ПОДВОДНЫЕ КАМЕРЫ МАЛЫХ ГЛУБИН

В настоящее время созданы подводные камеры, погружающиеся на огромные глубины Мирового океана, и тем не менее много работы предстоит еще проделать людям под водой в районах материковой отмели и в прибрежных районах с глубинами, доступными для деятельности водолаза.

Из экономических и технических соображений не всегда целесообразно создавать сложные телеуправляемые устройства для работы на малых глубинах, где может успешно действовать водолаз в обычном снаряжении. Обслуживание подводных плантаций и буровых установок, прокладка кабелей и трубопроводов, а также контроль за их нормальным функционированием, поиск и подъем со дна моря затонувших судов и предметов, строительство и ремонт подводных сооружений — вот далеко не полный перечень работ, которые могут выполняться водолазами.

Ученые и конструкторы многих стран трудятся над созданием новых и усовершенствованием уже использующихся образцов водолазного снаряжения и оборудования. Одной из важнейших и до конца еще не решенных проблем является перемещение водолаза под водой. Для того чтобы дать водолазам возможность быстро и без больших затрат энергии передвигаться на значительные расстояния, в ряде стран сконструированы различные буксируемые и самоходные средства-носители. Водолазы, использующие эти средства, обычно применяют автономные дыхательные аппараты типа аквалангов.

Буксируемые подвижные камеры, как правило, не имеют собственных двигателей и источников питания. Они напоминают собой подводный планер. Камера уходит под воду, сохраняет нужную глубину погружения или всплывает только в случае буксировки ее каким-либо судном и при перекладке рулей глубины на соответствующий угол, когда в результате действия потока воды на них создается гидродинамическая сила, направленная вниз или вверх. Перекладкой рулей глубины водолаз по желанию может изменять глубину погружения камеры в довольно широких пределах, а перекладкой руля поворотов выполнять маневрирование в полосе определенной ширины по направлению движения буксирующего судна. Некоторые буксируемые подводные камеры имеют винты с приводами от электродвигателей, питание к которым подается по кабелю с буксирующего судна.

Один из типов французской буксируемой камеры показан на рис. 37.

Рис. 37. Буксируемая подводная камера.


Существенным недостатком буксируемых подводных камер является их малая маневренность и необходимость постоянной связи с судном-носителем.

Используются буксируемые аппараты главным образом для обследования морского дна и поиска различных затонувших предметов.

Самоходные средства передвижения водолазов получили значительное распространение в последние годы. Обычно самоходные подводные камеры представляют собой прочные герметичные цилиндры, в которых размещаются аккумуляторная батарея и электродвигатель, приводящий во вращение винт. Водолаз держится за рукоятки, размещенные в кормовой части камеры. Изменение глубины погружения и направления движения осуществляется водолазом путем перемещения самой камеры или перекладкой рулей. В настоящее время во многих странах создано немало подобных подводных камер, называемых иногда носителями водолазов. В связи с тем что большая часть самоходных камер не имеет существенного различия друг от друга по принципу действия и конструкциям, ознакомимся лишь с некоторыми из них.

Носитель водолаза «Пегас», созданный во Франции, имеет форму цилиндра длиной 2,1 м и диаметром 0,193 м (рис. 38, 39).

Рис. 38. Подводная камера — носитель водолаза.

Рис. 39. «Пегас» буксирует водолазов.


В кормовой части камеры установлены вертикальный руль и гребной винт в насадке. Винт приводится во вращение электродвигателем мощностью 1,5 л. с. при 7500 oб/мин через редуктор, понижающий число оборотов в 12 раз. Источником электроэнергии является серебряно-цинковая аккумуляторная батарея емкостью 80 а•ч. При транспортировке водолаза камера развивает максимальную скорость 2 уз и может двигаться с этой скоростью в течение 2 ч.

В носовой части носителя установлен контейнер с компасом, глубиномером, электроизмерительными приборами и указателем горизонтального положения буксировщика, там же возможен монтаж пяти прожекторов и кино-, фотоаппаратуры. Положение камеры по глубине регулируется горизонтальными рулями, управляющимися с помощью одного рычага. Водолаз при движении камеры может лежать или сидеть.

В настоящее время камеры типа «Пегас» широко применяются во французском флоте для контроля за состоянием подводных устройств, обнаружения мин, разведки морского дна и подводных исследований.

Носитель водолаза «Долфин Туин», выпускаемый американской фирмой «Долфин Инжиниринг Компани», по габаритам уступает «Пегасу». Эта камера также имеет винт с приводом от электродвигателя мощностью 3 л. с. и способна развивать скорость до 5 уз. Аккумуляторная батарея, являющаяся источником питания, и электродвигатель размещены в прочном герметичном корпусе. Батарею можно заряжать, не вынимая из прочного корпуса. Маневрирование под водой водолаз осуществляет путем поворота самой камеры.

Разработана также и более компактная модель этой камеры — «Долфин Дайвер» весом 45 кг.

Корпуса «Долфин Туин» и «Долфин Дайвер» рассчитаны на глубину погружения 75 м, но испытывались на глубинах до 120 м.

Носитель водолаза «Омега», напоминающий по форме летучую мышь, изготовлен из стеклопластика. Его длина 3 м, ширина 1,35 м, вес 70 кг, максимальная скорость 6 уз. Приводом к гребному винту является электродвигатель. Все управление камерой осуществляется с помощью одного рычага. В корпусе «Омеги» имеются носовая и кормовая цистерны, заполняемые водой при погружении и осушаемые сжатым воздухом при всплытии.

Имеется модификация камеры «Омега» с энергетической установкой, работающей на перекиси водорода, которая может развивать скорость хода до 22 уз.

Носитель водолаза фирмы «Блауворт Марин» (США), крепящийся при использовании к днищу баллона дыхательного аппарата, рассчитан для работы на глубинах до 60 м рис. 40).

Рис. 40. Камера — носитель водолазов фирмы «Блауворт Марин».


Длина камеры 1,1 м, ширина 0,3 м, высота 0,4 м, вес до 35 кг. Винт, размещенный в защитном корпусе, вращается электродвигателем, питающимся от кислотной аккумуляторной батареи. Аккумуляторные батареи используются двух типов: с напряжением 6 и 12 в. При установке батареи с напряжением 6 в камера с водолазом может идти со скоростью 1,4 в течение 50 мин. Двенадцативольтная батарея позволяет камере двигаться со скоростью 2,2 уз в течение 30 мин.

При плавании под водой камера имеет небольшую отрицательную плавучесть.

Носитель водолаза Т-14 фирмы «Лорал Электроникс» (США) рассчитан на одного человека (рис. 41).

Рис. 41. Подводная камера — носитель водолазов Т-14.


Камера, изготовленная из алюминиево-магниевого сплава, по форме напоминает фюзеляж самолета. Ее длина 2,85 м, ширина с рулями 1,2 м, вес со всем оборудованием 81,5 кг.

Гребной винт диаметром 380 мм, расположенный в насадке, приводится во вращение электродвигателем мощностью 1,5 л. с. В качестве источника электроэнергии используется серебряно-цинковая аккумуляторная батарея из 18 элементов напряжением 24 в. Емкость батареи 100 а•ч, что обеспечивает непрерывную работу электродвигателя и всей аппаратуры камеры в течение двух часов. Электродвигатель и аккумуляторная батарея размещаются в герметичном контейнере.

Управление рулями осуществляется водителем с помощью и рук и ног. Носовые горизонтальные рули установлены на амортизаторах и при столкновении с препятствиями только отходят назад, но не ломаются. Камера имеет высокую маневренность во всех плоскостях, а радиус циркуляции ее в горизонтальной плоскости не превышает длины корпуса. Максимальная скорость Т-14 3,5 уз при дальности плавания 7 миль. Камера может использоваться для транспортировки груза общим весом 450 кг.

На основе подводной камеры Т-14 разработано несколько модификаций. Фирмой проектируется двухместная камера, способная развивать скорость до 12 уз (рис. 42).

Рис. 42. Двухместная подводная камера — носитель водолазов.


Носитель водолаза «Марк IV Эквейнт» (США) с винтами, приводимыми во вращение самим водолазом. Привод к винтам напоминает педали велосипеда. На этой камере весом всего 9 кг можно развить скорость до 3 уз. Водолаз во время движения сидит на сиденье, прикрепившись ремнями, ноги держит на педалях.

Носитель водолаза «Минисаб Мк-III» фирмы «Аэроджет Дженерал Корпорейшн» (США) имеет обтекаемый корпус из стеклопластика длиной 2,6 м и шириной 0,5 м. Вес камеры 66 кг. Винт приводится во вращение ножными педалями. Камера обладает хорошей маневренностью: опытные водители делают на ней даже фигуры «высшего пилотажа». Наибольшая скорость «Минисаб Мк-III», 4,75 уз.

Носители водолазов «Минисаб Мк-VI» и «Минисаб Мк-VII» рассчитаны на размещение двух человек: на первой камере они сидят спиной друг к другу (рис. 43), а на второй располагаются лежа (рис. 44).

Рис. 43. Подводная камера «Минисаб Мк-VI».

Рис. 44. Подводная камера «Минисаб Мк-VII».


На камерах установлено по два соосных винта, вращающихся в противоположные стороны. Приводы к винтам могут быть как педальными, так и электрическими. При работе одного водолаза педальным приводом «Минисаб Мк-VI» развивает скорость 3 уз, а «Минисаб Мк-VII» 2 уз. При работе педальным приводом обоих членов экипажа максимальная скорость первой камеры 5 уз, второй камеры 3,5 уз. При наличии электропривода скорости хода камер 6 и 5 уз соответственно.

Подводная камера «Минисаб Мк-VII» имеет длину 4,27 м, высоту 1,15 м, ширину с горизонтальными рулями 2,15 м. Вес камеры с педальным приводом 240 кг, с электроприводом — 440 кг. Мощность гребного электродвигателя 1 л. с. при 5400 об/мин. Редуктор понижает число оборотов гребного вала в 30 раз. В качестве источника электроэнергии применяются обычные автомобильные аккумуляторы напряжением 12 в и емкостью 25 а•ч, помещенные в прочный пластмассовый контейнер. Корпус и горизонтальные рули выполнены из пластмассы, армированной стеклотканью. Передние колпаки изготовлены из плексигласа. Количество металлических деталей сведено до минимума.

Для изготовления гребных винтов применен анодированный алюминий. Все управление камерой под водой производится при помощи одного штурвала. Плавучесть камеры в подводном положении (4,5–6 кг) регулируется перед погружением твердым балластом. Если в процессе нахождения под водой требуется положить камеру на дно, ей придается отрицательная плавучесть заполнением водой балластной цистерны. Для возобновления движения цистерну продувают сжатым воздухом, запас которого содержится в специальном баллоне.

Погружение камеры производится разгоном ее на поверхности и постепенной перекладкой горизонтальных рулей на погружение (при резкой перекладке рулей винты выходят из воды и погружение становится невозможным).

На камере установлена стационарная дыхательная система, состоящая из воздушных баллонов с рабочим давлением 125 кг/см2, дыхательных автоматов и шлангов с загубниками.

Для ориентировки под водой на камере имеется магнитный компас. В целях улучшения обзора и управления камерой при плавании на поверхности воды используется зеркальный перископ.

Все герметичные устройства и приборы, камеры «Минисаб Мк-VII» рассчитаны на глубину погружения 100 м.

Носитель водолазов «Иппокампо» (Италия) рассчитан на двух человек. На камере установлен бензиновый двигатель мощностью 9 л. с. Воздух к двигателю при движении камеры под водой подается по шлангу, верхний конец которого поддерживается на поверхности поплавком. Скорость хода «Иппокампо» 8 уз при дальности плавания 60 миль, максимальная глубина погружения 18,5 м.

Рассмотренные выше подводные камеры сравнительно просты по конструкции, легки и транспортабельны, однако глубина их погружения и продолжительность использования зависят главным образом от организма и способностей водолаза, а также от совершенства дыхательной аппаратуры. Поэтому в настоящее время развиваются также герметичные подводные камеры с относительно небольшими глубинами погружения и малой автономностью, которые в иностранной печати нередко называют сверхмалыми подводными лодками. В этих камерах-лодках человек полностью защищен от воздействия забортной воды. Ниже приводится краткое описание некоторых образцов подобных камер.

Прогулочная подводная лодка «Спортсмен» фирмы «Америкэн Сабмарин Компани» (США) имеет длину 3,65 м, ширину 1,27 м, подводное водоизмещение 900 кг, рабочую глубину погружения 91 м (рис. 45).

Рис. 45. Подводная камера «Спортсмен».


Подводная лодка не имеет перископа; наблюдение ведется из двух башен с плексигласовыми иллюминаторами толщиной 25 мм, обеспечивающими круговой обзор. Для дыхания экипаж использует сжатый воздух из баллонов; углекислота и влага поглощаются специальным веществом. Запас сжатого воздуха обеспечивает дыхание в течение 24 ч.

Электродвигатель мощностью 2 л. с., приводящий во вращение гребной винт, позволяет развивать максимальную скорость подводного хода 6 уз. Он имеет по две скорости переднего и заднего хода. Емкость аккумуляторной батареи обеспечивает дальность плавания 10–15 миль. Управление лодкой сделано по типу самолетного, т. е. осуществляется с помощью одного рычага и педалей, которые имеются у каждого члена экипажа. Всплытие и погружение производится, как и у обычных лодок, т. е. перекладкой горизонтальных рулей и заполнением или продуванием балластных цистерн. Для регулирования плавучести и дифферента имеются специальные цистерны. В аварийном случае подводной лодке можно придать положительную плавучесть, сбросив киль.

Лодка оснащена фотоаппаратурой со светильниками, компасом, глубиномером, прибором для контроля за содержанием кислорода и гидроакустической аппаратурой для связи с поверхностью.

Научно-исследовательская подводная лодка «Кабмарин» (США) водоизмещением 1,8 т имеет длину 5,5 м, ширину 0,92 м, высоту 1,8 м (рис. 46).

Рис. 46. Подводная камера «Кабмарин».


«Кабмарин» рассчитана на глубину погружения 70 м, ее предполагаемая максимальная скорость в подводном положении 5 уз, дальность плавания 20 миль, продолжительность пребывания под водой 8 ч. Легкий корпус подводной лодки изготовлен из стеклопластика, а прочный корпус и контейнеры — из стали и алюминиевых сплавов. Аккумуляторная батарея и гребной электродвигатель вынесены из прочного корпуса и размещены в специальных водонепроницаемых контейнерах. Экипаж, состоящий из двух человек, размещается в отсеке, который имеет 12 плексигласовых иллюминаторов толщиной 25 мм, обеспечивающих круговой обзор. На «Кабмарин» установлены радиостанция, гидроакустическая станция подводной связи, компас, эхолот, глубиномеры. Управляет лодкой один человек.

Научно-исследовательская подводная лодка «Наутилетт» (США) водоизмещением 1,2 т рассчитана на глубину погружения 30 м; ее длина 3,8 м, высота 1,4 м, максимальная скорость хода 2 уз, продолжительность пребывания под водой 5 ч.

Надводный ход «Наутилетт» обеспечивается одноцилиндровым двигателем внутреннего сгорания, а подводный ход — электродвигателем мощностью 0,75 л. с.

Экипаж подводной лодки состоит из двух человек. Наблюдение осуществляется через два иллюминатора.


Вторая половина XX века характеризуется широким наступлением на фронте освоения морских глубин. Сегодня глубины стали нам понятнее, наши знания о них пополнились. Недалеко то время, когда богатства морей и океанов станут служить людям.

В сентябре 1962 г. на дне Лионского залива во Франции исследователи Альберт Фалько и Клод Весли прожили под водой семь суток в специально построенном «подводном доме», установленном на глубине 10 м. «Подводный дом» был оборудован всем необходимым для жизни людей: в нем можно было принять горячую ванну, смотреть телепередачи, подогревать на электроплитке пищу, разговаривать по телефону с поверхностью. Надев акваланги, подводные исследователи выходили из «дома» и выполняли различного рода работы, а также охотились на рыб и морских животных. Океанавты постоянно находились под давлением столба воды 10 м, однако никаких физиологических отклонений от нормы в их организмах замечено не было.

По мнению многих зарубежных специалистов, удачный опыт жизни людей под водой открывает перспективы для упрощения и удешевления различного рода подводных работ, наглядно показывает, что организм человека может приспособиться к водной среде, и в этом направлении еще имеется много нераскрытых возможностей.

На Втором международном конгрессе по подводным исследованиям, проходившем в ноябре 1962 г. в Лондоне, в своем докладе Жак Ив Кусто наметил интересные пути овладения ресурсами океанских глубин. По его мнению, в последующем десятилетии на дне морей возник-нут подводные поселения с атомными заводами, производящими энергию и необходимые для подводных жителей дыхательные газовые смеси. Он считает, что строительство подобных дорогостоящих сооружений вполне окупится эксплуатацией богатств океана и в первую очередь добычей нефти. Кусто высказал предположение, что через 50 лет сформируются новые люди, приспособленные к жизни под водой также хорошо, как и на земле. Это помогут сделать хирургия и техника, которые снабдят человека миниатюрными легочно-сердечными аппаратами, вводящими кислород непосредственно в кровь и удаляющими из нее углекислый газ. При этом легкие и все полости костей будут заполняться нейтральной несжимаемой жидкостью, а нервные дыхательные центры будут заторможены.

Сейчас еще трудно судить о том, как конкретно будут воплощаться в жизнь различные идеи освоения морских глубин. Несомненно одно — их освоение с каждым годом становится все интенсивнее.

Однако следует отметить, что, как правило, почти все существующие ныне или проектируемые за рубежом подводные камеры предназначаются не для мирных исследований, а для военных целей. Об этом говорит хотя бы тот факт, что почти все подводные камеры в капиталистических странах принадлежат военным ведомствам. Империалисты США и возглавляемых ими стран агрессивного блока НАТО при проектировании подводных камер преследуют лишь военные цели, и в первую очередь развитие подводных лодок и средств борьбы с ними.

Только в нашей стране, где интересы народа и правительства едины и направлены на мирный созидательный труд, освоение морских глубин производится во имя подлинной науки и на благо людей, строящих светлое будущее планеты — коммунизм.

Загрузка...