В 1826 году физик Феликс Савар делал опыты с намагничиванием стальных швейных иголок при электрических разрядах. Но иголки почему-то вели себя странно, проявляя непонятное непостоянство.
Предшественники Савара много раз производили подобные опыты. Но, намагничивая иголки, эти ученые не интересовались, где у иголок получается северный полюс, а где — южный. Намагнитились, и ладно! Савар же хотел найти способ намагничивать иглы так, чтобы их концы принимали заранее заданную полярность.
Савар намотал на картонную трубку несколько десятков витков медной проволоки, приготовил большую лейденскую банку и запасся иголками. Одну иголку он положил внутрь катушки, запомнив, что острие иголки высовывается с левой стороны.
Затем ученый зарядил от своей электрической машины лейденскую банку и записал: «Внешняя обкладка лейденской банки приобрела положительный заряд, а внутренняя — отрицательный».
Протягивая проводники от катушки к лейденской банке, Савар также отметил в своем журнале, что провод от левого конца катушки (из которого выглядывало острие иголки) будет присоединен к обкладке с положительным зарядом.
«Теперь, — рассуждал Савар, — когда лейденская банка разрядится через катушку, я буду знать, как сказалось расположение зарядов в лейденской банке на расположении полюсов намагнитившейся иголки».
Закончив все приготовления, он поднес провода к лейденской банке. Сверкнула искра. Лейденская банка разрядилась. Иголка намагнитилась: острый конец стал северным полюсом, ушко — южным.
«Следовательно, — сделал вывод Савар, — положительный заряд создает северный полюс магнита, а отрицательный — южный. Но для проверки опыт надо повторить».
Савар проделал все в прежнем порядке: внешней обкладке лейденской банки сообщил положительный заряд, а иголку вложил в катушку так, чтобы ее острие торчало слева, и присоединил провода к лейденской банке. Сверкнула искра, иголка намагнитилась, но теперь острие стало южным полюсом, а ушко — северным.
Физик заподозрил какую-то ошибку и начал опыт с третьей иголкой. Он снова сделал все в точности так, как и в первый раз, присоединил провода к лейденской банке, и… острие стало северным полюсом.
Ученый повторял опыт множество раз. Условия опыта были одинаковы, а результат менялся совершенно беспорядочно.
Савар менял заряды на обкладках лейденской банки, менял местами, концы проводников, вкладывал иголки справа и слева, заменял иголки кусочками стальной проволоки, словом, испробовал все, но иголки намагничивались, как им «хотелось», и научный опыт превращался в нелепую игру. Только замена лейденской банки батареей делала иголки совершенно послушными.
К опыту с упрямой иголкой Савар возвращался несколько раз. Он старался разгадать, почему иголки под действием электрического разряда лейденской банки намагничиваются то так, то иначе, а под действием тока от батареи разнобоя не получается. Пропуская по катушке ток от батареи, всегда можно наперед сказать, как намагнитится любой конец иглы. Значит, разряд лейденской банки чем-то отличается от разряда батареи, но чем — тогда было неизвестно.
Разгадка странного явления была найдена много лет спустя, лишь во второй половине XIX столетия.
В любом современном радиоприемнике можно найти проволочную катушку, соединенную с конденсатором, то есть тот самый прибор, с помощью которого Савар намагничивал иголки разрядом лейденской банки. Оказывается, что пользуясь приемником, мы слышим радиопередачу в силу той самой причины, какая мешала Савару выполнить задуманное им исследование.
Электрические явления, совершающиеся в катушке, которая присоединена к конденсатору, весьма своеобразны.
Отрицательно заряженная обкладка конденсатора представляет собой как бы вокзальный зал ожидания, в котором толпятся вечные странники — электроны, ожидающие, когда им разрешат отправиться в путь.
Положительный заряд противоположной пластины конденсатора притягивает к себе электроны, но попасть туда они не могут — мешает перегородка-диэлектрик, и они скучиваются у ее поверхности.
Но вот к обкладкам конденсатора присоединила концы проводников от проволочной катушки. Для электронов образовался проход в другую обкладку. В проводе, который намотан на катушку, возникло электрическое поле. Оно привело в движение все электроны, находившиеся в катушке. Они сорвались с места и устремились в катушку.
И вот тут-то происходит нечто неожиданное, пробег по виткам катушки для электронов оказывается далеко не таким простым делом, как этого можно было ожидать.
В тот момент, когда конденсатор начинает разряжаться, электрический ток в катушке возникает не сразу, не мгновенно. Ему мешает самоиндукция. Току приходится преодолевать ее сопротивление, и он нарастает постепенно, словно берет разбег.
Достигнув наибольшей силы, ток начинает ослабевать. «Передовые отряды» электронов добрались до противоположной обкладки конденсатора, заряды обеих пластин выравнялись и, казалось бы, на этом разряд должен оборваться. Но нет! Тут опять вмешивается самоиндукция. Магнитное поле катушки вместе с током достигает наибольшей напряженности, и оно не может исчезнуть внезапно и бесследно.
Ослабевая вместе с током, магнитное поле создает вдоль проволоки электрическое поле, которое продолжает гнать электроны в уже зарядившуюся обкладку. Ток, постепенно возраставший, и ослабевает тоже постепенно, заставляя электроны в избытке скапливаться на той обкладке, которая раньше была заряжена положительно.
Конденсатор не просто разряжается, а перезаряжается. Положительно заряженная обкладка становится отрицательной, отрицательно заряженная — положительной; в конденсаторе вновь образуется электрическое поле обратного направления.
Разряд утихает, но только на одно мгновение. Электроны, увлекаемые электрическим полем уже в обратном направлении, опять устремляются через катушку в положительно заряженную обкладку, и все происходит в прежнем порядке. Самоиндукция сначала тормозит бег электронов, потом ускоряет его и загоняет их в другую обкладку. Обкладки снова меняются знаками, а затем все начинается сначала. Электроны носятся взад и вперед, от одной обкладки конденсатора до другой, как на качелях (рис. 52).
Рис. 52. Самоиндукция катушки загоняет электроны поочередно то в одну обкладку конденсатора, то в другую — получается колебательный разряд.
Катушка, присоединенная к конденсатору, поддерживающая своим магнитным полем это колебательное движение, получила название катушки самоиндукции.
Теперь должно быть понятно, почему Савару не удавалось намагничивать иголки так, как он рассчитывал. Электроны, пробегая в одном направлении, намагничивали иголку, а пробегая обратно — перемагничивали ее. Угадать, в каком направлении они пробегут в последний раз, перед разрывом цепи в искровом промежутке, невозможно.
Разряд конденсатора не создает тока, текущего в одном направлении, как от гальванической батареи. В этом случае возникает колебательный разряд, в котором электроны быстро меняют направление своего движения, то есть образуют не постоянный, а переменный ток, который постепенно угасает, вследствие сопротивления проводника.
Прибор, состоящий из конденсатора и катушки самоиндукции, называется колебательным контуром (рис. 53).
Рис. 53. Колебательный контур, составленный из катушки самоиндукции и конденсатора переменной емкости; рядом условное обозначение контура.
Колебательный контур представляет собой не что иное, как электрический маятник. Каждый маятник совершает определенное число качаний в секунду.
Частота качаний маятника зависит от его длины. Чем короче маятник, тем быстрее он качается.
Электрические колебания в контуре тоже совершаются со своей определенной частотой, которая зависит от величины самоиндукции катушки и емкости конденсатора, составляющих колебательный контур. Чем меньше самоиндукция катушки и чем меньше емкость конденсатора, тем быстрее протекает его перезарядка и тем больше частота колебаний тока в катушке.
Значит, для возбуждения очень быстрых, вернее, частых электрических колебаний следует иметь маленький конденсатор и небольшую катушку из 1–2 витков проволоки.
На заре радиотехники, когда в приемных и передающих радиостанциях использовались сравнительно медленные (редкие) колебания, приходилось применять огромные катушки и «пудовые» конденсаторы. Такие «первобытные» приемники весили по 16–20 килограммов.
Изменяя длину маятника, можно изменить частоту (период) его качаний; в этом нетрудно убедиться — стоит удлинить маятник часов-ходиков, он начнет качаться реже, а часы будут отставать.
Точно так же, изменяя самоиндукцию катушки или емкость конденсатора, можно по желанию увеличивать и уменьшать частоту колебаний в контуре, то есть настраивать его на ту частоту, какая нужна.
Чтобы привести маятник в движение, не требуется большого усилия, достаточно толкнуть его, и он начнет качаться. Но заставить маятник совершать вынужденные колебания, то есть раскачиваться чаще или реже, чем ему свойственно, весьма трудно. В этом случае приходится раскачивать его, не выпуская из рук.
И электрический маятник тоже легко воспринимает колебания, происходящие с его собственной частотой, но остается почти нечувствителен ко всем остальным колебаниям.
Колебания обычного маятника, если его не подталкивать, постепенно затихают, потому что энергия, полученная от толчка, расходуется на преодоление сопротивления воздуха и на трение в точке подвеса.
И в электрическом маятнике колебания затухают, потому что электронам приходится преодолевать сопротивление проводника. Но, кроме того, в колебательном контуре есть еще одна важная статья расхода энергии: излучение — создание в окружающем пространстве меняющихся электрического и магнитного полей — так называемых электромагнитных волн, бегущих от колебательного контура во все стороны и уносящих энергию его колебаний.
Сопротивление проводников и потери энергии на излучение приводят к тому, что электрические колебания в контуре быстро прекращаются.
Именно за счет энергии, тратящейся на излучение, осуществляется передача радиосигналов.
Электромагнитные волны, встречая на своем пути проводники, вызывают в них движение электронов. С этого начинается прием сигналов — радиоприем.
В приемнике потери энергии на излучение вредны, поэтому конструкторы делают катушки самоиндукции и конденсаторы так, чтобы эти потери были наименьшими.
Зато в передатчике радиоволн нужен колебательный контур, который должен как можно больше излучать энергии — создавать мощные электромагнитные волны. Ведь главная задача передатчика — это посылать энергию приемникам. Поэтому и устройство передающего контура должно отличаться от устройства приемного контура.
Заряд образует вокруг себя электрическое поле; движущийся заряд создает кроме того еще и магнитное поле.
Электроны, колеблющиеся в контуре, порождают одновременно и электрическое и магнитное поля. Эти поля зависят друг от друга. Они неразрывно связаны друг с другом. Поэтому их обычно объединяют под одним названием: электромагнитное поле.
В контуре, состоящем из обыкновенного конденсатора и катушки, оба поля почти полностью заключены в промежутке между обкладками конденсатора и внутри катушки. Во внешнее пространство они почти не распространяются. Такой контур подобен фонарю, у которого светильник заслонен со всех сторон крышками. Его излучение ничтожно мало. Чтобы фонарь стал светить, а контур излучать, — их надо раскрыть: раздвинуть и развести в стороны обкладки конденсатора, заменить катушку длинным и прямым проводником.
Вокруг открытого контура образуется электромагнитное поле, которое распространяется во все стороны и, постепенно ослабевая, уходит в бесконечность (рис. 54).
Рис. 54. Три вида колебательных контуров: закрытый, полуоткрытый и открытый, иначе называемый антенной.
Когда рыба клюет и подергивает поплавок, от поплавка по поверхности воды концентрическими кругами разбегаются волны; когда колеблются стенки колокола или ножки камертона, от них в воздухе во все стороны распространяются звуковые волны. Точно также каждое колебание в контуре вызывает соответствующие колебания (волны) в электромагнитном поле. Однако надо помнить, что эти электромагнитные волны представляют собой колебания не частиц какого-то вещества, — воды или воздуха, а колебания самого электромагнитного поля. Поэтому они могут распространяться не только в воздухе, но и в безвоздушном пространстве. Скорость их распространения много больше скорости распространения волн на поверхности воды и звуковых волн. Радиоволны распространяются со скоростью света, то есть около 300 000 километров в секунду.
Различные виды электромагнитных колебаний отличаются друг от друга своей частотой, то есть числом колебаний в секунду. От числа колебаний в секунду зависит «длина волны», то есть расстояние, которое успевает пробежать волна за время одного колебания. Чем больше частоты, тем короче волна, и наоборот.
Длину волны любого вида излучения можно получить, разделив скорость его распространения на число колебаний в секунду. Обычные радиоволны, на которых передают концерты и информацию, имеют длины от 400 метров до 1–2 километров. Диктор ежедневно объявляет, на какой волне ведется передача.
Наиболее жесткий вид излучения — гамма- лучи имеют частоту, превышающую 3∙1020 колебаний в секунду, то есть свыше трехсот миллиардов миллиардов. Длина волны гамма-лучей, следовательно, измеряется миллионными долями микрона.
У остальных видов излучения длины волн больше: они образуют как бы лестницу со множеством ступеней, на которой в порядке возрастания длины волны располагаются рентгеновские и ультрафиолетовые лучи, лучи видимого света, инфракрасные лучи, лучи открытые и изученные известным советским физиком А. А. Глагольевой-Аркадьевой, ультракороткие радиоволны и, наконец, на последних, нижних, ступенях этой лестницы находятся радиоволны, применяемые широковещательными станциями. В самом низу этой «лестницы» электрических колебаний оказывается колебание звуковой частоты в телефонных проводах и наш городской осветительный ток, он ведь тоже представляет собой колебания электронов, совершающиеся всего лишь 50 раз в секунду.
Существование электромагнитного излучения, имеющего сравнительно небольшие частоты, было доказано немецким физиком Генрихом Герцем.
Работа Герца была опубликована 10 декабря 1887 года. Основой исследований Герца послужили труды Фарадея, продолженные другим замечательным ученым — Максвеллом. Все, что сделал Герц, было предсказано теорией электромагнитных колебаний, которую математически разработал Максвелл. Герц выступил в науке как искусный строитель, который воздвиг здание по чертежам, полученным от архитектора. Он на опыте обнаружил явление, ранее предсказанное теорией. Но практического применения своему открытию Герц не нашел.
Огромное значение радиоволн понял и по-настоящему оценил русский ученый, преподаватель физики Минных офицерских классов в Кронштадте — Александр Степанович Попов.
Мысль об использовании радиоволн для телеграфирования без проводов зародилась у А. С. Попова еще в 1891 году. Четыре года ушло на обдумывание изобретения и на первые опыты.
7 мая 1895 года, на заседании Русского физико-химического общества, А. С. Попов сделал доклад о своем изобретении и тут же показал присутствовавшим ученым первый в мире приемник электромагнитных волн. Попов назвал прибор «грозоотметчиком», так как он улавливал «сигналы гроз», то есть принимал электромагнитные колебания, рожденные молнией (рис. 55).
Рис. 55. Первый в мире радиоприемник — «грозоотметчик» А. С. Попова.
Свой исторический доклад А. С. Попов закончил вещими словами: «В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний».
В память этого события мы отмечаем ежегодно 7 мая как «День радио».
И вскоре — менее чем через год — 24 марта 1896 года А. С. Попов демонстрировал новые радиоприборы — передатчик и приемник. Передатчик был установлен в другом здании, на расстоянии примерно 250 метров от приемника. У передатчика находился верный и бессменный помощник Попова — Π. Н. Рыбкин, у приемника — сам Попов.
В глубоком молчании, охваченные волнением, прислушивались ученые к тихому постукиванию приемного аппарата, из которого ползла узкая телеграфная лента.
Расшифровывая точки и тире, старейший из присутствующих, русский физик Ф. Ф. Петрушевский, писал мелом на доске текст первой в мире радиограммы. Она состояла только из двух слов: «Генрих Герц», — это была дань уважения выдающемуся ученому.
Летом 1897 года А. С. Попов, мечтавший внедрить свое изобретение на флоте, испытывал радиоаппаратуру в открытом море. Радиостанции были установлены на кораблях Учебно-минного отряда, и А. С. Попов, совместно с Π. Н. Рыбкиным, успешно передавал на расстояние около 5 километров донесения о ходе учебных стрельб.
Два года спустя радио доказало, что оно является могущественным и незаменимым средством связи. Глубокой осенью 1899 года возле острова Гогланд сел на подводные камни броненосец «Генерал-адмирал Апраксин». Для руководства спасательными работами требовалась надежная связь, и А. С. Попову было предложено соорудить на острове Гогланде и в Котке две радиостанции (рис. 56).
Рис. 56. Антенна радиостанции А. С. Попова.
24 января 1900 года первая в мире линия радиосвязи начала действовать на расстоянии в 47 километров. Первая радиограмма, полученная на Гогланде, гласила: «Командиру „Ермака“. Около Лавен-Сари оторвало льдину с рыбаками. Окажите помощь».
Рис. 57. Текст радиограммы о спасении рыбаков.
«Ермак» вышел в море и на следующий день вернулся, доставив на берег 27 спасенных им рыбаков. Великое русское изобретение сразу же помогло спасти человеческие жизни. Этот факт был особо отмечен на Международной электротехнической конференции 1900 года.
А. С. Попов не переставал совершенствовать беспроволочный телеграф и в результате создал простой и удобный радиоприемник.
Иностранные фирмы предложили Попову переехать в Америку и работать там. Но он ответил им: «Я — русский человек, и все свои знания, весь свой труд, все свои достижения я имею право отдавать только моей Родине. Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей Родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи».
С 1900 года аппаратами А. С. Попова стали оснащать корабли русского флота. К этому времени приборы Попова имели все части, хорошо известные ныне каждому радиолюбителю: антенну, колебательный контур, составленный из проволочной катушки и конденсатора, детектор, телефон или телеграфный аппарат и заземление.
Когда московская радиостанция транслирует оперу из Большого театра, то каждый звук, раздавшийся на сцене, владивостокский радиолюбитель в свои «наушники» (головной телефон) слышит раньше, чем зритель, сидящий в зале театра. Это объясняется тем, что скорость распространения радиоволн почти в миллион раз превышает скорость звука.
Пока звук долетит со сцены до середины зрительного зала, радиоволны успевают обнести его вокруг света. Это самые проворные в мире почтальоны. Они одинаково хорошо доставляют и отрывистые сигналы поверки времени, и человеческую речь, и пение, и музыку. Им можно поручить доставку любого известия.
На радиопередающей станции это делается примерно так: прибор, называемый генератором несущей частоты, вырабатывает мощные высокочастотные колебания. Каждое такое колебание ничем одно от другого не отличается, все они одинаковы и равномерны.
И вот эти-то равномерные колебания и служат почтальонами — разносчиками радиосигналов по всему свету. Они называются в радиотехнике несущей частотой.
Несущая частота поступает в другой прибор, который называется модулятором. В модуляторе «почтальон» принимает «почту», — одновременно с несущей частотой в модулятор попадают электрические колебания от микрофона. Эти колебания отличаются друг от друга и по силе и по частоте, они неодинаковы, потому что в точности соответствуют тем звуковым колебаниям, которые были восприняты микрофоном.
В модуляторе оба вида колебаний объединяются. Звуковые колебания накладываются на колебания высокой частоты, то усиливая, то уменьшая их интенсивность, они как бы отпечатываются на несущей частоте.
Из модулятора высокочастотные, колебания выходят уже неодинаковыми. Энергия колебаний становится то больше, то меньше, так как она изменяется в точном соответствии с теми звуковыми колебаниями, которые были посланы в модулятор микрофоном. Иначе говоря, высокая частота после модулятора уже несет на себе колебания звуковой частоты (рис. 58).
Рис. 58. На передающей радиостанции колебания звуковой частоты накладываются на несущую частоту, и такие модулированные колебания направляются в антенну.
В таком виде модулированные колебания несущей частоты поступают в антенны передающей радиостанции, отсюда «почтальоны» в виде радиоволн разлетаются по всему земному шару.
Мы окружены сигналами всех радиостанций мира. Радиоволны самых различных частот пронизывают стены наших домов, проникают в нас самих, оставаясь совершенно незамеченными. Человек в мире радиоволн, как слепой в светлой комнате. Наши органы чувств не в состоянии их воспринимать. Даже стоя под мачтами радиовещательной станции, нельзя услышать музыку или речь, которую в этот момент передают по радио.
Чтобы воспринимать сигналы радиостанции, нам прежде всего нужна специальная сеть, которая улавливала бы радиоизлучение, нужно «ухо», способное «слышать» эти сигналы.
Таким электрическим «ухом» служит антенна радиоприемника. Она улавливает электромагнитные колебания, излучаемые радиостанциями.
Но если бы радиослушатель вздумал слушать все, что восприняла его антенна, то он, пожалуй, ничего не услышал бы, кроме сплошного рева. Ведь антенна принимает излучение всех радиостанций мира, а слушать всех сразу — невозможно!
Для отсева ненужных колебаний служит колебательный контур, который обладает «своей», строго определенной частотой колебаний. Изменяя самоиндукцию катушки или емкость конденсатора, можно управлять по своему желанию частотой колебаний контура, то есть настраивать его на избранную частоту и принимать сигналы только той радиостанции, какую намечено слушать.
Колебательный контур, словно сито, просеивает «улов» антенны, — в нем появляются только те колебания, на которые он настроен, все остальные беспрепятственно уходят по проводу заземления (рис. 59).
Рис. 59. Антенна приемной станции улавливает колебания, излучаемые всеми радиостанциями мира. Колебательный контур отбирает из них только те колебания, на которые он настроен.
Но и эти колебания, которые отобрал для нас контур, «непонятны» для нашего уха, оно не в состоянии воспринимать электрические сигналы, и чтобы их услышать нужен «переводчик».
Обязанности электрического переводчика исполняет детектор, что значит «обнаруживатель». Так был назван при первых опытах А. С. Попова прибор, служивший для обнаруживания сигналов передатчика. Со временем детектор изменял и свое устройство и назначение. Название «детектор» сохранилось, но приобрело новый смысл. Детектировать — значит преобразовывать модулированный переменный ток высокой частоты в ток низких звуковых частот.
Рис. 60. Расположение частей детекторного радиоприемника и его схематическое изображение.
Простейший детектор состоит из так называемого «детектирующего» кристалла, чаще всего минерала галена (сернистый свинец), и стальной спиральки, касающейся своим острием одной из граней кристалла.
Кристалл в паре с металлическим острием работает, как дверца мышеловки или как клапан насоса. В одну сторону — проход электронам свободен, назад — им дороги нет.
Электроны, проскочившие с острия в грань кристалла, обратно уже не возвращаются. Им остается только одно — идти к телефону.
Без детектора в цепи телефона шел бы переменный ток высокой частоты, с детектором характер тока меняется, детектор словно разрубает колебания: ток проходит только в одном направлении в виде отдельных толчков. Эти толчки образуют так называемый пульсирующий ток (рис. 61).
Рис. 61. Детектор как бы «разрубает» колебания, преобразуя переменный ток в пульсирующий постоянный, а блокировочный конденсатор сглаживает эти пульсации так, что в телефон поступают только колебания звуковой частоты.
В цепь детектора включен телефон. Телефон преобразует недоступные непосредственно нашему восприятию колебания силы тока в звуки.
Однако телефон сам по себе с такой задачей справиться не может. Он способен превращать в звуки человеческой речи или в музыку только колебания низкой звуковой частоты, ограниченные пределами от 16 до 20 тысяч колебаний в секунду, которые получаются после детектирования высокой частоты.
Обмотка магнита в телефоне, благодаря самоиндукции, обладает огромным сопротивлением для тока с частотой в сотни тысяч периодов в секунду. Да и мембрана телефона слишком массивна, чтобы колебаться с такой частотой. И, наконец, если бы даже телефон мог воспроизвести такие колебания, мы бы их не услышали. Мы слышим звук только тогда, когда нашего уха достигают звуковые воздушные волны с частотой от 16 колебаний в секунду до 20 000 колебаний в секунду.
Но при наличии детектора ток, хоть и толчками, идет все же в одну сторону, и мембрана телефона может теперь отклоняться под его воздействием. Она прогибается то сильнее, то слабее, соответственно средней силе тока (средней силе толчков). А так как сила толчков меняется со звуковой частотой, именно так, как был модулирован ток в радиопередатчике, то телефон воспроизводит такие же колебания, которые воздействовали на микрофон передатчика. Из телефона несутся звуки речи или музыки.
Для сглаживания толчков, происходящих с высокой частотой, иногда параллельно телефону включают конденсатор небольшой емкости.
Конденсатор накапливает электрические заряды, когда сила тока в цепи нарастает, и освобождает их, когда сила тока падает. Это его основное назначение.
Ток через детектор проходит короткими отрывистыми толчками, — электроны проскакивают стайками. Когда в проводнике возникает электрический толчок, часть электронов попадает в конденсатор, — сила толчка ослабевает. Когда наступает промежуток между толчками, конденсатор освобождает электроны и их током заполняется промежуток между толчками. Толчки тока выравниваются. Ток, благодаря конденсатору, из пульсирующего становится волнистым, он плавно нарастает и также плавно спадает со звуковой частотой (с частотой модуляции). Телефон с конденсатором звучит лучше, чем без него.
Кристаллический детектор, обслуживавший первые радиоприемники, обеспечивал очень чистое звучание телефона, но отличался крайней неустойчивостью. Он работает только в том случае, когда острие спиральки попадает на детектирующую точку кристалла. При малейшем толчке пружинка вздрагивала, острие соскакивало с чувствительной точки, слышимость пропадала. Поиски новой «точки» требовали некоторого времени, прием радиопередачи с таким детектором был ненадежен.
Неустойчивая работа кристаллического детектора заставила искать ему заместителя.
В настоящее время кристаллический детектор применяется только в простейших любительских приемниках и в некоторых установках специального назначения.
Основные части прибора, заменившего кристаллический детектор, существовали порознь задолго до изобретения радио. Это — катодная трубка и осветительная электролампочка.
Одна комбинация катодной трубки и осветительной лампочки уже была осуществлена и служила человечеству в качестве рентгеновского аппарата.
Вторая комбинация тех же частей вылилась в современную электронную лампу.
Простейшая электронная лампа состоит из стеклянного баллона, в который впаяны два электрода— катод и анод. Такая лампа с двумя электродами называется диодом. Слово диод означает «два входа».
Катодом в электронной лампе служит раскаленная вольфрамовая нить; анодом — металлическая пластинка.
Анод изготовляют из молибденовой жести, из никеля, из тантала или из меди.
Задача катода — испускать при накале как можно больше электронов, поэтому вольфрамовые нити на радиоламповом заводе обрабатывают так, чтобы облегчить электронам выход из нити. Для этой цели нити покрывают веществами, которые легко освобождают электроны. Такой катод, даже при невысокой температуре, испускает небольшое количество электронов.
Нить катода накаливают током от маленькой батареи. С повышением температуры число вылетающих из нити электронов возрастает.
Если не прикладывать к аноду положительного напряжения, то электроны будут роиться вокруг катода легким облачком и вновь возвращаться в катод. Но как только на аноде появится положительное напряжение, электроны устремятся к аноду.
Отличие электронной лампы от рентгеновской трубки состоит в том, что в электронной лампе применяют напряжения гораздо более низкие, чем в рентгеновской трубке.
Так как напряжение на электродах электронной лампы сравнительно невелико, то электроны совершают перелет с катода на анод не столь стремительно, как в рентгеновской трубке. Они «приземляются» на аноде довольно спокойно, и рентгеновские лучи поэтому не возникают.
Совершенно очевидно, что ток в электронной лампе может проходить лишь в одном направлении — от катода к аноду и ни в коем случае не наоборот, так как электроны могут слетать только с катода (рис. 62).
Рис. 62. Если к аноду присоединить минус батареи, то ток через лампу не пойдет.
Если переменить знаки напряжения на электродах: к аноду присоединить минус батареи, а к катоду — плюс, ток через лампу не пойдет, так как холодный анод электронов не испускает. Следовательно, электронная лампа-диод может исполнять роль электронного клапана, то есть служить детектором. Диод справляется с обязанностями детектора гораздо лучше кристалла с пружинкой. Он работает устойчиво, без капризов и перебоев.
Кроме того, диод применяют в качестве выпрямителя переменного тока малой мощности. Диод, предназначенный для выпрямления переменного тока, называется кенотроном.
Через год после изобретения диода, электронная лампа была так усовершенствована, что стала одним из могущественных электронных приборов.
Коренное усовершенствование электронной лампы состояло в том, что в ней был устроен специальный регулировщик — третий электрод. Электронам, свободно пролетавшим через диод от катода к аноду, пришлось теперь подчиняться командам регулировщика и направляться к аноду только по его разрешению.
Этот третий электрод делают различного вида и формы: иногда это легкая проволочная решетка или сеточка, иногда — спираль, навитая вокруг проволочки катода на некотором от нее расстоянии. Но, независимо от формы, третий электрод всегда называется сеткой.
Сетка располагается между анодом и катодом, и для нее в цоколе лампы сделан отдельный вывод. Следовательно, лампа, снабженная сеткой, имеет не два входа, как диод, а три. Такие лампы называются триодами (рис. 63).
Рис. 63. Триод в разрезе, сетка в виде спирали обвивается вокруг катода. Слева — условное изображение триода с подогревным катодом.
Сама по себе сетка препятствием для электронов служить не может. Проволочки, из которых она изготовлена, тонки, а ячейки ее просторны.
Электроны могут пролетать сквозь сетку почти без всяких помех и задержек, но только до тех пор, пока на сетку не подано отрицательное напряжение.
Тогда отрицательно заряженные проволочки сетки будут отталкивать электроны назад к катоду и противодействовать их движению к аноду. Ток ослабеет и может совсем прекратиться — лампа будет «заперта».
Если триод присоединяют к колебательному контуру приемника, лампа становится общим звеном для трех самостоятельных электрических цепей.
Одну цепь составляют нить накала катода и небольшая батарейка, которая ее подогревает. В этой цепи электроны бегут от минуса батареи по нити и уходят к плюсу батареи. Роль этой цепи довольно ограничена — поддерживать накал нити.
Вторая цепь составлена мощной анодной батареей, которая своим плюсом присоединена к аноду лампы, а минусом — к катоду. Эта батарея создает сильное электрическое поле между анодом и катодом лампы. Под воздействием электрического поля электроны, клубящиеся вокруг накаленного катода, проскальзывают сквозь сетку, когда она заряжена положительно, и «приземляются» на аноде.
Третья цепь образована колебательным контуром, который одним проводником присоединен к катоду, а другим — к сетке. В этой цепи действуют высокочастотные колебания контура, они создают небольшое переменное напряжение между катодом и сеткой и меняют интенсивность потока электронов, движущихся от катода к аноду.
Воздействие цепи сетки на силу тока в анодной цепи является основой работы электронной лампы.
Сетка расположена очень близко к катоду, и поэтому она оказывается полным хозяином того облачка электронов, которые вьются возле катода. Каждое колебание напряжения на сетке заставляет облачко изменяться.
Отрицательное напряжение увеличивается — электронное облачко съеживается, прижимается к катоду, электроны, едва вылетев из нити, вынуждены тотчас возвращаться обратно: их отгоняет отрицательное напряжение сетки (рис. 64).
Рис. 64. Отрицательное напряжение на сетке запирает лампу, а положительное — усиливает анодный ток.
Когда отрицательное напряжение уменьшается, облачко разрастается.
Если же отрицательное напряжение упадет ниже определенного предела, электроны начнут прорываться сквозь сетку и лететь к аноду.
При дальнейшем ослаблении отрицательного напряжения, когда оно совсем сойдет на нет, или даже сменится положительным напряжением, электроны, ничем не сдерживаемые, ринутся сквозь сетку к аноду, и через лампу в этом случае пойдет сильный анодный ток.
Итак, сетка, в зависимости от величины и знака ее заряда, или усиливает, или уменьшает, или вовсе парализует влияние электрического поля, создаваемого анодом. Она, как водопроводный кран, может пропускать электроны и широким свободным потоком и тонкой струйкой; она может позволить им сочиться как бы по каплям или полностью прекратить их движение к аноду, — «запереть» лампу.
Сетка — в высшей степени тонкий и точный регулятор анодного тока, текущего через лампу от катода к аноду.
Напряжение на сетку подает колебательный контур. Электроны, раскачавшиеся в катушке, соединенной с конденсатором, то накапливаются на сетке, то покидают ее. Величина заряда на сетке меняется вместе с колебаниями в контуре. Электроны, вылетевшие из катода, то стремительно летят к аноду, то жмутся к нити катода, отброшенные отрицательным зарядом сетки.
Величина заряда сетки, доставляемого колебательным контуром, — незначительна. Она и не должна быть большой. Благодаря близости к катоду сетка властно управляет потоком миллиардов электронов. Ничтожнейшие изменения, легкие колебания напряжения на сетке тотчас сказываются на силе анодного тока. Сетка пропускает электроны в строгом соответствии с колебаниями, возникшими в контуре.
Поэтому колебания анодного тока, текущего через лампу от батареи, копируют модуляцию колебаний, поступающих на сетку от контура, одновременно и выпрямляя и усиливая ток.
Триод, сетка которого соединена с контуром, доставляет в телефон уже не слабенький ток, уловленный антенной и контуром, а сильный анодный ток, способный привести в действие несколько телефонов или даже громкоговоритель. Триод совмещает в приемнике две обязанности — и детектора и усилителя.
Однако этим не исчерпываются возможности лампы.
С помощью еще одного очень несложного приспособления электрические колебания из цепи анода можно заставить вернуться обратно в лампу, и она усилит их вторично. В цепь, подводящую ток от анода лампы к телефону, присоединяют небольшую катушку и сближают ее с катушкой колебательного контура.
Мощное воздействие пульсирующего анодного тока, который течет в дополнительной катушке, скажется на катушке контура. В ней возникнут сильные колебания, в точности соответствующие толчкам анодного тока. Эти колебания передадутся на сетку. На сетке начнут появляться и исчезать электрические заряды большей величины. Они будут во много раз сильнее, чем до включения дополнительной катушки.
Электронный поток, струящийся в лампе от катода к аноду, под действием усиленных зарядов сетки начинает пульсировать еще четче, резче, энергичней.
Усиленные колебания анодного тока в лампе попадут в дополнительную катушку. Дополнительная катушка передаст их в контур. Контур — вернет сетке. Сетка — анодному току. Анодный ток через дополнительную катушку опять — контуру. В итоге получится громадное усиление сигналов.
Катушка, которая служит для связи между анодной цепью и колебательным контуром и возвращает обратно в контур усиленные лампой колебания, получила название катушки обратной связи — делает возможным радиоприем самых слабых сигналов отдаленных станций. Такой радиоприемник называют регенеративным (рис. 65).
Рис. 65. Упрощенная схема однолампового приемника с обратной связью.
После смерти А. С. Попова (А. С. Попов скончался в 1906 году) ученые А. А. Петровский, И. Г. Фрейман и В. П. Коваленков продолжали дело, начатое их учителем. В 1914 году молодой инженер, впоследствии академик, Н. Д. Папалекси изготовил первые радиолампы. В 1915 году М. А. Бонч-Бруевич создал первую русскую вакуумную лампу. Но все эти работы были успехами одиночек, которые не получали поддержки в царской России.
В 1915 году М. А. Бонч-Бруевич служил в чине поручика на Тверской приемной радиостанции. Радиостанция нуждалась в усилительных лампах, которые в то время привозили из-за границы. Шла империалистическая война — доставлять лампы было трудно. Бонч-Бруевич задумал изготовить собственные лампы и устроил на радиостанции небольшую мастерскую. Начальник радиостанции, капитан Аристов, не разрешал заниматься в служебном помещении «посторонними делами», и Бонч-Бруевичу пришлось перенести «лабораторию» к себе на квартиру.
В его опытах ему помогали рядовой Бобков и старший унтер-офицер Кабошин. Стеклодува не было, изготовить цельный стеклянный баллон было некому, и лампу пришлось сделать составной, скрепляя ее отдельные части замазкой.
Первую лампу собрали на обеденном столе под стеклянным колпаком. В крышке стола пришлось просверлить много дырок для стеклянных и резиновых трубок, которые вели к насосам, откачивавшим воздух из лампы, и для проводов, подводивших ток от анодной батареи и от батареи накала.
Несмотря на толстый слой замазки, которой изобретатель покрывал места соединения отдельных частей лампы, воздух просачивался внутрь баллона, и его приходилось непрерывно откачивать.
Во время опытов рядовой Бобков крутил колесо большого форвакуумного насоса, Бонч-Бруевич следил за работой ртутного насоса и смачивал замазку, чтоб она не засохла, а унтер-офицер Кабошин с наушниками ловил телеграфную передачу Эйфелевой башни в Париже.
Вскоре в одной из воинских частей нашлось два стеклодува. Их перевели на радиостанцию, и они изготовили цельные стеклянные баллоны, из которых уж не приходилось непрерывно откачивать воздух.
Первые лампы, изготовленные с помощью стеклодувов, имели два катода. Когда один катод перегорал, лампу вынимали из гнезда, переворачивали и вставляли в гнездо другим концом. Так включали второй, запасной катод (рис. 66).
Рис. 66. Один из первых тверских ламповых радиоприемников с лампой, изготовленной в лаборатории М. А. Бонч-Бруевича.
В 10 часов утра 25 октября (по старому стилю) 1917 года радиостанция крейсера «Аврора» возвестила народам земного шара о всемирно исторической победе Великой Октябрьской социалистической революции. Радист «Авроры» передал обращение «К гражданам России», написанное Владимиром Ильичем Лениным.
«Временное правительство низложено. Государственная власть перешла в руки органа Петроградского Совета рабочих и солдатских депутатов — Военно-революционного комитета, стоящего во главе петроградского пролетариата и гарнизона.
Дело, за которое боролся народ: немедленное предложение демократического мира, отмена помещичьей собственности на землю, рабочий контроль над производством, создание Советского правительства, это дело обеспечено.
Да здравствует революция рабочих, солдат и крестьян!»[18]
С первого дня существования советского государства радио стало могущественным средством связи нашего правительства со всей страной и другими народами.
30 октября 1917 года радиостанции революционного Петрограда передали радиограмму о создании Советского правительства, подписанную В. И. Лениным.
В ноябре, когда контрреволюционный генерал Духонин, исполнявший обязанности главнокомандующего русской армией, нарушил приказ Советского правительства о перемирии, радио послужило важнейшим средством связи.
В своих воспоминаниях о В. И. Ленине, Иосиф Виссарионович Сталин приводит эпизод переговоров с мятежным генералом: «Помнится, как после некоторой паузы у провода лицо Ленина озарилось каким-то необычайным светом. Видно было, что он уже принял решение. „Пойдем на радиостанцию, — сказал Ленин, — она нам сослужит пользу: мы сместим в специальном приказе генерала Духонина, назначим на его место главнокомандующим тов. Крыленко и обратимся к солдатам через голову командного состава с призывом — окружить генералов, прекратить военные действия, связаться с австро-германскими солдатами и взять дело мира в свои собственные руки“».[19]
В ночь на 22 ноября 1917 года Ленин и Сталин приехали на военно-морскую радиостанцию в Петрограде. Здесь Ленин написал историческое воззвание: «…Солдаты! Дело мира в ваших руках…»
Радио, оказавшее огромные услуги советскому правительству, развивалось при неустанных заботах В. И. Ленина и И. В. Сталина.
В эти героические дни группу энтузиастов радио объединил в своей мастерской талантливый инженер и изобретатель М. А. Бонч-Бруевич. При Тверской радиоприемной станции организовалась тогда первая русская радиолаборатория. Лаборатория помещалась в крохотной комнатке, размером около двух квадратных сажен. Там М. А. Бонч-Бруевич с помощниками изобретали и испытывали новые типы радиоламп, которые назывались тогда катодными реле.
Успешная и плодотворная работа Тверской радиолаборатории была поддержана советским правительством и лично В. И. Лениным. Весной 1918 года лаборатория получила средства на дальнейшую работу.
К июлю 1918 года лаборатория изготовила вручную 1500 «тверских» радиоламп и 100 приемников. Их установили в различных городах Советской России.
В декабре 1918 года Владимир Ильич Ленин подписал «Положение о радиолаборатории с мастерской Народного комиссариата почт и телеграфов», которую надлежало создать в Нижнем Новгороде (ныне г. Горький) на базе Тверской лаборатории.
В этом «Положении» Владимир Ильич Ленин с гениальной прозорливостью наметил основные пути, по которым должно идти развитие радиотехники.
В те годы специалисты спорили о преимуществах различных типов радиопередатчиков. Кто отстаивал электрическую дугу, кто считал, что источником электромагнитных колебаний должны служить машины, вырабатывающие переменный ток высокой частоты. Сторонников электронной лампы было тогда очень мало.
Владимир Ильич Ленин потребовал, чтобы сотрудники Нижегородской лаборатории разработали конструкции пустотных (вакуумных) радиоламп. Его гениальное предвидение полностью оправдалось. Именно вакуумная электронная лампа обеспечила блестящий расцвет радиотехники. Ей принадлежало будущее.
Нижегородская радиолаборатория была первым научно-исследовательским институтом, созданным советским правительством. Она объединила усилия почти всех наиболее талантливых русских радиоинженеров. Душой лаборатории был М. А. Бонч-Бруевич. В Нижний Новгород приехал В. П. Вологдин, многое сделавший для развития высокочастотной электротехники, А. Ф, Шорин — один из создателей советского звукового кино. Тут же работал Д. А. Рожанский, который впоследствии совместно с Ю. Б. Кобзаревым создали радиолокационную аппаратуру, В. К. Лебединский, обучивший тысячи молодых специалистов, Б. А. Остроумов, В. В. Татаринов и многие другие.
Рис. 67. Нижегородская радиолаборатория.
Созданная по мысли В. И. Ленина, Нижегородская радиолаборатория успешно разрешила задачи, поставленные перед ней советским правительством. М. А. Бонч-Бруевич был целиком поглощен созданием радиотелефонных широковещательных передатчиков. А. Ф. Шорин совершенствовал радиотелеграфную аппаратуру. В. П. Вологдин конструировал первые советские мощные ртутные лампы для преобразования переменного тока в постоянный и улучшил изобретенные им машинные генераторы высокой частоты.
Владимир Ильич Ленин оказывал коллективу радиолаборатории большую поддержку.
В письме М. А. Бонч-Бруевичу 5 февраля 1920 года В. И. Ленин писал: «…Пользуюсь случаем, чтобы выразить Вам глубокую благодарность и сочувствие по поводу большой работы радиоизобретений, которую Вы делаете. Газета без бумаги и „без расстояний“, которую Вы создаете, будет великим делом. Всяческое и всемерное содействие обещаю Вам оказывать этой и подобным работам.
С лучшими пожеланиями В. Ульянов (Ленин)».[20]
Благодаря энергичному содействию В. И. Ленина коллектив сотрудников Нижегородской радиолаборатории быстро наверстывал все, что было упущено в дореволюционные годы.
Уже в 1919 году были поставлены первые опыты радиотелефонных передач. Опыты прошли вполне удачно, и 17 марта 1920 года, по предложению В. И. Ленина, Совет Труда и Обороны постановил построить в срочном порядке в Москве Центральную радиотелефонную станцию, радиусом действия в 2000 верст.
Стопятидесятиметровую ажурную радиобашню для московской радиостанции спроектировал и построил замечательный русский ученый, инженер и изобретатель Л. Ф. Шухов.
Осенью 1921 года работники Нижегородской лаборатории закончили сборку радиотелефонной станции и приступили к испытаниям передатчика. Приемным пунктом для опытных переговоров по телефону был избран Берлин.
В Берлине хорошо слышали московскую станцию, но ответную передачу организовать не могли. Берлинская радиостанция по мощности и совершенству оборудования значительно уступала московской. Да и вообще в Западной Европе тогда не было ни одной радиотелефонной станции, которая могла бы соперничать с передатчиком на Шаболовке. Московские передачи 1920 года были первыми радиотелефонными передачами в Европе на дальнее расстояние.
К 1921 году советская радиотехника благодаря заботам нашей партии и лично В. И. Ленина и И. В. Сталина заняла ведущее место в радиотелефонии и с тех пор более никогда его не уступала.
В пятую годовщину Советской власти — 7 ноября 1922 года — московская радиостанция начала широковещательные передачи последних известий, лекций, концертов и докладов.
Дальнейшее развитие радиотехники было неразрывно связано с успехами советской науки.
Первое и очень важное усовершенствование радиолампы осуществил в 1918 году академик А. А. Чернышев — он изобрел подогревный катод.
В лампе с подогревным катодом источником электронов служит не сама раскаленная нить, а трубочка, покрытая слоем веществ, способных испускать электроны, и надетая на нить, как чехол. Нить, подобно маленькой электрической печке, подогревает катод изнутри, и он начинает испускать электроны.
Еще до изобретения подогревного катода пробовали накаливать нить катода от сети переменного тока, понижая его напряжение с помощью трансформатора. Попытки не увенчались успехом: сила тока в городской сети меняется 100 раз в секунду, поэтому и температура нити и количество вылетающих из катода электронов тоже менялись 100 раз в секунду.
Кроме того, вокруг нити накала образуется переменное электромагнитное поле, которое мешает регулирующему действию сетки.
С изобретением подогревного катода эти недостатки устранились. Толстые стенки трубочки, надетой на нить накала, не успевают охлаждаться, когда понижается температура нити, они же защищают, экранируют внутреннюю часть лампы от мешающего влияния поля, создаваемого переменным током.
Для подогревных катодов перестали быть необходимыми дорогие и недолговечные батареи или аккумуляторы. Если в распоряжении радиослушателя находится сеть переменного тока, простой и надежный трансформатор может отлично служить ему для питания цепи накала.
Инженеры, разрабатывавшие новые, более совершенные типы радиоламп, старались повысить их экономичность и мощность, улучшить их работу и создать лампы, пригодные для выполнения тех разнообразных задач, которые ставила перед ними развивающаяся радиотехника. Конструкторы ламп стремились уничтожить вредные явления, происходящие в лампах, и повысить коэффициент усиления лампы.
Прежде всего между анодом и сеткой поместили еще одну сетку, на которую подали положительное напряжение, но несколько меньшее, чем на аноде.
Вторая сетка отгородила анод от первой сетки и устранила вредное влияние емкости между ними. Это улучшило регулирующее действие первой сетки. Коэффициент усиления двухсеточной лампы получился выше, чем у триода.
Для экранирующей сетки потребовался четвертый вход, и четырехэлектродная лампа получила название: тетрод.
Вслед за этим конструкторы ополчились против помех, порождаемых вторичными электронами, которые вылетают из анода под действием электронной бомбардировки. Электрон, налетающий на поверхность металла с большой скоростью, может выбить из металла даже несколько новых электронов, которые и называют вторичными.
Чтобы обезвредить влияние вторичных электронов, пришлось поставить около анода еще одну сетку. Эта сетка стала пятым электродом, и лампе дали новое название: пентод. Пентоды — один из наиболее совершенных типов радиоламп.
Иногда бывает целесообразно применять еще более сложные лампы. Например, первой управляющей сетке можно придать в помощь вторую управляющую сетку и таким образом осуществить двойное управление анодным током. Так в лампе появилась четвертая сетка или шестой электрод. Лампа с шестью входами стала именоваться — гексод.
Все сложные лампы получают название по числу входов или по числу сеток: с семью входами гептод, или пентагрид (пять сеток).
Шестисеточная лампа называется октод или гексагрид (шесть сеток).
Для экономии места в приемнике, конструкторы начали помещать внутри одного баллона два-три анода — каждый из них со своими сетками, получающих электроны от одного или двух катодов. Такая комбинированная лампа заменяет собой две-три обычные лампы. Во многих современных приемниках можно найти двойной диод-триод, двойной диод-пентод, триод-гексод и другие комбинированные лампы.
Всего к 1951 году было изобретено около десяти тысяч различных типов радиоламп.
Благодаря применению многосеточных и комбинированных ламп наши приемники имеют сравнительно небольшие размеры и вес при весьма высокой чувствительности и мощности.
В современных приемниках шесть-семь сложных ламп заменяют несколько десятков «первобытных» трехэлектродных ламп.
Хрупкие стеклянные баллоны ламп стали заменять иногда металлическими корпусами самой различной формы. Металлические баллоны защищают — экранируют лампу от вредного влияния других радиоприборов, смонтированных вместе с нею на панели приемника.
Радиолампы последних моделей окончательно утратили наследственные черты своих прародителей — разрядной трубки и осветительной лампочки.
Усовершенствование радиоламп сделало радиосвязь привычной, повседневной и даже более распространенной, чем электрическое освещение или водопровод. Радио проникло в самые отдаленные уголки Советского Союза. Передачи Москвы звучат в горных селениях Памира и Алтая, в засыпанных снегом поселках Камчатки, в сибирской тайге и среди арктических льдов на зимовках полярников
Если от приемника отключить антенну, то электроны, перебегавшие в колебательном контуре по виткам катушки от одной обкладки конденсатора до другой и не подгоняемые более сигналами, приходящими извне, постепенно успокоятся, утихнут. Электрические колебания в контуре быстро затухнут — сетка перестанет влиять на анодный ток, анодный ток перестанет пульсировать.
Словом, все произойдет как в часах, у которых тяжесть гири или сила пружины окажутся недостаточными, чтобы поддерживать качание маятника. Маятник, не получая от пружины возмещения потерь на трение, качается все медленнее и медленнее и затем останавливается совсем. Его колебания затухают.
Если усилить пружину или увеличить все гири, то маятник сможет качаться долго: пока гиря не опустится до полу или не раскрутится пружина.
Все дело, следовательно, в том: получает ли маятник, все равно какой — механический или электрический, возмещение своих потерь энергии или нет. Получает — качается, не получает — затихает.
Электрические колебания контура также можно сделать непрерывными — незатухающими. Для этого надо дать контуру дополнительный источник энергии. Сделать это просто: катушку обратной связи придвинуть поближе к катушке колебательного контура.
Колебания анодного тока, текущего в катушке обратной связи, начнут подталкивать электроны контура, а контур через сетку лампы будет поддерживать колебания анодного тока, и все это будет продолжаться до тех пор, пока не иссякнет анодная батарея.
При сближенных катушках колебательный контур подобен маятнику часов с пружиной, имеющей достаточную силу, чтобы поддерживать его качания. Возмещение потерь колебательного контура происходит за счет анодного тока.
Если к приемнику, у которого сильно сближены обе катушки, присоединить антенну, то электроны контура и антенны в этом случае поменяются ролями. До сближения катушек тон «задавали» антенные электроны. Они командовали электронами в катушке, заставляли их раскачиваться в такт принимаемым сигналам.
Теперь на стороне электронов контура оказался могучий союзник — анодный ток, и они начинают подталкивать электроны антенны, заставляя их раскачиваться в такт колебаниям контура. В антенне разыгрывается уже знакомое нам явление, — колеблющиеся в ней электроны начинают излучать энергию в пространство.
Все радиослушатели в ближайших домах и квартирах от всего сердца выбранят «свинью в эфире» и будут, разумеется, совершенно правы. Их приемники захрюкают, завизжат, так как они примут, кроме передачи широковещательной станции, еще «сверхпрограммное излучение» приемника, который благодаря сближению катушек превратился в передатчик.
Усилительная лампа при большой обратной связи становится генератором электрических колебаний.
Для того, чтобы получить электромагнитные волны, перекрывающие обширные пространства, нужны мощные колебания в антенне — маленькая лампочка не может их давать. Нужны лампы больших размеров, питаемые не батареей, а мощным источником тока высокого напряжения.
И действительно, генераторные лампы больше чем приемно-усилительные, их катоды и аноды — прочнее, массивнее.
Таким образом, электронные лампы могут служить не только для приема, но и для посылки радиосигналов. Генераторная электронная лампа давно уже стала сердцем современной передающей радиостанции. Лампе мощного радиопередатчика приходится выполнять работу несравненно более тяжелую, чем лампе в приемнике.
Электронный поток между катодом и анодом генераторной лампы силен, количество электронов, бомбардирующих анод, и их скорость велики. Удары быстро летящих электронов разогревают анод до температуры плавления большинства металлов.
В первых генераторных лампах, которые строил в Нижегородской радиолаборатории Бонч-Бруевич, металлические аноды плавились, как восковые, и лампы выходили из строя. Надо было — так утверждали иностранные специалисты — делать аноды из какого-либо особого тугоплавкого металла: тантала, вольфрама или молибдена.
Советская власть унаследовала от царской России отсталую, убогую промышленность. Войска интервентов окружили молодую Советскую республику сплошным кольцом. Капиталистические страны хотели задушить Советскую Россию войной и блокадой. У нас тогда не было производства тугоплавких металлов: тантала, вольфрама и др. Работники Нижегородской радиолаборатории имели в своем распоряжении только красную медь, никель и алюминий.
Иностранные фирмы со злорадством ожидали, что советские инженеры не смогут обойтись без тантала. Однако чаяния врагов не оправдались.
17 сентября 1922 года московская радиостанция передала первый концерт, и его слышали во всей Европе. Англия и Франция смогли транслировать первый концерт двумя месяцами позднее, а Германия— только в октябре 1923 года.
За границей недоумевали — откуда в Советском Союзе добыли тантал для анодов?
Но тантала у Нижегородской радиолаборатории не было, да он и не понадобился ей. Аноды первых советских генераторных ламп изготовили из красной меди. Красная медь вследствие своей исключительной теплопроводности оказалась прекрасным материалом для анодов.
М. А. Бонч-Бруевич поместил аноды не целиком внутри баллонов, а вывел их наружу и снабдил водяным охлаждением. Снаружи аноды омывались потоками воды, которая уносила излишнее тепло. Лампе стало не опасно выделение теплоты, потому что вода быстро отводила ее прочь.
Никакой тантал не в состоянии выдержать электронной бомбардировки, которой подвергается анод в лампах, мощностью в несколько киловатт, а медные аноды с водяным охлаждением служили Нижегородской радиолаборатории хорошо, давая до 25–50 и даже 100 киловатт мощности. Иностранным специалистам пришлось спешно заимствовать замечательное достижение Нижегородской радиолаборатории.
Теперь во всем мире делают генераторные лампы с медным анодом и охлаждают их проточной водой или сильной струей воздуха. Аноды ламп, рассчитанные на воздушное охлаждение, имеют ребристые стенки, под лампами непрерывно работают вентиляторы, которые обдувают анод и отводят от него теплоту.
Генераторные лампы, посылающие энергию непосредственно в антенны крупнейших советских радиостанций, имеют большую мощность. Например, лампа типа Г-880 вдвое мощнее двигателя автомобиля «Москвич», а лампа Г-443 почти втрое мощнее двигателя «Победы». Наиболее мощные генераторные лампы обладают мощностями, превышающими тысячу лошадиных сил.
На анодах всех ламп современной радиостанции выделяется так много тепла, что его хватает для отопления станций, — систему водяного охлаждения анодов соединяют с трубами отопительных радиаторов.
Благодаря усовершенствованию генераторных ламп и огромному увеличению их мощности дальность радиопередач возросла в колоссальной степени. Наша планета давно уж стала тесна для установления рекорда дальности радиопередач. Излучение наших мощных коротковолновых станций обходит вокруг земли несколько раз.
Каждое слово, сказанное в микрофон московского радиоцентра, разносится по всему земному шару. Оно преодолевает горные хребты и безбрежную ширь океана. Его слышат десятки и сотни миллионов людей на всех материках нашей планеты.
Гениальное изобретение А. С. Попова дало новый вид связи — радио! Радио вызвало бурный расцвет электроники, и она в кратчайший срок сделала радио могучим рупором живой человеческой речи. Перед человеческим голосом рухнула преграда расстояния.
Успехи радио повлекли за собой усовершенствование проволочных линий связи. Старик-телефон, который раньше обеспечивал надежную связь всего лишь километров на 30–40, с помощью электроники (усилительных электронных ламп) шагнул на тысячи километров.
В СССР по проекту лауреатов Сталинской премии инженеров П. К. Акульшина, А. Н. Гумеля, В. 3. Малышева и П. А. Фролова построена самая длинная в мире, безукоризненно работающая телефонная линия, протяжением в 10 тысяч километров.
Эта линия связывает Москву с Дальним Востоком, и абоненты слышат друг друга так, как будто находятся в разных концах Москвы. Прекрасную слышимость на огромном расстоянии поддерживают мощные усилители. Они дают общее усиление до 30 миллионов раз.
Удивительным является, однако, не протяженность линии, а то, что по каждой паре проводов в наше время ведется 16 разговоров одновременно, и никто из разговаривающих не мешает друг другу.
Идея многократного использования одного и того же провода для телефонных переговоров была осуществлена капитаном русской армии Игнатьевым еще в 1880 году. Он передавал по одному проводу одновременно телеграммы и телефонный разговор. Электрический фильтр, состоящий из катушки самоиндукции и конденсатора, отделял постоянный ток телеграфного аппарата от переменного тока телефонного аппарата, и телеграфист с телефонистом беспрепятственно пользовались одним и тем же проводом.
Теперешнюю телефонную линию обслуживают ламповые генераторы высокой частоты. Телефонная станция состоит из 16 передатчиков и 16 приемников, соединенных лишь одной парой проводов.
Каждый передатчик и соответствующий ему приемник настроены на определенную частоту. Для каждого разговора применяется своя, отдельная частота. В проволоке получается такое же смешение различных колебаний, какое принимает приемная антенна радиолюбителя. Но электрические фильтры из настроенных колебательных контуров строго сортируют частоты так, что разговоры не мешают один другому.
В 1947 году советская астрономическая экспедиция, под руководством члена-корреспондента Академии наук СССР А. А. Михайлова, наблюдала солнечное затмение близ берегов Бразилии. Радиоприборы, приспособленные для астрономических целей и установленные на теплоходе «Грибоедов», позволили советским ученым слушать «голос» Солнца, то есть принимать радиоволны, излучаемые Солнцем.
Источником радиоизлучения Солнца, как показали исследования советских астрономов и физиков, являются самые верхние, самые разреженные слои солнечной атмосферы. По-видимому это радиоизлучение исходит от солнечной короны — жемчужно- серебристого сияния, окружающего Солнце, и хорошо заметного во время полных солнечных затмений.
Сила радиосигналов Солнца зависит от силы извержений или огненных бурь, разыгрывающихся время от времени на его светоносной поверхности. Особо мощные вспышки радиоизлучения обычно предшествуют огненным бурям и служат их предвестниками.
Невольно вспоминается первый радиоприемный аппарат — «грозоотметчик» А. С. Попова. Теперь мы отмечаем бури и «грозы» в атмосфере солнца!
Вслед за первыми опытами приема радиоизлучения Солнца астрономы попробовали «послушать» звезды. Они направляли антенну коротковолновой радиостанции на различные участки неба и записывали принимаемые шумы.
Установлено, что наиболее сильные источники радиоизлучения находятся в самой гуще Млечного пути по направлению к созвездию Стрельца. А именно в этом направлении расположена таинственная и труднодоступная для изучения центральная область Галактики: она закрыта от нас скоплениями пыли.
Но туман, пыль, облака прозрачны для радиоизлучения, и это дает нам возможность проникнуть в закрытую от нашего взора загадочную область Галактики. Радиотехника позволила ее «послушать».
Совсем недавно «слушающая» астрономия сделала чрезвычайно важное открытие — оказалось, что радиоизлучение приходит к нам из отдельных небольших участков неба. К сожалению точность наведения радиотелескопа еще не велика, нацелить его в одну точку, как обычный оптический телескоп, не удается, и это, конечно, затрудняет исследования. Но все же установлено, что источники радиоизлучения по своим размерам раз в десять меньше полной луны, то есть, если бы мы могли их увидеть, они казались бы нам «пятачками» диаметром в несколько угловых минут.
Эти участки неба, посылающие особо сильное радиоизлучение, получили название радиозвезд.
Исследование загадочных «пятачков» с помощью оптических телескопов никаких результатов не дало. Там виднеется несколько рядовых слабеньких звездочек, каких много и там, где радиозвезд нет и в помине. Не помогает их разглядеть и фотография. Радиозвезды — невидимки!
Московский астроном И. С. Шкловский считает, что некоторые радиозвезды находятся совсем недалеко от Солнца, может быть даже ближе, чем видимые нами звезды, и вообще во Вселенной радиозвезд в несколько раз больше, чем ярких само- светящихся звезд. Что же такое эти радиозвезды, — остается пока неизвестным.
Уловленные приборами сигналы далеких светил еще не поняты. Их смысл и значение пока еще не разгаданы. Но радиоастрономия — очень молодая отрасль науки! Ученые совершенствуют радиоастрономические приборы, и нет ничего невероятного в том, что электроника в недалеком будущем создаст «слушающие телескопы» или «видящие астрорадиоприемники» (рис. 68).
Рис. 68. Приемник, улавливающий радиоизлучение звезд.
Радиоастрономия — новое могущественное средство познания Вселенной.
И возможно, что когда-нибудь среди шумов, рождаемых звездными атмосферами, мы уловим ритмичные сигналы, посланные в межзвездное пространство обитателями других планетных систем. Гениальный ученый и философ Джордано Бруно, сожженный на костре инквизиции 17 февраля 1600 года, писал: «В безмерном лоне бесконечной Вселенной возникают, развиваются, уничтожаются и снова рождаются бесчисленные миры. Существуют бесчисленные солнца, бесчисленные земли, которые кружатся вокруг своих солнц подобно тому, как наши семь планет кружатся вокруг нашего Солнца».
И мы убеждены, что в бесконечном пространстве Вселенной кроме нашей Земли есть и другие обитаемые планеты.
Часы с маятником были изобретены Христианом Гюйгенсом в первой половине XVII века. Они верой и правдой служат людям уже свыше 300 лет. За это время механизм часов был доведен до большого совершенства, но все же самые лучшие современные часы с маятником уходят вперед или отстают на 3–4 тысячных доли секунды в сутки. Это — предел точности таких часов и большего от них добиться трудно.
Однако точность в 3–4 тысячных доли секунды уже не удовлетворяет ученых. Тысячная доля секунды — величина большая. Для тонких научных исследований нужны часы, отмеряющие время с ошибкой, которая не превышала бы стотысячной доли секунды. Именно столь высокая точность позволяет совершать важные открытия..
Наша секунда это 1/86400 доля суток, а сутки — время одного оборота земного шара вокруг его оси. Все наше измерение времени до сих пор было основано на определении скорости вращения Земли. Раньше думали, что земной шар вращается в высшей степени равномерно и сутки остаются неизменными, но это оказалось не так. Установлено, что великие часы природы — земной шар — отстают. Земля замедляет свое вращение, и вследствие этого сутки постепенно удлиняются.
Величина «погрешности» Земли невелика, она составляет примерно 1,5 тысячных доли секунды в столетие. Иначе говоря, через каждые 700 столетий сутки становятся длиннее на 1 секунду.
Кроме того, в итоге многолетних наблюдений у астрономов зародилось подозрение, что наша планета вращается не вполне равномерно.
В 1872 году известный русский астроном С. П. Глазенап решил проверить это предположение. Предпринятое им исследование подтвердило догадку.
Земля то чуть-чуть ускоряет вращение, то так же неожиданно и без видимой причины замедляет его. Небольшие изменения скорости вращения день ото дня накапливаются, а к концу года достигают величины, которая уже не ускользает от внимания астрономов.
В течение прошлого столетия Земля вращалась с ускорением — сутки укорачивались. За время с 1865 по 1898 год было «потеряно» почти тридцать пять секунд.
В конце прошлого века Земля перестала «спешить». Сутки снова начали удлиняться. Это продолжалось до 1920 года. Сейчас она вращается с небольшим ускорением.
Очевидно, что земной шар, который считался безупречным судьей всех наших часов, сам оказался не вполне надежными часами.
Так как сутки то удлиняются, то укорачиваются, следовательно, и секунда — наша основная единица измерения времени — тоже изменяется. Но как можно пользоваться мерой, которая не отличается постоянством? Куда годится гиря, сделанная из льда, кому нужен резиновый метр? Такие материалы непригодны для изготовления мер.
Наша секунда, вследствие неравномерности вращения земного шара, непостоянна. Время же надо измерять неизменной секундой. Если земной шар не может служить образцовыми часами, то, очевидно, надо создать прибор, который мог бы хранить и сообщать точную величину секунды.
Маятниковые механические часы для этой цели не подходят.
Изобретатели обратились к электронным приборам. Кандидатом в заместители механического маятника был выдвинут маятник электрический, то есть колебательный контур, соединенный с электронной генераторной лампой.
Правда, электрический маятник оказался тоже не совсем постоянным. Малейшее изменение тока накала лампы, легкое дрожание электродов, неравномерный выход электронов из катода и ряд других причин нарушают правильный ритм колебаний в контуре. Электрический маятник нуждается в надежном регуляторе.
Такой регулятор был найден. Кристаллы горного хрусталя — кварца — обладают весьма полезным свойством: кварцевая пластинка или кольцо, вырезанное из кристалла кварца, под воздействием токов высокой частоты начинают сжиматься и расширяться с частотой переменного тока (рис. 69).
Рис. 69. Кварцевое кольцо — эталон частоты.
Однако не на все частоты кварцевая пластинка отзывается одинаково. Как и камертон, когда его ударят, издает звук только одного, ему свойственного, тона, так и кварцевое кольцо обладает собственной и тоже строго определенной частотой колебаний, которая зависит от размеров и формы кольца. И если ударить кварцевое кольцо, оно начинает колебаться со свойственной ему частотой. Такое кольцо присоединяют к колебательному контуру, частота колебаний которого равна собственной частоте пластинки. В таком контуре пластинка будет служить регулятором, как маятник в стенных часах.
В сочетании с электронной лампой кварцевое кольцо (или пластинка) стало основой часов нового типа — электронно-кварцевых.
Разработка проекта первых советских часов без маятника, без пружин, без гирь или электромагнитов была начата Центральным научно-исследовательским институтом геодезии, аэрофотосъемки и картографии в 1936 году и закончена в 1940 году.
Главной частью точных часов является генераторная лампа, соединенная с кварцевым кольцом. Это кольцо, выточенное из цельного куска кварца, по своим размерам равно круглому карманному зеркальцу: диаметр — 61 миллиметр, а толщина — 10 миллиметров. Кольцо совершает 99 271,05 колебаний в секунду или 5 956 263 колебания в минуту.
Кварцевое кольцо нечувствительно к изменениям силы тяжести или к каким-либо толчкам и сотрясениям, то есть оно не боится как раз того, что больше всего нарушает равномерность качаний обычного маятника. Но и кварц имеет свои недостатки — он чувствителен к изменениям температуры и давления воздуха. Поэтому кварцевое кольцо заключают в плотно закупоренный сосуд. Его обогревает электрическая печь с автоматическим регулятором температуры, и весь механизм одет двойной рубашкой из теплоизолирующих материалов. Температура внутри рубашки постоянна, давление — неизменно. В таких оранжерейных условиях кварцевое кольцо служит прекрасно.
Частота, превышающая 99 тысяч колебаний в секунду, слишком велика, чтобы ею можно было пользоваться для измерений. Особые приборы — делители частоты — уменьшают ее. Они делят частоту сначала на 11, потом на 9, и частота, пониженная до 1002,7379 колебаний в секунду, подается к мотору, а он приводит в движение счетный механизм со стрелками, как у обычных часов.
Точность кварцевых часов пока еще одна тысячная секунды в сутки. Но это — не предел. Часы могут быть еще более усовершенствованы, и погрешность их уменьшится до десятитысячных долей секунды.
В настоящее время кварцевые часы являются главными хранителями точной величины секунды. Они занимают почетное место в подвалах Службы времени астрономических обсерваторий, института метрологии и института геодезии. Маятниковые часы уступили первенство кварцевым часам.
Но даже точность кварцевых часов порой бывает недостаточна для тончайших лабораторных исследований. Ученые работают над созданием электронно-молекулярных часов, в которых роль маятника будут исполнять колеблющиеся молекулы газа — аммиака или метана.
Электронно-молекулярные часы обещают дать точность, определяемую миллионными долями секунды!
Когда Московская радиостанция начала передавать в эфир концерты, лекции и доклады, взрослые и школьники с увлечением принялись мастерить самодельные приемники.
Новое дело привлекло десятки тысяч энтузиастов-любителей. К началу 1925 года было зарегистрировано около 25 тысяч владельцев радиоприемников и число их росло с каждым днем.
Радиолюбители с увлечением мастерили самодельные приемники, придумывали всевозможные усовершенствования, изобретали новые схемы. Радиотехника открывала широкое поле для самостоятельных исследований, и она многим обязана первым энтузиастам радио. Из среды радиолюбителей вышли многочисленные кадры квалифицированных исследователей и практиков.
В горячую пору всеобщего увлечения радиолюбительством было замечено свойство ламповых приемников свистеть при чрезмерном увеличении обратной связи. Возникновение генерации электрических колебаний — недостаток приемника; с ним борются, тщательно экранируя алюминиевыми колпаками лампы и катушки колебательных контуров. Но в технике часто бывает, что явление, вредное в одном случае, оказывается полезным в другом.
Ленинградские радиолюбители первыми догадались, что радиоприемник с генерирующей лампой можно превратить в своеобразный музыкальный инструмент. Ведь стоило приблизить руку или металлический предмет к колебательному контуру, как тотчас же менялась высота звука. Приемник свистел на разные голоса.
Особенно удивительного в этом явлении ничего нет: приближение руки изменяет емкость колебательного контура. Он настраивается на другую частоту, и это сказывается на высоте звука. Звучанием можно управлять; следовательно, приемник способен стать музыкальным инструментом.
Для осуществления этой идеи от колебательного контура сквозь верхнюю крышку приемника вывели наружу металлический стержень, а колебательный контур и звуковые фильтры подобрали так, чтобы из громкоговорителя слышался не поросячий визг, а приятный для слуха музыкальный тон.
Новинка привлекла на первых порах всеобщее внимание, изобретатели первого в мире радиомузыкального инструмента с успехом показывали его с эстрады.
На сцену выносили небольшой полированный ящичек, из верхней крышки которого выступал металлический стержень длиной в 20–25 сантиметров.
Музыкант-исполнитель подходил к этому ящику, протягивал руку к стержню, и прибор начинал петь. Каждое приближение или удаление руки плавно меняло высоту звука.
Игра на звучащем радиоприборе производила странное впечатление. Человек, извлекая звуки из воздуха, напоминал дирижера, который управляет оркестром, но оркестр этот состоял из одного единственного инструмента.
Первый электромузыкальный прибор был весьма далек от совершенства. Он давал только один музыкальный тон, изменяющийся по высоте. На нем удавалось исполнять лишь несложные мелодии. Соперничать с обычными духовыми или струнными инструментами, а тем более с оркестром, в котором звучат одновременно десятки инструментов, он никак не мог.
За годы, прошедшие с тех пор, радиотехника сделала грандиозные успехи. Появились новые электромузыкальные инструменты. Из них наиболее совершенными считаются эмиритон и В-8.
Название эмиритона составлено из начальных букв нескольких слов. Первые три буквы э м и означают: электромузыкальный инструмент; следующие две буквы — р и и взяты от фамилий изобретателей: профессора Римского-Корсакова и инженера Иванова. Последний слог «тон» означает звук. Все вместе — эмиритон.
Другой электромузыкальный инструмент В-8 — обозначен начальной буквой фамилии своего изобретателя А. Володина. Эмиритон и В-8 — чисто электрические инструменты. В них нет струн, как у рояля или скрипки, нет звучащих язычков, как у аккордеона.
Открыв заднюю крышку эмиритона, можно увидеть сложное переплетение разноцветных монтажных проводов, катушки самоиндукции в алюминиевых экранах-чехлах, конденсаторы, дроссели, сопротивления и другие детали, все, как в большом и сложном радиоприемнике. В-8, например, имеет 46 ламп!
По внешнему виду эмиритон похож на небольшое пианино или на старинный клавишный инструмент-клавикорды. У эмиритона имеется клавиатура, и музыкант играет на эмиритоне, как на пианино, — обеими руками, нажимая пальцами на клавиши. Эмиритон издает при этом звуки в тембрах кларнета, гобоя или фагота.
Кроме клавиатуры эмиритон снабжен также грифом. Это — длинная полоса, расположенная вдоль клавиатуры и покрытая сверху цветным пластикатом.
Эмиритонист может исполнять музыкальное произведение, пользуясь по желанию либо клавишами, либо грифом. Касаясь грифа, скользя по нему пальцами, эмиритонист заставляет инструмент звучать, подражая скрипке, виолончели или человеческому голосу.
Переключение с одного тембра на другой, — с кларнета на фагот или со скрипки на контрабас, — производится мгновенно, для этого достаточно нажать на клавиши тембров.
Эмиритон обладает примерно пятьюдесятью различными тембрами и может подражать звучанию почти всех существующих музыкальных инструментов — от самой маленькой флейты-пикколо до большого контрабаса.
С помощью ножной педали, эмиритонист управляет силой звука, меняя ее от еле слышного журчания до могучего рева органных труб.
По богатству тембрами эмиритон не имеет себе равных среди всех обычных музыкальных инструментов: Несколько эмиритонов могут составить оркестр, не уступающий по звучанию симфоническому оркестру полного состава.
И все же разносторонние свойства электронной лампы — этого гибкого, универсального и точного прибора — далеко еще не полностью использованы в эмиритоне.
Ведь было время, когда и автомобиль «учился ходить», а самолет «учился летать». Так и электромузыкальные инструменты. Они еще только «учатся петь». Пройдут годы, будут созданы новые конструкции, и тогда электромузыкальные инструменты займут место в оркестрах рядом с обычными струнными и духовыми инструментами.