Промышленные системы управления непрерывно совершенствуются. Автоматизированные приборы различных типов: электронные, гидравлические, пневматические и современные системы с компьютерным управлением развиваются очень быстро, позволяя уменьшить количество персонала и себестоимость продукции, повысить безопасность, эффективность производства и улучшить контроль качества. Они используются для управления работой электродвигателей, осветительных приборов, роботов, аудиоустройств, нагревателей, конвейеров, станков, насосов, медицинского диагностического и терапевтического оборудования, а также координируют производство.
Например, каждый электродвигатель должен иметь устройство управления, будь то простой выключатель для пуска и остановки или сложная микропроцессорная система пошагового управления, для обеспечения широкого спектра функций энергосиловой машины: пуска и остановки, реверса, ускорения, замедления, торможения, выполнения операций с контролем времени. Средства управления так же важны для двигателя, как и питающая его электроэнергия.
В предыдущем разделе был дан обзор наиболее часто встречающихся типов электродвигателей и их ремонта. Цель настоящей главы в том, чтобы показать, как можно управлять электродвигателями и другими мощными устройствами. Рассмотрена основная теория промышленных устройств управления энергией, а также типы контроллеров, процедуры проверки и профилактическое техническое обслуживание.
Основные функции управления двигателем заключаются в том, чтобы обеспечить выполнение им определенных операций: пуска, остановки, защиты, последовательности операций, реверса, изменения скорости. Простейшее устройство управления двигателем — однополюсный переключатель, который руководит подачей тока, запуская и останавливая асинхронный индукционный двигатель с короткозамкнутым ротором (рис. 4.1).
Рис. 4.1. Однополюсный переключатель является простым средством управления двигателем
Кроме обеспечения защиты двигателя, устройство управления помогает защитить оператора. Плавкий предохранитель служит для защиты двигателя и оператора. Регулируемый трансформатор выполняет функции управления скоростью двигателя постоянного тока (рис. 4.2).
Рис. 4.2. Плавкий предохранитель и регулируемый трансформатор действуют как средство управления
Системы управления обычно бывают двух типов: замкнутые и разомкнутые. Например, когда вы разжигаете на улице костер, количество брошенных в огонь дров регулирует уровень тепла — это разомкнутая система. Если дровяная печь управляется заслонкой — это форма замкнутой системы. Действие обратной связи, приводящее к открытию или закрытию заслонки, обеспечивает лучшую регулировку, чем открытая система. Сложные системы коммерческого назначения работают по принципу замкнутых систем и используют термостаты, электродвигатели и вентиляторы, регуляторы и программируемые устройства для управления нагреванием. Работа многих устройств управления двигателями основана на принципах электромагнетизма. Если изолированный провод обмотать вокруг стального стержня и концы провода подключить к источнику постоянного тока, мы получим электромагнит (рис. 4.3). Изменение направления тока влияет на полярность стального стержня.
Рис. 4.3. Металлический стержень, вокруг которого намотан провод с протекающим по нему током, образует электромагнит
Проволочная катушка, подключенная к батарее, образует магнитный поток, который окружает катушку, как и в случае постоянного магнита (рис. 4.4). Этот магнитный поток является основой работы двигателя. Он создает механическое движение, которое обеспечивает выполнение и остановку операций.
Рис. 4.4. Магнитный поток окружает электромагнит
Типичным примером устройства управления двигателем является реле. Это электромагнитное устройство, которое используется для размыкания и замыкания цепей (рис. 4.5).
Рис. 4.5. Простое электрическое реле
Соленоид — это катушка реле, в которой используется описанный принцип для намагничивания металлического сердечника, притягивающего подвижный металлический пружинный контакт или иную часть исполнительного механизма.
Существуют сотни применений реле и соленоидов. В последнее время на смену электромеханическим реле приходят полупроводниковые.
Прерыватели представляют собой специальный тип реле, который часто применяется в качестве ручного выключателя. Они используются в быту, бизнесе и промышленности для защиты электрических цепей от чрезмерного тока и перегрузки. На рис. 4.6 показана упрощенная схема магнитной части прерывателя. Сильный ток заставляет магнит потянуть рычаг вниз, развести контакты реле и разорвать цепь.
Рис. 4.6. Простой прерыватель
Существует очень большое количество устройств управления для двигателей промышленного назначения и устройств включения-выключения питания. Каждое имеет свои специфические характеристики. Некоторые из наиболее популярных типов контроллеров следующие:
♦ устройства защиты от перегрузки;
♦ ручные пускатели;
♦ магнитные пускатели;
♦ реверсивные магнитные пускатели;
♦ контакторы освещения;
♦ кнопочные пульты;
♦ концевые выключатели;
♦ барабанные переключатели;
♦ таймеры;
♦ электронные приводы;
♦ программируемые контроллеры;
Устройства защиты от перегрузки
Большинство таких устройств управления двигателями, как ручной, магнитный или реверсивный пускатель, обладает некоторой степенью защиты от перегрузки. Один из приборов, служащих для этого — термореле перегрузки с легкоплавким сплавом (рис. 4.7). Когда при перегрузке возникает слишком большой ток, эвтектический (легкоплавкий) сплав в латунном сосуде переходит в жидкое состояние и более не может удерживать храповой механизм от проворачивания. При этом размыкаются контакты, подключенные к исполнительному реле. Когда сосуд охладится и сплав застынет, реле необходимо вручную установить в исходное положение. Многократные срабатывания и установка реле обычно не влияют на его калибровку. Различные типы таких реле включают медленные, стандартные и быстродействующие реле. Кроме того, более сложные термореле перегрузки с легкоплавким сплавом содержат изолированные контакты для подачи сигнала тревоги, которые позволяют использовать реле с пускателем для связи с компьютером, где требуется гальваническая развязка.
Рис. 4.7. Термореле перегрузки с плавящимся сплавом
Биметаллические термореле перегрузки работают на основе изгибающейся при нагревании биметаллической полосы, которая при этом размыкает контакты (рис. 4.8).
Рис. 4.8. Биметаллическое термореле перегрузки
Эти реле сбрасываются автоматически. Они работают подобно термостату. По мере снижения температуры пластина принимает первоначальную форму и реле сбрасывается. Прежде, чем работать с устройством, специалист по обслуживанию должен отключить питание. В противном случае устройство может после охлаждения включиться и причинить вред. Дополнительные приспособления включают режимы для работы при температуре окружающей среды, варианты без компенсации, контакты для подачи сигнала тревоги, полупроводниковые индикаторы. Параметры устройства должны соответствовать параметрам того прибора, с которым они работают. Многие двигатели содержат регулировочный винт. С его помощью можно установить точный уровень перегрузки, при которой срабатывает реле.
Электронные (полупроводниковые) средства защиты от перегрузки, например многоцелевые реле для двигателей постоянного тока становятся все более популярны (рис. 4.9).
Рис. 4.9. Многоцелевое электронное реле перегрузки и датчик тока
Когда достигается заданная величина тока, реле срабатывает. Возможны и ручная, и автоматическая операции сброса. Эти устройства защиты от перегрузки могут также подать сигнал тревоги и инициировать выполнение других функций, предотвращая повреждения системы управления.
Другой специальный тип полупроводниковых элементов автоматики — это электронное логически программируемое реле перегрузки, обеспечивающее программный контроль функций для двигателей и других устройств.
Еще один тип — магнитное реле перегрузки. Его работа основана на принципе электромагнетизма (рис. 4.10).
Рис. 4.10. Магнитное реле перегрузки
Если возникает чрезмерный ток, катушка втягивает сердечник, который размыкает контакты. Эти реле используются в блоках управления электрических двигателей, нагревателей, приборов освещения, аудиоустройств. Современные реле содержат функцию подавления помех, вызванных переходными процессами, логические картриджи, специальные защелки.
Ручные пускатели
Ручной пускатель переключается с помощью тумблера. Обычно он используется для включения или выключения маломощного двигателя в 1 л.с. или менее. Некоторые ручные однофазные пускатели обеспечивают защиту с помощью термореле, которое срабатывает при слишком большом токе. После срабатывания термореле необходимо дать ему время остыть перед тем, как его работоспособность будет восстановлена. Такие реле не обеспечивают защиту от пониженного напряжения. Кроме того, если возникает прерывание подачи питания, контакты переключателя могут остаться в замкнутом состоянии, и работа двигателя возобновится, как только будет подано питание.
Двигатель может внезапно включиться — это представляет определенную опасность для оператора. Другие типы ручных переключателей обеспечивают контроль реверса, двухскоростной режим, съемный ключ.
Ручные трехфазные переключатели можно встретить там, где защита от перегрузки не важна. Они функционируют при мощности до 10 л.с. и напряжении 380 В в небольших насосах, транспортерах, нагревателях, вентиляторах, электрических машинах. Как правило, им находится место в небольших машинах с раздельной защитой от перегрузки (рис. 4.11).
Рис. 4.11. Ручной пускатель двигателя без защиты от перегрузки
Некоторые ручные пускатели обладают возможностью блокировки при понижении напряжения с автоматическим запуском. Соленоиды длительного действия обесточиваются при прекращении подачи напряжения. Катушка реле должна быть сброшена вручную.
Другой тип ручных пускателей часто используется для управления однофазными двигателями до 5 л.с. и поляризованными двигателями до 10 л.с. Ручной линейный пускатель напряжения обеспечивает защиту от перегрузки с помощью термореле. После срабатывания и истечения интервала времени, достаточного для охлаждения, термореле требует сброса (рис. 4.12).
Рис. 4.12. Ручной пускатель для маломощных двигателей
Магнитные пускатели
Магнитные пускатели обычно используются для управления двигателями, трансформаторами и нагревательными приборами на расстоянии (рис. 4.13).
Рис. 4.13. Магнитный пускатель постоянного тока
Магнитный пускатель и магнитный контактор, по сути, представляют собой одно и то же. Оба обладают способностью работать с большими токами (рис. 4.14).
Рис. 4.14. Магнитный пускатель с защитой от перегрузки
Основное различие между этими двумя устройствами заключается в том, что у магнитного пускателя есть защита от перегрузки, а не имеющий ее контактор нуждается в дополнительном предохранительном средстве. Подобные устройства выпускаются в нескольких вариантах корпусов: пыленепроницаемых, антикоррозионных, водонепроницаемых, капленепроницаемых. Некоторые их них снабжены также полупроводниковыми схемами для защиты от обрыва фазы и перегрузки.
Основной принцип действия магнитного пускателя заключается в том, что когда ток подается в магнитную катушку, та втягивает якорь, который замыкает контакты стартера и запускает двигатель. Для предотвращения дребезга между магнитом и якорем из-за синусоидального изменения магнитного поля во времени добавляется экранирующая обмотка, помогающая изолировать якорь за счет смещения фазы магнитной катушки. Кроме того, в многослойной стали оставляется зазор, чтобы предотвратить насыщение якоря под действием остаточного намагничивания, имеющего место в катушке после отключения тока (рис. 4.15).
Рис. 4.15. Магнитный якорь и экранирующая обмотка
В дополнение к защите от перегрузки магнитный пускатель содержит блокировочное устройство, которое в нормальном состоянии открыто и удерживает катушку. Она может быть сломана после того, как пользователь отпустит кнопку выключателя.
Реверсивные магнитные пускатели
Реверсивный магнитный пускатель используется для управления двигателем, который может вращаться в прямом и обратном направлении. В действительности, это два взаимосвязанных контактора. Этот пускатель состоит из двух магнитных контакторов с выводами для двигателя Т1. Т2 и ТЗ. соединенными с L1, L2 и L3 на одном контакторе. Выводы Т1 и ТЗ на другом контакторе включены в обратном порядке (рис. 4.16).
Рис. 4.16. Реверсивный магнитный пускатель и его схема
Ни один из контакторов нельзя включить, если в это время подано питание на другой контактор. Это достигается за счет механического или электрического блокиратора. Если контакты, задающие движение вперед, замкнуты, механические и электрические блокираторы не позволят подать питание на контакты обратного вращения. Некоторые магнитные пускатели подключены к полупроводниковым устройствам, которые обеспечивают защиту от обрыва фазы, перегрузки вследствие воздействия температуры окружающей среды и недостаточной нагрузки. Кроме того, некоторые реверсивные контакторы состоят из двух механически и электрически связанных контакторов, которые расположены горизонтально или вертикально друг относительно друга. Эти контакторы могут быть разных типов: открытые, водонепроницаемые, в корпусе для работы в сложных условиях и могут выпускаться в вариантах для работы при питании 50 или 60 Гц.
Контакторы осветительных приборов
Существует много типов контакторов для осветительных приборов. Вот некоторые из них:
♦ многополюсные;
♦ программируемые:
♦ стандартные с заданным током.
Многие из них используют серебряно-кадмиево-оксидные контакты, которые выдерживают ток до 800 А. Большинство управляют работой ламп накаливания, балластными газоразрядными и другими осветительными приборами большой мощности (рис. 4.17).
Рис. 4.17. Контактор для осветительных приборов А-200
Некоторые предназначены для систем тревожной сигнализации, подъемников, светофоров, ирригационных систем, дверных замков. К большинству таких контакторов также имеется дополнительный набор, который содержит специальные обжимные контактные клеммы, подходящие для соединения и с медным, и с алюминиевым проводом.
Кнопочные выключатели и пульты
В управлении подачей питания используется несколько типов кнопок. Обычно, кнопочная станция снабжена двумя наборами контактов. Один в нормальном состоянии открыт, другой — закрыт. Это означает, что когда один набор замыкается, другой должен открыться, и наоборот. Кнопочные станции используются вместе с магнитными контроллерами. При этом они не обязательно должны быть расположены рядом с ними. Кнопки помогают функциями запуска, остановки, толчкового режима работы, реверса и т. д. Они предназначены также для использования в различных условиях и могут содержать световые индикаторы, ключи, висячие замки (рис. 4.18).
Рис. 4.18. Кнопочные выключатели и пульты
Концевые выключатели
Концевые выключатели, подобно кнопочным, обычно используются вместе с магнитными пускателями. Одним из основных различий между ними является то, что концевые выключатели часто используются для преобразования движения механических устройств в электрические управляющие сигналы (рис. 4.19).
Рис. 4.19. Концевые выключатели
Описываемые компоненты очень популярны и выполняют огромное количество управляющих операций. Они используются на производственных линиях для их остановки, запуска, увеличения и уменьшения скорости.
Концевые переключатели состоят из внутренних контактов, подвижной механической части и корпуса. Иногда концевые выключатели не заменяют, а ремонтируют. Внутренние контакты изнашиваются, и обычно приходится искать новые. Подвижная механическая часть, состоящая из консоли приводного механизма, рычага, плунжера или ролика, также со временем приходит в негодность или ломается.
Типы концевых выключателей:
♦ с толчковым движением;
♦ качающиеся;
♦ с проволочным потенциометрическим датчиком;
♦ рычажные;
♦ с пружинным возвратом;
♦ внутренние.
Многие из них залиты эпоксидной смолой для защиты от загрязнений и жидкостей.
Барабанные переключатели
Барабанные переключатели широко используются в промышленности. Они осуществляют коммутацию больших токов и обычно представляют собой трехполюсные переключатели с ручным управлением, которые используются для реверса однофазных и трехфазных двигателей. Некоторые барабанные переключатели имеют до 16-ти полюсов и 7-ми перекидных рычагов (рис. 4.20).
Рис. 4.20. Барабанный переключатель и внутреннее расположение его частей
Когда барабанный переключатель используется для управления трехфазным двигателем, необходимо поменять местами два или три вывода внутреннего переключателя. Это легко выполняется с помощью диаграммы соединений на корпусе переключателя. Типовые корпуса барабанных переключателей непроницаемы для воды и масла.
Таймеры
В операциях управления двигателями используется большое количество таймеров:
♦ интервальные:
♦ импульсные;
♦ процентные;
♦ циклические.
Пневматический таймер, показанный на рис. 4.21, представляет собой реле времени, которое срабатывает благодаря изгибу воздушной диафрагмы. Игольчатый клапан управляет натеканием обратного потока воздуха в частично откачанную камеру. Когда диафрагма возвращается в исходное положение с одинаковым давлением с обеих сторон, контакты срабатывают.
После этого схема включается или выключается в зависимости оттого, используются ли нормально разомкнутые или замкнутые контакты. Рабочий диапазон пневматических таймеров составляет от 1/20 с до 3 мин. Для защиты от пикового напряжения может использоваться ограничитель выбросов при переходных процессах. Многие пневматические таймеры заменяются полупроводниковыми, которые предоставляют возможность программируемого задания времени и функции счетчика.
Рис. 4.21. Пневматическое реле времени
Электронные приводы
Электронные приводы представляют собой промышленные системы управления, предназначенные для обеспечения регулирования скорости двигателей (рис. 4.22).
Рис. 4.22. Электронный привод для двигателей
Типичные функции электронных приводов:
♦ пуск/остановка;
♦ вперед/назад;
♦ непрерывный/прерывистый режим работы;
♦ автоматический/ручной и др.
Привод содержит микропроцессор с множеством заданных вариантов регулирования скорости, торможения, вращающего момента и действий при перегрузке. Обычно устройство снабжается цифровым дисплеем для индикации различных отклонений: чрезмерного тока, замыкания на землю, неадекватного напряжения, неверного выполнения функций и т. д.
Программируемые контроллеры
Программируемые контроллеры, которые часто называют также логическими, являются наиболее сложными приборами для управления двигателями и представляют специализированные компьютеры на основе микропроцессоров (рис. 4.23). До внедрения программируемых контроллеров для выполнения тех же функций использовалось огромное количество реле и переключателей.
Рис. 4.23. Программируемый контроллер
Программируемые контроллеры обеспечивают множество преимуществ: гибкое программирование, цифровой дисплей индикации отклонений от заданных режимов, возможность распечатки материалов, замки с ключом для обеспечения безопасности, возможность записи на магнитные носители. В последующих главах программируемые контроллеры будут рассмотрены более подробно.
Датчики
Использование датчиков в производственной сфере, и особенно непосредственно в производстве, резко возросло. Существующие типы датчиков:
♦ фотоэлектрические;
♦ с использованием термопары;
♦ кристаллические;
♦ расстояния;
♦ приборы технического зрения;
♦ сложные цифровые оптоволоконные;
♦ цифровые датчики давления;
♦ устройства чтения штриховых кодов;
♦ лазерные;
♦ цифровые видеомикроскопы.
Датчики имеют очень много применений: регистрация деталей на сборочных линиях, измерения натяжения ремня вентилятора в автомобиле, измерения размеров изделий в соответствии со стандартом качества, измерения неравномерности песчаной формы при литье, подсчет числа выводов полупроводниковых микросхем, измерение эксцентриситета вала, проверка точности паяных соединений, измерение отклонения формы автомобильной шины и даже проверки отсутствия жевательной резинки в упаковке на производственной линии.
Одним из наиболее распространенных является оптоволоконный датчик, который со временем, кажется, становится более популярным, чем фотоэлектрический. Основное действие прибора заключается в движении светового луча по материалу с высоким показателем преломления, который называется сердечником, заключенному в материал с низким показателем преломления, называемый оболочкой. Изменение расстояния при измерении сенсором связано с длиной волокна. Правильная установка и выравнивание передатчика и приемника очень важны для эффективной работы прибора. Обычно датчики снабжены средствами настройки. Регулировка чувствительности может компенсировать неудобства места размещения и внешнее освещение.
Обычно при поиске неисправностей управляющих схем двигателей используется замена устройств управления, внутренних деталей, измерение тока, напряжения и сопротивления.
Различные переключатели можно проверить с помощью омметра. Переключатель должен обеспечивать непрерывность цепи в одном положении и разрыв цепи в другом. Непрерывность или бесконечное сопротивление в обоих положениях переключателя означает, что переключатель неисправен. Если термореле перегрузки не сбрасывается или продолжает работать при нормальном токе. Реле, возможно, следует заменить. Прежде всего, имейте в виду, что мог иметь место неправильный выбор термореле. Кроме того, само термореле может быть исправно и правильно выбрано, но внутри реле сломаны детали.
Реле можно также проверить с помощью омметра. Начните с визуального контроля. Проверьте, нет ли обгоревших контактов или обуглившихся катушек. Если вы вручную замкнете реле, омметр должен показывать или непрерывность или обрыв, в зависимости от того, замкнуты или разомкнуты контакты данного реле в нормальном состоянии. Омметр должен показывать непрерывность в одном направлении и обрыв в другом. Кроме того, следует проверить общее сопротивление обмотки. В зависимости от размера катушки ее сопротивление не должно быть нулевым. 0 Ом означает, что произошло короткое замыкание. Бесконечное сопротивление означает, что произошел обрыв. Аналогично, если при подаче питания на катушку, она не втягивает якорь, то, вероятно, произошел обрыв.
Ручные и магнитные пускатели можно легко проверить с помощью осмотра контактов (рис. 4.24).
Рис. 4.24. Магнитный пускатель о разобранном виде
Если вы видите грязь, деформацию, заметили, что компоненты стали пористыми, их следует заменить. Большинство контактов можно очистить доступными растворителями и восстановить с помощью напильника.
Никогда не обрабатывайте напильником серебряные контакты!
Грязные, клейкие пускатели, катушки и другие приборы следует поместить в более подходящий корпус. Хотя для очистки контрольно-измерительного оборудования иногда используется горячая мыльная вода, авторы не рекомендуют подобный метод. Есть много очень хороших очищающих растворителей, которые больше подходят для этой цели.
Если термореле перегрузки срабатывает при нормальном токе или не сбрасывается после срабатывания, его необходимо заменить. Кроме того, убедитесь, что внутри реле перегрузки нет сломанных деталей. Это тоже может вызывать подобную неисправность.
Проверьте также пускатель на слабые соединения и на наличие механических повреждений. Замените сломанные провода или контакты компонентами того же типа. Помните, что если контактор или магнитный пускатель располагается слишком далеко от контрольно-измерительного прибора, то это может увеличить импеданс управляющей схемы и отрицательно отразиться на функциональных характеристиках пускателя. Поэтому лучше, чтобы расстояние между контакторами и приборами было минимально.
Когда вы ищете неисправности реле перегрузки, проверьте, отпускает ли катушка контакты. Уточните температуру окружающей среды. Может быть, необходимо заменить катушку большей. Никогда не воспринимайте что-либо как само собой разумеющееся. Другие факторы, которые следует учесть, если катушка продолжает работать при перегрузке:
♦ показатель уровня обслуживания двигателя;
♦ толчковый режим работы при включении;
♦ длительное время разгона;
♦ перегрузка двигателя;
♦ пониженная частота вращения.
Любой их этих факторов может заставить двигатель потреблять больший ток. чем при нормальном режиме работы для заданной мощности.
Проверьте, держатся ли контакты при срабатывании. Отрицательный результат может означать слишком низкое напряжение. Если контакты быстро изнашиваются, проблема может заключаться в коротком замыкании, низком напряжении, плохих контактах, наличии посторонних объектов или аномальном выбросе напряжения. Имейте в виду возможность неправильного использования пускателя оператором! Чрезмерное усилие при пользовании быстро изнашивает контакты. Если при тестировании не обнаружено никаких неисправностей схемы или питания, проверьте еще раз и подтяните механические соединения, замените контакты и пружины. Контакты продолжают быстро изнашиваться? Тогда, может быть, следует выбрать более мощный пускатель.
Обычными проблемами при проверке магнитных пускателей оказываются грязные и липкие детали, изношенные и слабые контакты, неисправные средства защиты от температурной перегрузки, поврежденные или изношенные механические части и т. д.
Например, если магнитная катушка не втягивает якорь, это может быть следствием неисправности катушки, использования несоответствующей катушки, низкого напряжения, неполной схемы управления, нарушения непрерывности соединений или каких-то механических поломок.
С другой стороны, когда магнитная катушка перегревается, проверьте ее на наличие соответствующего напряжения и тока. Причиной может быть неподходящая катушка или оператор неправильно пользуется пускателем.
Если катушка не отпускает якорь, проверьте ее расположение и убедитесь в отсутствии в пускателе загрязнения или смолы, несоответствующих напряжений или токов, спекшихся контактов или механических повреждений. Шум при работе магнитного пускателя может быть связан с поломкой экранирующей катушки, низким напряжением или любым видом загрязнения или коррозии.
Когда при срабатывании магнитного пускателя начинают возникать перегрузки, проверьте на возможное короткое замыкание или замыкание на землю. Может быть, необходимо заменить средства защиты от перегрузки.
Если возникает дребезг контактов, проверьте на низкое напряжение или неисправные контакты. Любой вариант неправильного использования пускателя оператором или загрязнения в рабочей области могут вызвать преждевременную его поломку.
Типичными проблемами пневматических таймеров являются нестабильная выдержка времени и несрабатывание контактов. Проверьте рабочий механизм на наличие посторонних объектов, которые могут задерживать таймер. Проверьте настройку привода для корректировки синхронизации. В других случаях можно заменить головку таймера, переключатель или катушку. На рис. 4.25 показан типичный трехфазный двигатель 240 В со схемой управления 120 В (низкого напряжения).
Рис. 4.25. Схема управления трехфазного двигателя
Здесь трансформатор с плавким предохранителем обеспечивает низкое напряжение для более безопасной работы. Если двигатель не реагирует на нажатие кнопки запуска, сначала проверьте, что реле перегрузки сброшено. Если реле установлено, проверьте плавкий предохранитель трансформатора на целостность. Проверьте каждый предохранитель в блоке прерывателей, устройства контроля перегрузки, главную панель.
Если найден сгоревший предохранитель, рекомендуется определить причину происшествия. Для этого проверьте двигатель на замыкание на землю, короткое замыкание, плохие контакты, возможное попадание внешних объектов и загрязнение. Проверьте средства управления двигателем на слабые контакты и наличие перегрева катушек.
Когда двигатель не активируется при нажатии кнопки запуска, вручную толкните якорь магнитного устройства. В случае положительного исхода, проверьте целостность кнопочного пульта, плавкого предохранителя линии передачи, магнитную катушку, контакты, провода к линии передачи магнитного устройства управления и т. д. Проблема должна заключаться в неисправном компоненте или слабом контакте. Разделите и протестируйте каждый каскад цепи для определения первопричины поломки.
Сгоревший плавкий предохранитель, замените другим с таким же номиналом. При необходимости используйте компонент с меньшим номиналом, но никогда не следует устанавливать с большим.
Двигатель запускается, но не останавливается при нажатии кнопки остановки, ищите дефектный, неправильно или плохо припаянный провод, ведущий к переключателю. Проверьте кнопочный пульт. Может быть, контакт кнопки заржавел или изношен, что не позволяет ему правильно функционировать. Проверьте все провода на возможные дефекты и целостность.
Если двигатель работает с меньшей, чем нужно, скоростью, или гудит, но не вращается, проверьте фазы на наличие обрыва в одной из них. Начните с измерения напряжения в каждой фазе двигателя. После того как вы определили место, где возник обрыв, пройдите по схеме, отслеживая напряжение до места, где напряжение нормальное. Слабое соединение или сломанный провод могут быть причиной такой проблемы.
Все фазы имеют правильное напряжение? Тогда проверьте двигатель на замыкание на землю и короткое замыкание с помощью мегомметра. Короткозамкнутый двигатель может вести себя так же, как и в случае с обрывом в одной из фаз.
Если оператор жалуется на шумную работу двигателя, попробуйте изолировать причину явления, выяснив, вызвана ли она двигателем или пускателем.
Щелчки или гул в пускателе могут означать сломанную экранирующую катушку, грязные или изношенные контакты, испачканные органы управления, механически изношенный или неправильно расположенный якорь, низкое напряжение. Когда шум исходит из двигателя, это может означать, что подшипники истратили ресурс, изогнут вал, и приводить к чрезмерной вибрации вследствие ослабленного крепления основания двигателя.
Энергосиловая машина продолжает вызывать отключение магнитного устройства защиты от перегрузки? Измерьте ток на выводах двигателя, для того чтобы проверить, не чрезмерен ли поток заряженных частиц. Может быть, двигатель закорочен, или срабатывание защиты от перегрузки может вызываться частичным закорачиванием или замыканием на землю. Еще одна причина — слабые контакты.
Не упускайте из вида очевидное. Излишняя влага, грязь, тепло, коррозия и другие загрязнители могут вызывать отключение по перегрузке или сгорание предохранителей.
Если встречаются расплавленные контакты, эго может быть вызвано несколькими причинами: аномальным током, постоянно низким напряжением, слишком быстрым толчковым режимом работы, загрязнением контактов.
Начните с проверки контактов на наличие загрязнителей. Прочистите их при необходимости, используя очищающие растворители. Несоответствующие напряжения могут возникать при замыкании на землю, коротком замыкании, перегрузке. Вы можете заменить контакты, пружины, якорь. Возможно, придется заменить весь контактор.
Другие факторы могут вызвать нагрев и проблемы с двигателем, в том числе постоянный толчковый режим работы (повторяющиеся запуск и остановка) и торможение противотоком (быстрая остановка двигателя при мгновенном включении его в другом направлении). Неправильные действия оператора также являются фактором, который следует принимать во внимание.
Если двигатель не работает и возникает подозрение в неисправности трансформатора, можно использовать различные методы его диагностики: визуально проверить на наличие обугленной, сгоревшей изоляции или обмоток. Закороченный трансформатор будет горячим на ощупь и издавать неприятный запах.
Обмотки можно проверить с помощью омметра, нулевое сопротивление может означать короткое замыкание. Обрыв в обмотках будет давать бесконечную величину сопротивления. Для проверки характеристик трансформатора можно также использовать вольтметр. Если регистрируется правильное напряжение на первичной обмотке, а на вторичной — неправильное, то в трансформаторе, возможно, произошел обрыв. Убедитесь, что выводы трансформатора не ослаблены. Этот фактор также может означать обрыв.
Типичными неисправностями электронных приводов и контроллеров с программируемой логикой являются ошибки в обмотках, проблемы с линией питания, неисправности двигателя и механики, контроллеров. Пошаговые процедуры поиска дефектов описаны в сервисной документации производителей. При этом используются осциллографы, логические импульсные пробники и индикаторы, цифровые ампервольтомметры и т. д. (рис. 4.26).
Рис. 4.26. Использование логического пробника и индикатора тока для поиска неисправностей программируемого контроллера
Начните с тщательной проверки всех проводов и соединений. Убедитесь в правильности напряжения питания, исправности проводников, средств защиты от перегрузки, соблюдении требований к изолирующему трансформатору.
Проверьте двигатель. Помните о стандартных неполадках проводки, замыкании на землю, обрыве, коротком замыкании, неправильной установке.
Никогда не используйте мегомметр для проверки двигателя, если он подключен к контроллеру, это может привести к повреждению. Всегда имейте в виду очевидные механические проблемы: защемления, чужеродные объекты, разломы и др.
Обычный термин, связанный с обслуживанием программируемых контроллеров, это ошибка периферийного устройства. Периферийными устройствами называются все внешние приборы и оборудование, подключенное к контроллеру: реле, переключатели, кнопки, провода.
Операторы сразу обвиняют контроллер, в то время, как неисправность чаще всего связана с периферийным устройством, потому как если не сработает любое из них, то не сработает и контроллер. Кроме того, вибрация, интенсивные переходные процессы, дребезг и нагрев могут привести к ложному срабатыванию контроллера, что потребует перепрограммирования.
Например, если двигатель привода не запускается, проверьте разъединители и плавкие предохранители, чтобы убедиться в правильности напряжения сети. Протестируйте катушку торможения, соленоиды, фиксаторы, диодные или выпрямительные сборки, термореле, внешние устройства защиты от перегрузки и автоматические выключатели.
Если реле или автоматический выключатель необходимо сбросить, то прежде чем это сделать, проверьте двигатель на короткое замыкание и замыкание на землю. Измерения выходных сигналов контроллера часто выполняются с помощью цифровых омметров с зажимами, цифровых ампервольтомметров, ручных тахометров, осциллографов. Поиск неисправностей программируемых логических контроллеров и связанных с ними устройств будет рассмотрен в следующих главах.
Общепризнанно, что срок службы устройств управления двигателем зависит от типа технического обслуживания и условий работы. Грязные, липкие устройства нужно очистить жесткой щеткой и растворителем. Если управляющее оборудование необходимо подвергнуть воздействию воды, после этого его обязательно следует высушить перед началом использования. Для подтверждения правильной изоляции катушек проверяйте их с помощью омметра или мегомметра.
Контроллеры необходимо периодически проверять на наличие изношенных частей, слабых соединений, недостаточно упругих пружин. Грязные, подвергшиеся коррозии медные или покрытые кадмием контакты рекомендуется чистить и обтачивать для сохранения надлежащей формы. Серебряные контакты не следует обрабатывать напильником. Нарушения формы или цвета обычно не препятствуют работе.
Для предотвращения поломок вследствие чрезмерного трения может понадобиться смазка двигателей и устройств управления. Однако обычно пускатели не смазывают, поскольку на смазке скапливается пыль и другие загрязнители, которые вызывают износ устройства. Большинство двигателей требуют периодической очистки, смазывания или замены подшипников.
Большинство кожухов для водяного охлаждения необходимо периодически промывать и заменять для предотвращения образования коррозии. Кроме того, должен обеспечиваться соответствующий уровень масла, также необходимо постоянно проверять давление масла или воздуха для выявления возможных утечек.
Здравый рассудок и небольшой уход помогут предотвратить многие отказы и поломки устройств управления. Следите за тем, чтобы защитные детали были надежно закреплены, не допускайте изнашивания ремней, органов управления, потрескавшихся, обугленных или хрупких проводов. Такие провода необходимо заменить.
Если нельзя заменить весь провод, можно нарастить новую секцию. При замене используйте точно такой же провод и убедитесь, что электрические и механические соединения надежны. Выполните пайку или используйте соединительные клеммы. Наконец, убедитесь, что соединения хорошо изолированы специальной лентой или проходными изоляторами.
Электронные приводы и программируемые контроллеры, хотя и являются износостойкими устройствами, чувствительны к температуре, влажности, химикатам, влаге, другим неблагоприятным влияниям окружающей среды. Регулярно проводите техническое обслуживание каждого устройства в соответствии с руководствами изготовителей.
Выберите наилучший ответ:
1. Изменение направления тока в катушке:
а) не меняет полярности магнита
б) разрушает катушку,
в) изменяет полярность;
г) ничего из перечисленного.
2. Простейший вид устройства управления двигателя:
а) тумблер;
б) магнитный переключатель;
в) барабанный переключатель;
г) реле.
3. Иное название магнитного пускателя:
а) ручной переключатель;
б) контактор;
в) ручной пускатель;
г) магнитное устройство управления.
4. Какой тип устройства защиты от перегрузки содержит специальный сосуд:
а) с плавящимся сплавом;
б) биметаллический;
в) магнитный;
г) плавкий предохранитель.
5. Какой тип устройства защиты от перегрузки использует принцип электромагнетизма:
а) с плавящимся сплавом;
б) биметаллический;
в) магнитный;
г) плавкий предохранитель.
6. Обнаружено, что сгорел плавкий предохранитель, но на замену нет такого предохранителя, а есть предохранители 10 и 3 °Cледует использовать:
а) плавкий предохранитель 10 А;
б) плавкий предохранитель 30 А;
в) любой из перечисленных;
г) плавкий предохранитель 40 А.
7. Низкое напряжение часто приводит к тому, что устройство управления:
а) засоряется;
б) работает более эффективно;
в) щелкает;
г) ничего из перечисленного.
8. Быстрая остановка двигателя с помощью мгновенного включения двигателя в обратном направлении называется:
а) толчковое движение;
б) медленное вращение;
в) торможение;
г) последовательная работа.
9. Горячий, дымящийся трансформатор означает:
а) обрыв в схеме;
б) короткое замыкание;
в) оба: «а» и «б»;
г) ничего из перечисленного.
10. Короткозамкнутый двигатель вызывает:
а) малый ток;
б) большой ток;
в) оба: «а» и «б»;
г) ничего из перечисленного;
11. Ручной трехфазный пускатель иногда используется для включения и выключения двигателя до:
а) 5 л.с.;
б) 10 л.с.;
в) 15л.с.;
г) 20 л.с.
12. Прибор, который используется для управления двигателем на расстоянии, называется:
а) магнитный пускатель;
б) барабанный переключатель;
в) выключатель мгновенного действия.
13. Какое из перечисленных понятий является характерным для таймера:
а) интервал;
б) импульс;
в) процент;
г) все перечисленные.
14. Прибор, который контролирует поток воздуха обратно в камеру пневматического реле времени, это:
а) диафрагма;
б) игольчатый клапан;
в) экранирующая катушка;
г) все перечисленное.
15. Если двигатель работает, но не останавливается, проблема может заключаться в следующем:
а) сгорел предохранитель;
б) возникло замыкание в держателе;
в) произошла перегрузка вследствие слишком частого толчкового режима и торможения противотоком;
г) ничего из перечисленного.
16. Если двигатель работает с недостаточной скоростью или не работает и гудит, что нужно искать в магнитном пускателе?
а) обрыв фазы;
б) сварившиеся между собой элементы подвижной части;
в) оба: «а» и «б»;
г) ничего из перечисленного.
17. Повторяющийся пуск и остановка двигателя называется:
а) шаговый режим;
б) толчковый режим;
в) фазирование;
г) большое время разгона.
18. Щелчки или гул в магнитном контакторе может быть связан с тем, что:
а) сломана экранирующая катушка;
б) контакты грязные или изношенные;
в) оба: «а» и «б»;
г) ничего из перечисленного.
19. Какие из следующих контактов не следует обрабатывать напильником:
а) покрытые кадмием;
б) покрытые серебром;
в) оба: «а» и «б»;
г) ничего из перечисленного.
20. Увеличение нагрева двигателя может быть вызвано:
а) длительным толчковым режимом;
б) повторным включением;
в) повторяющимся торможением;
г) обоими «а» и «б»;
д) ничего из перечисленного.
21. Системы управления бывают двух типов: с замкнутым контуром и:
а) одним контуром;
б) двумя контурами;
в) разомкнутым контуром;
г) управляющим контуром.
22. Прежде чем обсуживать двигатель или устройство промышленного назначения, специалист по поиску неисправностей должен:
а) отключить питание;
б) проверить проводку;
в) провести обслуживание контроллера;
г) заменить предохранитель.
23. Концевой выключатель состоит из трех частей:
а) контакты, рычаг, подшипник;
б) привод, переключатель, магнит;
в) привод, барабан, таймер:
г) контакты, подвижная механическая часть и корпус.
24. Барабанный переключатель может содержать до:
а) 3 полюсов;
б) б полюсов;
в) 8 полюсов;
г) 16 полюсов.
25. ПЛК называют:
а) схему логической обработки;
б) устройство управления с программируемой логикой;
в) контроллер логической обработки;
г) схему с программируемой логикой.
26. Одной из наиболее типичных проблем программируемых устройств управления являются:
а) ошибки соединений;
б) неисправности в линии питания;
в) неправильная работа двигателя;
г) все перечисленное.
27. Никогда не следует проверять двигатель, соединенный с программируемым устройством управления с помощью:
а) мегомметра;
б) омметра;
в) тахометра;
г) осциллографа.
28. Ручной тестовый инструмент для проверки выходных сигналов контролера это:
а) амперметр с зажимами;
б) мегомметр;
в) тахометр:
г) осциллограф.
29. Если реле перегрузки программируемого устройства управления размыкается, то рекомендуется проверить двигатель на:
а) замыкание на землю.
б) обрыв;
в) короткое замыкание;
г) все перечисленное.
30. Обычно для обслуживания большинства программируемых контроллеров изготовитель поставляет:
а) устройство управления для замены;
б) тестовые инструменты;
в) руководство по поиску неисправностей;
г) ничего из перечисленного.
1. Перечислите основные функции устройства управления двигателем.
2. Расскажите об основах теории прерывателя цепи.
3. Что такое тумблер?
4. Каковы преимущества магнитного пускателя по сравнению с ручным пускателем?
5. Опишите характеристики магнитного пускателя.
6. Что такое концевой выключатель?
7. Расскажите о теории работы термореле перегрузки на основе плавящегося сплава.
8. Расскажите о теории работы биметаллического термореле перегрузки.
9. Расскажите о теории работы магнитного реле перегрузки.
10. Что такое пневматический таймер?
11. Как проверять реле?
12. Перечислите различные методы проверки трансформатора.
13. Какова правильная техника чистки катушек?
14. Какова может быть неисправность двигателя, который вращается с половинной скоростью?
15. Перечислите различные типы шума от двигателя и устройства управления двигателем. Каковы причины шума?
16. Что такое экранирующая катушка?
17. Дайте определение термина «толчковый режим».
18. Дайте определение термина «торможение противотоком».
19. Почему при операциях управления двигателем часто используется низкое управляющее напряжение?
20. Расскажите о техническом обслуживании и сервисе управляющих контактов двигателя.
21. Что такое электронный привод?
22. Что такое программируемое устройство управления?
23. Перечислите функции электронного привода.
24. Перечислите различные дефекты, которые индицируются на цифровом дисплее электронного привода.
25. Перечислите различные характеристики программируемого устройства управления.
26. Расскажите о типичных неисправностях программируемых устройств управления.
27. Почему специалист по поиску неисправностей никогда не должен использовать мегомметр для проверки двигателя, если он соединен с программируемым устройством управления?
28. Перечислите типичные тестовые инструменты для проверки программируемых устройств управления.
29. Перечислите типичные проблемы, связанные с электронными приводами и программируемыми устройствами управления.
30. Что следует проверить с помощью приборов, если электродвигатель с электронным приводом не запускается?