту, эквивалентную совершенной ею механической работе. Согласно закону сохранения энергии температура окружающей среды должна вследствие этого пускай на ничтожные доли градуса, но понизиться. А это никоим образом недопустимо в мире, который должен сохранять свою температуру неизменной…

Решение этой задачи таково: если где-то в изотермическом мире расширяющийся газ забрасывает на высоту груз, поглощая из окружающей среды теплоту, эквивалентную совершаемой механической работе, то в другом месте необходимо сжимать газ так, чтобы теплота, эквивалентная работе, затрачиваемой на сжатие, отдавалась в окружающую среду. Таким образом, каждое изменение движения в изотермическом мире должно отпечатываться в изменении объемов его частей. Каждому ускорению здесь соответствует увеличение объема, каждому замедлению — его уменьшение. Но если все движения в изотермическом мире приводятся к первоначальным, то в точности восстанавливается и первоначальное распределение объемов, и не остается никаких следов, никаких остаточных изменений, по которым можно было бы судить о том, какие тела и как двигались.

Р. Клаузиус назвал остаточные изменения компенсациями. Он считал: если после возвращения всех тел, участвовавших в том или ином процессе, в первоначальное положение компенсаций нет — все происшедшие процессы были обратимыми, если же компенсации есть — процессы были необратимыми. Это очень важная мысль.

Ведь какова физическая природа компенсаций? Как и когда они появляются?

Возьмем простейший случай. В обратимом мире пружина, адиабатически расширяясь и охлаждаясь при этом, выбрасывает на высоту шар. Пока шар совершает свои гравитационные эволюции в безвоздушном пространстве, в котором отсутствует трение, никаких компенсаций возникнуть не может: падая с высоты на пружину с такой же скоростью, с какой он был выброшен, шар восстанавливает ее первоначальную температуру при адиабатическом сжатии. Но заставим шар двигаться не в вакууме, а в обычном воздухе. Тогда за счет трения часть кинетической энергии шара превратится в теплоту. Более нагретые слои воздуха, примыкавшие к шару, начнут охлаждаться, передавая теплоту всей массе воздуха. В результате воздушная масса и пружина станут чуть теплее, чем до начала опыта. Выходит, в реальном мире, после того как шар проделал свои эволюции и вернулся в первоначальное положение, осталась компенсация: часть работы, совершенной пружиной, необратимо превратилась в теплоту.

А мы знаем: подвод теплоты к любой системе всегда увеличивает ее энтропию. Если система теплоизолирована и в ней не протекают процессы, сопровождающиеся трением и необратимым теплообменом, ее энтропия постоянна. Именно таков обратимый мир, отдельные черты которого мы пытались изобразить на предшествующих страницах.

Если система теплоизолирована, но в ней генерируется тепловое движение за счет процессов трения и необратимого теплообмена, ее энтропия увеличивается. Таким образом, энтропия замкнутой, теплоизолированной системы может только оставаться постоянной или возрастать. Но никогда, ни при каких условиях она не может уменьшаться. Ведь это означало бы, что нельзя ни двинуться, ни чихнуть, не вызвав мировой катастрофы. В мире убывающей энтропии (если бы, конечно, он был возможен), пропустив через провод импульс тока, мы обнаружили бы удивительный эффект: ток, проходя по проводнику, непрерывно усиливался бы за счет понижения температуры проводника. Звук, уходя от источника, также усиливался бы за счет охлаждения воздуха. Тело, начавшее двигаться, непрерывно ускорялось бы до тех пор, пока температура его не стала бы равной абсолютному нулю. Что касается тел, которым посчастливилось бы сохранить в таком мире неподвижность, то их поведение было бы не менее удивительным: теплота от всех менее нагретых тел самопроизвольно начала бы стекаться к самому горячему из них. Ясно, что такой мир был бы неустойчив. Процессы в нем шли бы до тех пор, пока все движущиеся тела не охладились бы до абсолютного нуля, после чего они двигались бы с постоянными скоростями. Все же неподвижные тела также охладились бы до абсолютного нуля, передав все тепло одному, раскаленному до огромной температуры. Не правда ли, фантастика? Но, оказывается, еще более фантастичен мир нашей планеты, мир Земли, на которой мы можем жить только потому, что в ней причудливо, но гармонично сочетаются черты всех тех миров, о которых мы только что говорили.

Действительно, наша планета прежде всего не замкнутая, не теплоизолированная система. Она получает теплоту от Солнца. Более того, в недрах и на поверхности ее генерируется теплота за счет необратимых процессов: здесь и горение топлива, и механическое трение, и электрическое сопротивление, и все виды необратимого теплообмена. И тем не менее мы не совершим большой ошибки, сказав, что мир Земли — мир постоянной энтропии: практически всю теплоту, получаемую от Солнца и от земных источников энергии, наша планета излучает в космос.

Правда, в результате такого переизлучения остаются компенсации — остаточные изменения, которые возможны только благодаря существованию необратимых процессов. Связав компенсацию с необратимостью, Клаузиус, сам того не подозревая, связал с необратимостью эволюцию всей природы.

Все, что мы знаем о древних народах, все, что мы знаем о планете, на которой живем, все, что мы знаем о себе самих, — все это мы знаем только потому, что до нас дошли «остаточные изменения» — компенсации — прошлых эпох: скелеты ископаемых животных, скульптуры, развалины, манускрипты. Парадоксально, но факт: все это не могло бы возникнуть в обратимом мире — в блестящем, идеальном, совершенном, вечно коловращающемся хороводе, в котором невозможны никакое устойчивое изменение формы, никакое стабильное изменение положения в пространстве, никакая память, никакая жизнь. Ни одно из бессмертных изваяний и ни один глиняный черепок немыслим в обратимом мире, ибо один и тот же процесс — необратимое разрушение — порождает и черепки и прекрасные статуи. Ни один памятник величественной архитектуры не мог бы быть сооружен в обратимом мире, ибо чтобы избежать бесконечных колебаний идеально упругих балок на идеально упругих опорах, в строительном деле понадобилась бы такая точность, которая едва ли достигнута сегодня в самом точном приборостроении. Никакая письменность не была бы возможна, ибо в мире, лишенном вязкости и трения, чернила не ложились бы на бумагу, а превращались в вечно катающиеся по ней шарики.

Но кое-что из нашего мира могло бы существовать и действовать в обратимом мире. И самое главное из этого «кое-чего» — тепловые машины.

Загрузка...