Прочность уже сама по себе является благом.
О. Бальзак
Кусок квадратной формы где легко,
Где туго рвался, противопоставив
Упрямое сопротивление силе.
Д. Берримен
Памятник Петру в Ленинграде — всемирно известный «Медный всадник» — свидетель удивительного потока событий. Кажется, что он вздымается не только над волнами Невы, но и над временами, возвышаясь над ними, независимый от них. Но ничему не дано победить Время — в статуе появились трещины. Что случилось с сооружением Фальконе? На этот вопрос можно дать несколько ответов. Простейший из них основан на законах извечной науки о прочности — механике и звучит примерно так: это результат больших перегрузок, вся тяжесть восьмитонного монумента приходится на задние ноги и хвост коня. Это тем более реально, что под действием ветра конь как бы «переваливается» с ноги на ногу. Второй ответ глубже: металл памятника «устает» и подвергается коррозии, ведь снаружи — обычно влажный ленинградский воздух, а внутри через трещины в корпусе накапливаются тонны дождевой воды. Именно коррозия и способствовала развитию разрушения под действием серьезных механических нагрузок.
В этом рассказе нас интересует первый подход к причинам разрушения. Ведь разрушение — явление столь же древнее, как человеческая цивилизация. Вначале оно «нападало» на примитивное человеческое жилище и каменный топор, позднее — на деревянные дома, конструкции мостов и каравелл.
Вот как Торнтон Уайдлер описывает разрушение древнего моста: «В полдень в пятницу 20 июля 1714 года рухнул самый красивый мост в Перу и сбросил в пропасть пятерых путников. Мост стоял на горной дороге между Лимой и Куско, и каждый день по нему проходили сотни людей. Инки сплели его из ивняка больше века назад, и его показывали всем приезжим. Это была просто лестница с тонкими перекладинами и перилами из сухой лозы, перекинутая через ущелье…. но люди — даже вице-король, даже архиепископ Лимы — предпочитали идти по знаменитому мосту короля Людовика Святого. Сам Людовик Святой французский охранял его — своим именем и глиняной церковкой на дальней стороне. Мост казался одной из тех вещей, которые существуют вечно: нельзя было представить себе, что он обрушится…»[2]
Нет ничего удивительного в том, что инки не знали ни о прочности, ни о законах механики. Но мы знаем, что задолго до случившегося, в конце XV — начале XVI веков, великий Леонардо да Винчи уже пользовался расчетами деревянных конструкций, говорил о мельчайших частицах древесины, расшатывающихся под действием переменной нагрузки, о проникновении в материал «пространства», еще более раздвигающего их и приводящего к появлению «полости», т. е. в современном понимании трещины. Мало того, да Винчи хорошо знал опасные точки конструкции, к которым он относил, например, шпоночные, пазовые и другие соединения. Особенно угрожающими представлялись ему различные «тупики», в таких соединениях, т. е. места, в которых плоскости соприкосновения смежных поверхностей меняют свое направление. Так Леонардо да Винчи пришел к одному из самых важных понятий современной механики прочности — понятию концентрации и концентратора напряжений. Не надеясь на Людовика Святого французского, великий мыслитель и ученый заложил тем самым основы современной механики разрушения. Это тем более удивительно, что речь-то идет о средних веках, времени, когда ограниченность знаний и беспомощность человека перед силами природы толкали его на фаталистические представления о мире.
Что же такое концентрация напряжений? Представьте себе, читатель, простую задачу: надо разрезать лист резины. Способов для этого много. Можно, например, резать его ножницами. Но если резина достаточно толста, вряд ли мы справимся с задачей. Попробуем ножом. Но при этом можно повредить поверхность стола. Сделаем проще — изогнем слой резины и легко проведем по нему лезвием бритвы. При этом сразу же появляется быстро вскрывающийся разрез. Еще одно движение лезвием и место изгиба как бы вскрывается на все свое сечение. Что же произошло? Когда слой резины согнули, мы сдеформировали его и «загнали» поле напряжений. Это поле стремится распрямить резину и исчезнуть. Тут-то и приходит ему на помощь лезвие: оно создает вначале маленький надрез — концентратор напряжений, небольшой участок материала, как бы сосредоточивающий всю энергию упруго-деформированного объема на очень маленьком «пятачке». Если вдуматься, то это нисколько не отличается от военной практики прорыва фронта противника на узенькой полосе, где можно собрать превосходящие силы, стянув свои войска с других участков. А как только фронт прорван… в него со всех концов устремляется основная лавина войск. Концентратор напряжений — это очаг разрушения. Интересно, что чем он «лучше», то есть острее, тем скорее наступит разрушение, иначе говоря тем «хуже» для конструкции. Это и понятно, во всяком случае, на словах, коль скоро мы решили не пользоваться формулами и математическими расчетами.
Для дальнейшего, однако, нам следует иметь в виду, что с увеличением остроты надреза, напряжения в его вершине растут очень быстро — обратно пропорционально квадрату радиуса надреза. Это означает, например, что если он размером в одну десятую сантиметра, то напряжения в его вершине возрастут в сто раз. А если он совсем мал и составляет тысячную долю сантиметра, то существующие в металле напряжения увеличиваются уже в миллион раз. Казалось бы, тут немедленно и последует разрушение. Но, к счастью, природа позаботилась, и для очень широкого круга практически важных материалов «ввела» своего рода предохранительный механизм — пластическую деформацию. Именно пластическая деформация, а не разрушение возникает прежде всего в очень остром надрезе в стали. Вспомните, что происходит, когда вы хотите сломать медную проволоку. Много раз перегибая ее, вы замечаете, что, наконец, появилась трещина и произошло разрушение. Этот процесс можно ускорить, предварительно надрубив проволоку. Но все равно какой-то изгиб с пластической деформацией в меди, алюминии и низкоуглеродистой стали необходим. Масштаб этого явления в зависимости от материала (скажем, в мраморе и сливочном масле, принесенным с мороза) весьма различен, но явление-то почти всегда существует. Тем не менее здесь все не просто и возможны разные точки зрения. Согласно одной из них, пластическая деформация совсем не необходима для разрушения — ее может и не быть, а конструкция все-таки разрушится. И надо сказать, что хотя у этой точки зрения не слишком много приверженцев, она, опираясь на законы разрушения подлинно хрупких материалов (типа стекла), тоже довольно убедительна.
Но к этой проблеме мы еще вернемся.
А пока, чтобы разобраться в существующих точках зрения на это явление, надо еще немного порассуждать, надо вооружиться тонким надежным скальпелем, прежде чем мы поймем, как же превратить вершину надреза в трещину, обойдя или использовав при этом пластическую деформацию.
Обратимся к тому, что представляет сущность чисто механического подхода к разрушению.
Стоит ли слишком категорично разделять концентратор напряжений и трещину? В конечном итоге они-то ведь различаются только тем, что в концентраторе вершина сравнительно тупая, а в трещине она невероятно остра и исчисляется стомиллионными долями сантиметра, т. е. порядка межатомного расстояния. Меняется, таким образом, лишь масштаб концентрации напряжений, но не сама, по мнению механики, сущность процесса. Поэтому отнюдь необязательно детально, на уровне поведения отдельных атомов, анализировать зарождение исходной микротрещины на дне надреза.
Ну, а как быть при таком подходе с ролью пластической деформации? Ответ прост: не надо драматизировать! Да, пластическая деформация существует; да, она предшествует разрушению. Ее роль? Пожиратель энергии, нагнетаемой внешней нагрузкой в тело. Если разрушения нет, вся энергия идет на деформирование. Если разрушение уже действует, то лишь часть внешней энергии идет на его развитие, а вторая — на деформирование. В последнем случае разрушение происходит под аккомпанемент пластического течения, так сказать под сурдинку.
В таком подходе много недостатков. Действительно, в нем нет ответа на извечные вопросы: почему и как образовалась трещина из концентратора, как связана пластическая деформация с разрушением физически, какова структура материала в зоне зарождения трещины и многие другие. Но вместе с тем подход этот отличается и уникальными достоинствами. Он позволяет рассчитать реальные виды разрушения именно потому, что пренебрегает тонкими структурными деталями, численная оценка которых всегда трудна. Ясно, что рассчитать любое механическое устройство гораздо проще, чем сложнейшие процессы атомного масштаба.
Едва ли не самым ярким примером такого подхода к оценке прочности материала явилась теория, предложенная английским инженером, а впоследствии авиаконструктором А. Гриффитсом. Он обратил внимание на то, что реальная прочность конструкций всегда ниже той, которую можно было бы от нее ожидать. Это явление он объяснил так: каким бы монолитным не казался металл извне, он содержит в себе трещины. Откуда они? Какова их природа? На эти вопросы Гриффите ответов не нашел, да, вероятно, и не искал их. Они пришли позднее, через 30–40 лет, и найдены были другими исследователями. Но в главном, и это потом было подтверждено физиками многократно, Гриффите был прав: металл действительно содержит трещины самых разных размеров и нередко очень опасных. Эти-то трещины, как болезни, развиваясь, сокращали жизнь деталей, обрекая их на преждевременную кончину.
В чем же состоит механизм их влияния на прочность?
В конечном итоге все сводится к той же концентрации напряжений. Допустим, в куске металла есть большая трещина. Она, естественно, уменьшает сечение, сопротивляющееся приложенной нагрузке, и на оставшееся тело материала действуют большие напряжения. Дело, однако, столь простым случаем не ограничивается. Даже, если бы пластина металла была бесконечно велика, все равно в вершине трещины напряжения как бы аккумулируются и способны в несколько раз, а иногда, как мы уже говорили, на много порядков превышать их средние значения. Это происходит в объеме металла примерно того же размера, что и размер трещины. Интересную форму имеет область, в которой эти напряжения накапливаются — что-то вроде ушей по обе стороны вершины трещины. В этих «ушах» скапливается большая упругая энергия, стремящаяся разорвать металл. И если трещина находится в напряженном металле, она всегда с «ушами». Она может ими даже «хлопать» — при изменении режима ее роста или когда трещина располагается на границе между двумя различными слоями в композитном материале. Это означает изменение распределения напряжений в окрестностях вершины трещины. Об ушной проблеме читателю уже известно больше того, что знал в свое время Гриффите. Экспериментально и теоретически такое распределение напряжений было подтверждено лишь через 15–20 лет после работ Гриффитса. И тем не менее Гриффите нашел в принципе правильный ответ, хотя и исходил из того, что сконцентрированное упругое поле как бы окружает всю трещину. Когда-то знаменитый физик Р. Вуд писал, что в молодости, начиная читать лекцию по физике, он был впереди студентов на два часа, а к концу лекции их знания сравнивались. Но эти исторические «два часа», отделившие Гриффитса от современников, и позволили ему обессмертить свою идею.
Сама задача была решена Гриффитсом следующим образом. Трещина сконцентрировала упругую энергию. Допустим, трещина подросла. Тогда часть упругой энергии разрядится, и этот процесс природе выгоден, как выгодно любое понижение энергии. На что же идет эта энергия? Естественно, на разрушение, решил Гриффите. А точнее на образование двух полостей трещины, то есть на поверхностную энергию. Дело в том, что не только металл, но даже мыльный пузырь в граничном слое имеет свою поверхностную энергию, только у металла она в расчете на единицу поверхности в 10–15 раз больше, чем у мыльной пленки. Хорошо известно, что поверхности жидкостей и жидких пленок всегда стремятся сократиться. В твердых металлах этого в отличие от жидкости не происходит — слишком велика их прочность, но стремление такое всегда есть и в некоторых условиях, например когда металл находится в жидком состоянии, пленка металла очень похожа на жидкую. Поэтому, чтобы создать свободную поверхность, надо затратить работу. Так вот, при образовании трещины возникают две свободные поверхности и каждая из них — носитель запаса поверхностной энергии. Гриффите решил, что вся разрядившаяся упругая энергия идет на создание поверхностной энергии двух половинок разрушенного металла. Допустим, продолжал Гриффите, что образование трещины требует большей энергии, чем освобождающийся запас упругой энергии. Очевидно, что разрушения в этом случае не произойдет. А если наоборот — выделяющейся упругой энергии с лихвой достаточно для покрытия энергетического дефицита, связанного с образованием двух поверхностей трещины? Тогда начинается стремительное развитие трещины и конструкция моста, резервуара, самолета или корпуса ракеты «умирает».
Все дальнейшее развитие механики и физики показало, что Гриффите нарисовал в основном правильную картину развития событий, но в деталях он был не точен или не прав. Например, ему казалось, что развитие трещины должно происходить со скоростью звука. Опыт этого не подтвердил — трещина по крайней мере вдвое медлительнее.
Важнее оказалось другое. У Гриффитса трещина была совершенно хрупкой. Это означает, что при разрушении пластическая деформация отсутствовала. Между тем инженерный опыт показывает, что почти всегда деформация сопровождает разрушение. При этом она съедает энергии в тысячу, а иногда и в десять тысяч раз больше той, которая требуется для компенсации поверхностного натяжения. Ясно, что в этих условиях поверхностное натяжение становится несущественным. Последователи Гриффитса, в первую очередь американский ученый Г. Р. Ирвин, решили, что и столь большая пластическая деформация не помеха для расчета тела с трещиной. Надо только считать, что она располагается лишь вблизи самого носика длинной трещины. Такие трещины получили название квазиупругих, то есть якобы хрупких. «Достоинство» их заключается в том, что, с одной стороны, к ним можно применить весь математический аппарат теории трещин — ведь зона-то пластичности крохотная в сравнении с длиной трещины; с другой — крохотная-то крохотная, а энергию упругого поля деформации понижает.
Используют это так. Прежде всего анализируют характер напряженного состояния в конструкции — к какой трещине оно приведет. Есть три вида трещины: нормального разрыва, поперечного сдвига и продольного сдвига. Первая из них возникает, когда разрывают лист бумаги. Чтобы объяснить второй, представьте себе, что два листа металла склепаны. Вы хотите это соединение разделить и молотом ударяете по верхнему слою, срезая заклепку. Дефект в заклепке и есть трещина сдвига. Трещина продольного сдвига образуется, когда, например, бумаги не разрывают, а режут ножницами. Для каждой давно рассчитаны поля напряжений вокруг их вершин (помните; «уши» трещины?). По мере приближения к вершине напряжения они быстро растут и достигают предела, после которого материал начинает «течь», то есть пластически деформироваться. Эти условия так и называются пределом текучести. Протяженность области, где это происходит, легко рассчитать; с этого момента реальная длина трещины — это ее подлинная длина плюс размер пластически деформированной зоны. Вот теперь, когда известна и длина трещины, и напряжения в ее вершине, и потери энергии на деформирование, можно определить силу, необходимую для продвижения трещины. И конечно, ее легко сравнить с силой из опыта. Но еще важнее, введение удивительной характеристики материала — вязкости разрушения. Эта величина, пропорциональная разрушающим напряжениям в вершине трещины, служит своеобразным рубежом прочности скомпрометированного трещиной металла, Ее легко вычислить для трещин различного вида практически в любых металлоконструкциях. Сопоставляя ее с напряжениями, действующими на деталь в том или ином процессе нагружения, заранее можно Предсказать: выдержит ли нагрузку конструкция, содержащая трещину, или не выдержит. Все это можно сделать, испытывая не целую ступень космической ракеты, а лишь образец ее материала.
Сегодня — это один из основных методов исследования прочности потому, что любой реальный элемент металлоконструкции содержит множественные дефекты: и трещины, и надрезы, и отверстия, а испытать его целиком (скажем, ферму протяженностью в 50—100 м) физически невозможно. Да, к счастью, теперь и не нужно. Сотни лабораторий во всех странах мира, во всех отраслях машиностроения используют этот метод, хотя еще 20 лет назад казалось, что он не нужен.
Механики оказались правы и подарили цивилизации отличный инструмент для прогнозирования и оценки реальной прочности, который мы условно назовем «первичным диагнозом». Что имеется в виду? Произошла авария. Она может быть грандиозной — развалился корпус танкера в сто тысяч тонн водоизмещением и нефть залила обширный район моря. А может быть и скромной по своим масштабам, например во время больших холодов «разморозились» батареи и некоторые из них взорвались с разлетом осколков (бывает и такое). Специалист-механик, подобно врачу-терапевту, при первичном осмотре «больного», еще не располагая данными анализов, скажет примерно следующее. В первом случае при сварке корпуса танкера была проявлена небрежность, в результате которой швы получились с несплошностями. Эти непроваренные места явились концентраторами напряжений. Кроме того, жесткость корпуса танкера оказалась недостаточной и при сравнительно небольшом волнении на море он постоянно прогибался. Со временем число этих циклов изгиба достигло критического значения — из концентраторов напряжений в сварных швах пошли трещины.
Может быть и иной вариант. При сварке в корпусе оказались законсервированными мощные остаточные напряжения и они «разрядились» на непроваре и т. д. Итак, первичный диагноз носит макроскопический характер и оперирует такими понятиями, как напряжения в конструкции, энергия, запасенная в ней, концентрация напряжений и т. д.
Из древнегреческой легенды мы знаем: когда-то персидский царь Ксеркс, взбешенный тем, что буря разрушила мост через Геллеспонт, приказал высечь море плетьми и заковать его в цепи. Будучи исследователем квалифицированным, современный инженер-механик не потребует наказания для моря, а начнет искать первопричину разрушения. С чего оно началось? Что произошло с атомами? Такие вопросы прежде всего поставит он перед собой. А ответить на них механику помогут другие исследователи — физики.
Ни с места! Проклятую нить
Не разогнешь ни так, ни эдак.
Ж. Лафонтен
Мысль человека всегда опережала его возможности. В технике арбитром между фантазией и реальностью, едва ли не всегда, были прочность и материалы. Ими определялся круг всего того, что человек мог сделать сегодня. И это желание прочно стоять на ногах проникло во все поры человеческого сознания.
«Ножницы» между желаемым и осуществимым, расхождение между тем, что человечество хотело и могло, стали очевидными после удивительной работы выдающегося советского физика Я. И. Френкеля, вышедшей в 1926 году. Смысл ее таков. Представим себе, процесс пластической деформации как соскальзывание одного слоя атомов по другому, подобно' тому, как сдвигается стопка листов чистой бумаги или колода карт. Из-за того что процесс этот идет одновременно по всей плоскости листа, мы вынуждены рвать межатомные связи сразу между всеми атомами по обе стороны плоскости скольжения. Между слоями бумаги силы притяжения ничтожны. Но между слоями атомов они велики. Поэтому попытка сдвинуть два атомных слоя — один по отношению к другому — хотя и возможна, но потребует очень большого усилия. Я. И. Френкель нашел это усилие и пересчитал его на привычные нам напряжения. И тогда оказалось, что прочность в этом случае достигает удивительно больших значений, в 1000 раз превышающих привычные нам, будничные. Эту прочность назвали теоретической прочностью твердого тела и определили ее как потолок, к которому можно и нужно стремиться.
Кто-то сказал, что новая идея — это клин, который входит только толстым концом. Но в случае теоретической прочности все было не так. Мысль Я. И. Френкеля была настолько ясной, а математический аппарат в такой мере простым, чтобы не сказать элементарным, что всему сразу поверили. Научная общественность мира приняла идею «к исполнению» и не ошиблась. Оказалось, в частности, что очень тонкие кристаллы, так называемые усы, толщиной в микроны обладают прочностями, очень близкими к теоретической. Так, прочность плавленых кремнеземных волокон оказалась равной 4,2 ГПа, усов железа — 13 ГПа, а графитовых нитей еще большей — 24 ГПа. Сравните эти цифры с прочностью хорошей стали, всего—1–2 ГПа! Кстати, прочность паутины превосходит прочность стальной нити такой же толщины, и при этом паутина еще может растягиваться на 20 %! Неудивительны слова поэта:
И даже тоненькую нить
не в состояньи разрубить
стальной клинок…
Удивительно другое, почему столетия человечество всего этого не замечало? А ведь оно прекрасно знало о поразительной прочности различных волокон.
Но как практически это было использовано? Никак, если не считать того, что в XVIII веке в Тирольских Альпах паутина оказалась незаменимой… для создания живописных полотен[3]. Ее натягивали на картон, а затем наносили акварельный рисунок. Прочность материала была такой, что он выдерживал печатание с металлических пластин. Известен и экспонат одного из немецких музеев — перчатка из паутины. По словам Ж. Бержье, один безумный немецкий физик в попытке химическим путем воспроизвести нить паука с тем, чтобы соткать из нее пуленепробиваемые жилеты для солдат, уничтожил эту перчатку. Французский естествоиспытатель Г. Купэн сообщает о необыкновенной прочности нити одной из пород мадагаскарского паука: ткань, сотканная из нее, превзошла все ожидания[4]. Вот и все. Зато сейчас человечество «вошло во вкус» и быстро наверстывает упущенное.
Металлическое волокно «паучий ус» — незаменимый материал для визирных перекрестий оптических инструментов. Из «усов» делают деликатнейшие микроскопические пружины. Из тончайших проволок вьют невероятной прочности канаты. Нити, наконец, — основа производства композитных материалов, которые во всем мире широко применяют в военной и гражданской авиации, космонавтике, текстильной промышленности, в больничном и коммерческом оборудовании, в автомобилях, шлюпках, музыкальных инструментах и многом, многом другом — всего и не перечислить… Вот как оценивает американский журнал новый композитный материал на основе графитовых усов тоньше человеческого волоса: в авиации замена алюминиевых деталей композитными облегчит на 15 % конструкцию и позволит военному реактивному самолету… увеличить на 10 % дальность полета или усилить на 30 % свое вооружение при одной и той же заправке горючим. Для гражданских самолетов это означает увеличение дальности полета и полезной нагрузки и, вероятно, более дешевые билеты.
А вот, например, как делают корпуса ракет больших диаметров. Берут деревянную обечайку в форме ракеты и наматывают на нее слой из тонкой нити-уса. Затем наносят вяжущий слой эпоксидной смолы, потом опять слой нити, смолы и т. д. Получается многослойная стенка, и прочная, и легкая. Так будут изготовлять многометровые цилиндрические колонны для химической промышленности, цилиндры мощных прессов, баллоны для хранения сжатых газов. Недалеко время, когда сверхпрочные материалы на основе тончайших волокон, без преувеличения, покорят современное машиностроение и приведут к появлению в полном смысле легковых автомобилей— в 100 килограмм весом, гигантских и вместе с тем в весе «пера» мостов и «пушинок»-самолетов. И все это абсолютно надежное, прочное. Невольно вспоминаются слова Леонида Мартынова:
Ведь по способна ни рваться, ни гнить
Даже в ушке этом тесном игольном
Великолепная светлая нить…
Но почему, говоря о теоретической прочности, мы все время твердим об усах? А как же быть с монолитными металлами, ведь именно они основа машиностроения? Вопрос верен. Все дело в том, что, к сожалению, теоретической прочности на монолитных металлах достичь не удалось, хотя это и не означает, что ученые стояли на месте. Теперь получают стали прочностью до 3 и даже до 6 ГПа, но до теоретической прочности еще далеко. Почему для тонких кристаллов мы ее получили, а для монолитных металлов, болванок, слитков, проката теоретических цифр прочности еще нет?
Крокодильими складками бронза морщит…
Л. Симпсон
Итак, почему?
Этот вопрос был одним из самых важных в ряду тех, которые вызваны работой Я. И. Френкеля. Но не единственным. Непонятно было и то, почему прочность реальных кристаллов в сотни и тысячи раз меньше теоретической. Почему чистые металлы мягче сплавов? Почему поликристаллические тверже, монокристаллических? Двадцатые годы на эти вопросы не принесли серьезных ответов.
1934 год был переломным. Английский физик Г. Тейлор из Кэмбриджского университета и венгерский ученый Е. Орован выдвинули гипотезу: в кристаллах существует особый дефект — дислокация, решительным образом меняющая свойства кристаллического материала. Исходили при этом из того, что если бы кристалл был идеальным, то для его деформирования нужно было бы приложить напряжения, равные теоретической прочности. А коль скоро реальные напряжения деформирования незначительны, должен существовать какой-то концентратор, сосредоточивающий приложенное усилие в небольшой части кристалла. Его «построили» так. Рассмотрели кристалл как толстую книгу, где атомные слои моделировались листами бумаги. А потом вложили еще один лист размером в полстраницы. По выражению поэта О. Мандельштама, эдакий «журавлиный клин в чужие рубежи». Понятно, что атомный ряд этой полустраницы (его называют экстраплоскостью) обрывается в пространстве. Представим себе далее плоскость скольжения, перпендикулярную листам и проходящую по краю экстраплоскости. По обе стороны от плоскости скольжения атомы наладили между собой взаимодействие, «вцепились» друг в друга. А атом на краю экстраплоскости одинокий: ведь у него нет визави —, атома напротив. А между тем «желание» вступить в контакт есть. Вот именно этот атом со своей экстраплоскостью и способен творить чудеса.
Приложили мы к кристаллу сдвигающее усилие. Атомы впереди и позади дислокации, за исключением двух-трех по обе ее стороны, крепко держатся один за другой. Иное дело наш «одинокий волк». Ведь в исходном состоянии он находился точно посредине между двумя атомами нижнего ряда и немного выше их. Но вот внешнее усилие слегка сместило его влево. Воспользовавшись этим, он «сцепился» с левым атомом нижнего ряда, оторвав его у прежнего соседа сверху. При этом он перестал быть краем экстраплоскости и вступил в сообщество обычных атомов, — хорошо быть незаметным, как все! Да и экстраплоскость перестала быть экстраплоскостью; ею стала другая, начинающаяся со вновь появившегося «обездоленного» атома, покинутого своим собратом. Расположилась она левее на одно межатомное расстояние, Но вот наладили опять атомы прочный контакт между собой, подтянули свои ряды и оказалось, что дислокация сместилась на одно межатомное расстояние влево. Еще один фокус-смещение, разрыв, новый союз, — и дислокация передвинулась еще левее. И пошло, и пошло… Побежала дислокация влево по кристаллу, каждый раз меняя атомы в своей экстраплоскости, чтобы каждый раз сохранять ее и свою форму.
Прав будет читатель, который задаст прямой вопрос: а откуда она взялась эта дислокация? Ведь не вставляем же мы каждый раз слой новых атомов, как лист в книгу?
Конечно нет! Это наиболее сложный и не полностью выясненный вопрос во всей многотомной теории дислокаций. Существует ряд процессов, при которых дислокации зарождаются в кристаллах, например при кристаллизации из расплава. Возникают дислокации и при сдавливании некоторых микроскопических пор в материале. Роль «родителей», выращивающих дислокации, могут играть другие дислокации. Но повторяю — сложный это вопрос.
Рассмотрим лучше чисто умозрительно эпизод, не имеющий места в жизни, но тем не менее очень удобный как пример для объяснения. Приложили мы сдвигающее усилие к поверхности кристалла и сжали его верхнюю часть так, чтобы сверху над плоскостью скольжения три атома оказались над двумя нижними. Для этого нам потребовалось сдеформировать кристалл на одно межатомное расстояние. Зато мы получили почти настоящую дислокацию. Если и теперь оказывать давление, то дислокация побежит влево. Как это происходит, мы уже обсуждали. Грубо говоря, одинокий атом на краю экстраплоскости получает возможность «пожать руку» своему визави и, подтягиваясь, передать функции экстраплоскости другому ряду атомов. Если бы мы нанесли на боковую поверхность недеформированного кристалла сетку параллелей и меридианов, идущих точно по атомным рядам, то с появлением дислокации карта эта потеряла бы свою геометрическую строгость и правильность.
Справа от дислокации верхняя и нижняя части кристалла смещены на одно межатомное расстояние. А слева от нее сдвига нет. По мере движения дислокации влево за ней тянется сдеформированная область. И когда дислокация пробежит по всему кристаллу и «выскочит» на его поверхность, окажется, что вся верхняя половина кристалла сдвинулась относительно нижней на одно межатомное расстояние. А дислокация при этом исчезла.
Итак, что же такое дислокация? Это линейный дефект кристаллической решетки. Почему линейный? Очень просто — это край экстраплоскости. На нашем чертеже он выглядит точкой, одним атомом. А в действительности этих самых «одиноких волков» много — они сидят на краю экстраплоскости по всей ее протяженности, перпендикулярной чертежу, и каждый из них жаждет «уйти в тень», перейти в статус рядового атома. Но за это он должен «поплатиться» сменой соседа ниже плоскости скольжения, т. е. перемещением дислокации на одно межатомное расстояние.
Итак, дислокация — это линия, нить. Ее движение означает: дислокация осуществляет пластическую деформацию кристалла. Перед нею деформации нет, за ней — есть. Какова же ее толщина? В нашей схеме — один атом; в действительности «потолще» — 5–6 атомов. А какова ее длина? Опыт показывает, что она примерно равна размеру кристалла, то есть может составить несколько миллиметров и даже сантиметров. Толщина, таким образом, стомиллионные доли сантиметра, а длина — сантиметры. Ну, чем не нить? Опыт действительно показывает, что и поведение дислокаций подобно поведению тонкого волокна — они способны изгибаться, цепляться за дефекты, а иногда и образовать ткань из переплетающихся линий. А как вы знаете, тканевый материал обладает довольно высокой прочностью. Поэтому когда множество дислокаций сплетаются, они мешают друг другу двигаться и делают кристаллический материал прекрасно сопротивляющимся пластической деформации, то есть более прочным. В монокристаллах дислокаций не слишком много. Примерно по миллиону на квадратный сантиметр. Эта цифра велика, но из-за того, что дислокации распределены неравномерно, довольно большие пространства кристалла от них свободны. И если в этом районе появилась дислокация, она распространяется без затруднений. Поэтому монокристаллы не слишком прочны.
Иное дело поликристаллический материал. Например, сталь. Плотность дислокаций в ней в тысячи и миллионы раз выше, чем в монокристалле. При этом уже дислокации не могут двигаться независимо друг от друга. Они взаимодействуют. Нити дислокаций образуют сложную пространственную структуру, напоминающую клубки переплетенные, запутанные. Понятно, что такой металл труднее деформировать. Он оказывается прочнее.
В сплавах возникают новые явления. Дело в том, что примеси — легирующие атомы — стремятся окружить край экстраплоскости. Грубо говоря, они тяготеют к «одинокому волку», ведь он постоянно ищет себе собратьев. Кроме того, оказывается, дислокация обладает способностью создавать вокруг себя упругое поле напряжений. Оно как бы засасывает инородные атомы. В результате линия дислокации, тоненькая и элегантная в чистых металлах, полнеет и расплывается в легированных. При этом она теряет подвижность, а иной раз попросту не способна перемещаться в пространстве — легирующие и окружающие ее чужеродные атомы играют роль гвоздей, «прибивающих» ее к кристаллической решетке. Ну, а если дислокация неподвижна, пластической деформации быть не может. Следовательно, легированные металлы прочнее нелегированных.
Теперь нам ясно, что изобилие дислокаций ведет к подавленной пластичности, а значит» к высокой прочности металла. Означает ли это, что всегда нужно много дислокаций, чтобы прочность была высокой? Такая постановка вопроса была бы слишком прямой, чтобы оказаться правильной.
И действительно, как быть с усами? У них почти теоретическая прочность; сколько же в них дислокаций? Наверное, очень много? В том-то и дело, что дислокаций в усах почти нет. Бывают нитевидные кристаллы, в которых одна дислокация, а имеются такие, в которых дислокаций нет вообще. Оказывается, именно такие бездислокационные кристаллы и обладают предельной прочностью.
Если вдуматься, то противоречия здесь нет. Главное заключается в том, что для получения высокой прочности нужно «подавить» пластичность. А это можно осуществить двумя способами. Либо исключить основной инструмент пластической деформации — дислокацию, либо «набить» их в металл столько, чтобы они из-за тесноты и двинуться не могли. Первый случай имеет место в бездислокационных кристаллах — усах. Второй — в специально термически обработанной стали с высокой плотностью дислокаций.
Таким образом, дислокация — это великое благо (или зло!), позволяющее нам понимать явления, происходящие в кристаллических материалах, и сознательно влиять на них. Меняя лишь одну плотность дислокаций» мы можем в широких пределах получать нужную нам прочность. И не только ее. Дислокации влияют почти на все свойства металлов. И на их вязкость, и на электросопротивление, и на магнитные качества. Думаю, что почти все в металле, с чем связан небескорыстный интерес к ним человека, зависит от дислокаций: их количества, расположения, качества.
Что значит качества? Не оговорился ли я? Нет, не оговорился. Оказывается, существуют дислокации по крайней мере двух видов. Ту дислокацию, с которой мы имели дело до сих пор, называют обычно краевой. Смысл этого термина опирается на существование экстраплоскости ее кромки — края. Есть еще один, не менее важный вид дислокации — винтовой. Экстраплоскости у такой дислокации нет и напоминает она ножницы, режущие тонкий лист жести. При этом одна половина листа идет вниз, а противоположная вверх. Ножницы как бы скручивают две половины листа по отношению друг к другу. Но ножницы металл режут, а винтовая дислокация его просто сдвигает. Чем-то она похожа на тупые ножницы, не способные разрезать а только сминающие металл, деформирующие его. После того как винтовая дислокация пробежит по металлу, части его окажутся повернутыми одна по отношению к другой. Так же, как в случае с краевой дислокацией, перед дислокацией деформации нет, а позади нее — есть.
Итак, существуют два вида дислокаций — краевая и винтовая. Что-то вроде двух фамилий, двух кланов. Но кроме фамилий, дислокации должны иметь и имена. И действительно, краевых дислокаций великое множество и их надо каким-то образом различать. Основные признаки дислокации — величина и направление осуществляемого ею сдвига. Ведь сдвиг в кристалле может проходить по различным плоскостям, И после прохождения дислокации обе части кристалла могут взаимно сместиться на различную величину. Эти два обстоятельства учитывают в физике твердого тела введением вектора Бюргерса. Его величина и направление и есть «имя и отчество» дислокации. Так и говорят: дислокация винтовая с вектором Бюргерса, скажем, в одно межатомное расстояние, направленным по ребру куба. Но на практике все буднично: обозначается вектор Бюргерса буквой b и равен он, например, а (III). Означает это следующее: ориентирован вектор Бюргерса по диагонали куба и величина его составляет a√3, т. е. равна этой диагонали.
Подведем итог. Пластическая деформация кристаллов осуществляется дефектами — дислокациями. Особенностью их является способность сосредоточить усилие, приложенное к плоскости скольжения на одном маленьком «пятачке», благодаря чему дислокации движутся легко и быстро. Чем-то распространение дислокации напоминает «походку» гусеницы, у которой каждый шаг — это перемещение складки, морщины (вспомните эпиграф к этой части главы!).
Иногда дислокацию представляют себе иным образом. Ковер на полу двигать тяжело. Образуйте на нем морщинку и тогда его легко можно передвинуть ногой. В итоге, ковер окажется смещенным на длину складки. То же самое можно сделать и с мокрой клеенкой.
Дислокация — это абстракция, научный вымысел или будничная реальность? Конечно же, реальность! Действительно, во времена Тейлора она была лишь теоретической схемой, хорошей идеей, моделью. Но сегодня десяток методов позволяет нам видеть дислокацию так же ясно, как прохожего на улице, с помощью электронного микроскопа, наблюдать за ней, используя рентгеновские методы исследования и самый обыкновенный оптический микроскоп. Как не вспомнить Иосифа Уткина, который задолго до наступления нашего торжества над дефектами писал:
…Он усом
не раз и
не два
отмечал
Большой дислокации метки…
Но зачем мы всем этим занимаемся? Ведь нас-то интересует разрушение? А при чем же здесь дислокации? Какое отношение имеют они к трещинам? Такие и именно такие вопросы, наверное, хотел бы задать мне читатель, обладающий даже умеренным чувством осторожности и скепсиса. Ответ прост. Дело, оказывается, в том, что именно дислокации держат в своих руках ключ от мира прочности кристаллических материалов. Именно с ними и связан окончательный «диагноз».
…Толчок разорвал
напряженные сети молекул…
В. Назаров
Читатель помнит, что механика не смогла решить вопросы о том, с чего началось разрушение и что произошло с атомами.
Пришло время рассмотреть эту проблему с позиций физики.
Не следует думать, что в этом направлении все очевидно и доказано. Здесь накопились свои неясности и двусмысленности. Взять хотя бы основной вопрос, вокруг которого ломались копья и мнения на протяжении многих лет: всегда ли пластическая деформация необходима для появления первой микроскопической или, как говорят физики, зародышевой микротрещины?
Выдающийся советский ученый А. В. Степанов первым выдвинул точку зрения, согласно которой без пластической деформации микротрещина зародиться не может. И десятилетия это мнение господствовало. Оно и сейчас преобладает, но уже не является единственно возможным. Вполне допустим и противоположный взгляд. В противном случае было бы невозможно объяснить факты, наблюдавшиеся в опытах. Это ведь важно и потому, что не должно быть помех способности и желанию людей мечтать, фантазировать и сопоставлять противоположные, а иногда и взаимно исключающие точки зрения.
Сейчас различают два типа трещин. Прежде всего идеально хрупкие, так называемые силовые трещины. Название это отражает следующую мысль: трещины такого рода возникают благодаря механическому силовому расщеплению слоев кристалла. Происходит нечто подобное расслаиванию слюды, отрыванию старых обоев от стены или фотографий от листов альбома. При этом межатомные связи разрушаются как бы непосредственно под действием внешних механических усилий и одна атомная плоскость отрывается от соседней. Отличительная особенность таких трещин — плавный изгиб поверхностей и схождение их в вершине трещины на одно межатомное расстояние. Можно ли считать это объяснение исчерпывающим? Нет, конечно, это лишь образ, помогающий составить себе представление, модель. Не более. Понятным этот вопрос стал бы, лишь когда мы выяснили бы, какие события произошли при этом между двумя атомами. Каким образом разрывались межатомные связи? Что поделывали при этом электроны в пространстве между разрывающимися слоями? Ведь именно с ними связана природа прочности металлов. Этих вопросов много. Ответов, к сожалению, пока нет. Не знаем мы и механизма разрыва кристаллической решетки. А между тем опыт показывает, что силовые трещины существуют. Их можно видеть на значительных участках кристаллов, лишенных дислокаций.
С микротрещинами второго вида — дислокационными— дело обстоит гораздо лучше: мы понимаем, как они образуются. Конечно, далеко не исчерпывающе, но все же понимаем. Начнем с характера дислокаций. Дислокация — дефект, сплошь и рядом не одиночный, а коллективный. К соседям своим она не безразлична и способна сосуществовать с ними, дружить и даже враждовать. Совсем как люди с тяжелыми и противоречивыми характерами. Дело доходит до того, что одна дислокация может поглотить другую. При этом нам ясно, что говорить о «доброй» или «злой» дислокации нелепо, как бессмысленно говорить об «умной» лампочке или «недалеком» книжном шкафе.
Присмотримся внимательнее к тому, как это происходит. Допустим прежде всего, что две краевые дислокации находятся в одной плоскости скольжения и их экстраплоскости лежат по одну сторону от нее. Оказывается, что в этом случае дислокациям предоставляются две возможности. Первая из них — жить, как добрые соседи: в тесноте, да не в обиде. Читатель помнит, что образование дислокации связано в конечном итоге с внедрением в материал экстраплоскости. Это означает, что пространство вокруг дислокации деформировано. По мере сближения дислокаций под действием внешнего давления их упругие поля начинают взаимодействовать, препятствуя дальнейшему схождению. Если же в плоскости скольжения дислокаций много, то напряжения вокруг такого скопления их могут оказаться очень значительными. Это и понятно — тесно дислокациям. И тогда может наступить момент, когда они поведут себя как скорпионы в банке — начнут пожирать друг друга. Впрочем, это слово не точное. Не точное прежде всего потому, что непонятно, кто кого съел. Помните, у Ильфа и Петрова были близнецы, «похожие друг на друга как две капли воды. Особенно, первый»… Судите сами, сближаются совершенно одинаковые дислокации, преодолели они сопротивление своего упругого поля и… слились воедино. Обе их экстраплоскости оказались соседними, а под их крайними атомами возникла пустота. Небольшая, но пустота. Обстоятельный анализ этого явления привел ученых к заключению, что пустота — это самый настоящий зародыш микротрещины.
То, что на этой странице выглядит так просто и естественно, в действительности процесс сложный. Просто две дислокации в одной плоскости скольжения соединиться не могут — они взаимно отталкиваются, как две спортивные машины, обгоняющие одна другую на узком треке. А внешних сил, способствующих сближению, нет. Их срастание возможно только в мощном коллективе примерно из 200–500 дислокаций, расположенных в одной плоскости, да еще ограниченных в своем движении в одну сторону. Физики говорят — скопление дислокаций заперто. Чем? Чем угодно, любым барьером. Это может быть, например, граница зерна, инородное включение достаточно большой величины или какой-нибудь другой мощный дефект. На хвост строгой очереди из сотен дислокаций давит внешнее поле напряжений. Каково же приходится тем считанным дислокациям, которые оказались между толпой и барьером? Да ведь это все равно что попасть в кучу-малу и оказаться прижатым к асфальту. И действительно, дислокациям в вершине скопления не позавидуешь! Ведь на них давит вся очередь, а они упираются в барьер. В этих-то условиях дислокации и могут объединяться. Так в вершине скопления возникает зародышевая микротрещина.
Реальна ли нарисованная картина? Лишь отчасти. Действительно, в вершине скопления трещина может образоваться за счет слияния дислокаций, но скоплений таких в «пятьсот душ» не бывает. Очереди дислокаций в кристаллах обычно гораздо короче. Но трещины все же на них образуются? За счет чего? За счет многих параллельных очередей дислокаций, «ломящихся» в соседние «запертые двери». Эти очереди взаимодействуют друг с другом и, когда появляется первая зародышевая трещина, они «всем скопом» начинают нагнетать в нее дислокации. А как помнит читатель, каждая дислокация вносит в трещину свое пустое пространство под экстра-плоскостью, вследствие чего растет трещина.
Есть другая возможность избежать огромного числа дислокаций внутри их скопления. Она заключается в том, чтобы преодолеть взаимное отталкивание, «неприязнь» дислокаций при ограниченном их числе. Для этого надо перейти от медленного нагружения к динамическому. Нужно разогнать дислокации и сближать их на большой скорости. Тогда, обладая запасом кинетической энергии, дислокации «разменяют» ее на потенциальную энергию и прорвутся сквозь упругие барьеры, ограждающие другие дислокации. В результате при значительно меньшем числе дислокаций в скоплении можно ожидать их слияния с образованием микротрещины. Расчеты показывают, что скорости дислокаций при этом должны быть почти звуковыми (в стали, например, 3–5 км/с).
До сих пор предполагалось, что взаимодействуют дислокации одного знака, т. е. их экстраплоскости находятся по одну сторону от плоскости скольжения. Могут «конфликтовать» и дислокации разных знаков. Ситуация по-своему здесь очень благоприятствует объединению дислокаций. Дело в том, что упругие поля разноименных дислокаций тяготеют друг к другу. Поэтому слияние дислокаций осуществляется легко и естественно, а там, где одна против другой останавливаются экстраплоскости, возникают пустые места — вакансии. Физики их называют просто дырками. Если по плоскости скольжения навстречу друг другу пробежало много дислокаций разных знаков, то сама плоскость скольжения представляет собой область, изобилующую дырками. Считают, что при некоторых видах механического нагружения, например, при ползучести — медленном, высокотемпературном деформировании металлов, эти вакансии могут, группируясь, образовать микротрещины. В условиях обычного, достаточно быстрого нагружения для диффузионного перемещения этих дефектов времени нет, и поэтому в разрушении они скорее всего роли не играют. Но вот по параллельным и близко расположенным плоскостям навстречу друг другу застопорились два дислокационных скопления с противоположными знаками. По существу роль каждого из них теперь двояка. Во-первых, для противоположного скопления это барьер. Во-вторых, это «нажимающий» клин, спрессовывающий две свои головные дислокации. В итоге ситуация оказывается более благоприятной для слияния дислокаций и происходит оно при относительно небольших скоплениях. Да и трещина растет быстрее — ведь у нее теперь Двое «кормящих родителей».
Пусть читатель обратит внимание, в какой неразрывной связи выступают здесь дислокации и зародышевые микротрещины. На стадии, когда последняя представляет собой лишь две соединившиеся дислокации, трещина от них практически неотделима. Пластичность и разрушение как бы сливаются в единый неразрывный процесс как явление природы.
Не остается в стороне при этом и тепловое движение, сотрясающее кристаллическую решетку и приводящее к постоянным колебаниям атомов в узлах решетки. Вибрирует и линия дислокации — на ней возникают и исчезают микроскопические волны. В каждый момент времени такая волна представляет собой перегиб линии дислокации в плоскости скольжения. Это означает, что на небольшом участке, кроме основной экстраплоскости, возникает маленький участок другой, параллельной первой. На нем дислокация как бы продвинулась вперед. Процесс этот, как говорят физики, носит статистический, то есть случайный, характер. Самонадеянно и неверно было бы заявить, что вот на этой именно дислокации, да еще в этом ее месте возникнет перегиб. Зато всегда можно предсказать вероятность того, что в некотором объеме на достаточно надежном числе дислокаций такой процесс происходит. Пожалуй, это похоже на то, что вы не в состоянии предсказать, встретите ли через минуту на ближайшем перекрестке мужчину ростом в 1 м 80 см. Вместе с тем статистика сообщает, как в каждой стране мужчины распределяются по своему росту. Еще недавно, например, у нас из каждых 10000 мужчин в возрасте от 25 до 35 лет один-двое имели рост 190 см, трое-четверо— 187 см, восемь-десять 185 см, триста— 182 см. А средний рост большинства составлял 168 см. Поэтому, если поставить вопрос так: «Какова вероятность того, что на ближайшем углу достаточно многолюдной улицы нам встретится мужчина ростом 180 см, то можно и «угадать».
Примерно также обстоит дело и с перегибами на дислокациях.
А между тем ленинградские физики А. Н. Орлов и В. И. Владимиров показали, что подобные, на первый взгляд ненадежные, соображения ведут к вполне надежным результатам. Оказалось, что когда на двух сблизившихся под давлением дислокациях возникают перегибы термического происхождения, облегчается слияние дислокаций и возникновение зародышевой микротрещины. И если ранее для образования такой трещины теория требовала совершенно фантастического количества дислокационных скоплений 200–500 штук, то термическое возбуждение кристаллической решетки и линий дислокаций уменьшает эту цифру в пять раз. А скопления 40— 100 дислокаций — реальность.
Колонна дислокаций, или дислокационное скопление — одно из основных «боевых» построений дислокаций. В таком строю силы их как бы умножаются, потому что к внешнему давлению — напряжениям — прибавляются еще собственные упругие поля дислокаций. Такая система обладает высокой «пробивной» способностью. Но представим себе следующую картину. Уперлось скопление в некий барьер, да настолько прочный, что пробить его невозможно. Внешние напряжения нарастают, а десятки дислокаций умножают его. В вершине этого дислокационного «зубила» обстановка становится критической… Но вот напряжения достигают предела прочности. Мы знаем, что в этом случае материал должен разрушиться. И действительно, под углом в 70° по отношению к скоплению «вспыхивает» трещина. Процесс этот облегчается, если барьер атакуется не одним, а несколькими скоплениями одновременно. Оказалось, что Для достижения напряжений, равных теоретической прочности, таким же инструментом, как краевые дислокации, являются дислокации винтовые. Только в этом случае трещина возникает прямо в плоскости скольжения дислокаций, то есть в плоскости самого скопления. Удовлетворила бы физиков нарисованная картина? Нет. И вот почему. Механизм «накачивания» напряжений в вершине скопления безусловен и созревание окрестностей материала в районе барьера и разрушению сомнения не вызывает. Но совершенно непонятно, как же все-таки возникает первичный, изначальный разрыв связей в кристаллической решетке размером ну хотя бы в два межатомных расстояния? Описанному механизму уже 25 лет, но до сих пор он не помогает ответить на поставленный вопрос. Поэтому его зародышевая трещина носит, я бы сказал, странный, не вполне естественный характер, условия для ее появления есть, а «спускового механизма» нет.
…Странный гость, говорю вам, неведомый гость.
Он прошел через стенку насквозь, словно гвоздь,
кем-то вбитый извне для неведомой цели…
(Б. Ахмадулина)
В этом смысле неопределенным является еще один механизм образования микротрещины. Он предложен физиками— советским, В. Н. Рожанским, и американским — Дж. Гилманом и заключается в следующем. В полосе скольжения скопились дислокации, запертые каким-то барьером. По мере накачивания дислокаций в эту полосу внешним источником плоскость скольжения изгибается под действием множества экстраплоскостей дислокаций, расположенных над ней. При этом происходит явление, подобное осыпанию лака с модельной обуви. При нанесении на кожу лак сцепляется с ней. В процессе работы кожа постоянно изгибается. Но механические свойства ее и лака различны. Поэтому различны и напряжения в коже и слое лака. При некачественном наклеивании рано или поздно лак начнет отслаиваться от кожи и осыпаться. Условия «вскрытия» материала по плоскости скольжения здесь вполне понятны. Но как это получилось, с чего это началось — не ясно!
Один из возможных ответов на этот вопрос предложили сотрудники Института кристаллографии АН СССР В. Л. Инденбом и М. X. Блехерман. Они обратили внимание на то, что самое слабое место в скоплении дислокаций… сама дислокация. Оказалось, что сердцевина дислокации — ее ядро — в определенных условиях может раскалываться. Вообще нужно заметить, что природа явлений в ядре краевых дислокаций сложна и недостаточно изучена. Окрестности края экстраплоскости принесут в будущем еще много неожиданностей. Одну из них и заметили В. Л. Инденбом и М. X. Блехерман. Сердцевина дислокации — материал с нарушенной сплошностью. По некоторым соображениям следует считать, что вдоль кромки экстраплоскости идет пустой канал. Напряжения в ядре дислокации чрезвычайно велики и вычислить их прямым расчетом сегодня еще невозможно. Стало быть, собственно механические свойства у ядра дислокации почти наверняка хуже, чем у матрицы ненарушенного кристалла. Имеется при этом в виду сопротивление материала на разрыв и сдвиг. И, как это ни странно, разрушение может стартовать прямо из ядра, служащего в данном случае исходным зародышем микротрещины. Вопрос лишь в том, как начнет расти микротрещина. Было установлено, что в пластичных кристаллах она распространяется по плоскости скольжения. В хрупких же кристаллах сближение дислокаций ведет к перестройке их ядер и вскрытию трещины прямо вдоль экстраплоскости. А что при этом происходит с дислокацией? Она самоуничтожается, совершая своеобразное харакири!
В нашем научном багаже три механизма зарождения трещин с вариантами. Исчерпаны ли этим возможные случаи? Нет, конечно, их довольно много. До сих пор дислокации, образующие трещину, двигались по одной и той же плоскости скольжения. Между тем в кристаллах они способны перемещаться по различным плоскостям. Чего же можно ожидать от таких дислокаций, когда они сходятся вместе? Теория говорит, что они решительно взаимодействуют друг с другом. Настолько решительно, что, исчезая сами, дают жизнь новой «молодой» дислокации, расположенной в плоскости спайности, то есть как раз в той плоскости, в которой протекает разрушение. Поскольку обычно скольжение развивается по множеству плоскостей, на плоскости спайности создается много таких дислокационных «отпрысков», сливающихся вместе и образующих трещину. Этот механизм, предложенный английским физиком А. Коттреллом, напоминает двух лыжников, скатывающихся с горки и сталкивающихся внизу. Представьте: их лыжи наехали одна на другую, перекрестились и перепутались. В таком положении лыжники — дислокации — дальше скользить не могут. Особенность заключается в том, что до своего объединения две скользящие дислокации являются инструментами пластической деформации. А вот родившаяся дислокация — уже инструмент разрушения. Что-то вроде ситуации, когда два человека, столкнувшись в дверях троллейбуса, зацепились друг за друга: пуговица пальто одного из них попала в ячейку «авоськи» другого. Естественный итог такого столкновения — оторванная пуговица или разорванное пальто… В большинстве случаев это — гордиев узел: разорвать его можно, только разрубив. Но… Коттрелл доказал, что иной раз «склеившиеся» дислокации, казалось бы, полностью потерявшие «свое лицо» и даже исчезнувшие, можно разделить. В нашей «троллейбусной» ситуации это означало бы следующее: неторопливо освободить пуговицу, что возможно далеко не всегда. На языке дислокаций это звучит так: диссоциировала, то есть распалась на две исходные скользящие дислокация, превращающаяся в трещину. Как сказал американский поэт У. Дж. Смит, «… здесь назад означает вперед» потому, что ушел кристалл от разрушения, вернулся к своему монолитному существованию, к прочности.
Целая группа механизмов разрушения связана с существованием границ в кристаллических материалах. В металлах — это границы зерен, в монокристаллах — границы субзерен. И в том, и в другом случае речь идет о шеренгах дислокаций. В монокристаллах шеренги эти довольно просты. Грубо говоря, строй этот представляет собой краевые дислокации, стоящие почти «в затылок» друг другу. Экстраплоскости каждой из таких дислокаций кончаются на границе и все вместе они создают разворот одной половины кристалла по отношению к другой. Чем выше плоскость дислокаций в границе, тем больше экстраплоскостей «умирает» на ней, тем больше развернуты кристаллы. Границ таких в кристаллах великое множество и образуют они сложные пространственные картины совершенно произвольного вида. Границы плохо видны, если смотреть на кристалл издалека. Но если приблизить его к глазам и повертеть под падающим световым лучом, то можно заметить отблеск от различных участков кристалла. Это и есть наиболее крупные отдельные его субзерна. Что касается огромного числа мелких субзерен, то они едва заметны.
Между тем при деформировании кристалла дислокации движутся в нем по различным кристаллографическим направлениям и периодически пересекают границы. Что происходит при этом?
Если разворот смежных субзерен не слишком велик, то есть плотность дислокаций в границе мала, полоса скольжения может легко и безболезненно пройти сквозь границу. Однако по мере роста угла между смежными кристаллами межзеренная граница становится прочнее. Теперь уже нужно приложить определенные напряжения для ее прорыва дислокациями извне. Наступает наконец такой момент, когда межзеренное сочленение превращается в мощный барьер, ограничивающий движение всех дислокаций и упирающийся в границу в полосе скольжения. О том, что происходит дальше, известно из работ англичанина А. Стро и француза Ж. Фриделя. Под давлением «толпы» дислокаций напряжения в районе столкновения дислокационного скопления и границы быстро нарастают, и вот…
Перегородок тонкоребрость
Пройду насквозь, пройду как свет.
Пройду, как образ входит в образ
И как предмет сечет предмет.
(Б. Пастернак)
Граница разрушается, как стенка старого дома, в которую уперся нож бульдозера. При этом часть ее остается на месте, а часть смещается. В разрыве и возникает трещина. Она как бы замыкает границу.
Группа ленинградских ученых, возглавляемая В. А. Лихачевым, обратила внимание на еще одну возможность взаимодействия полос скольжения с дислокационной границей, имеющей более мягкий, эволюционный характер. Представьте себе: под скрежет тормозов круто поворачивающаяся машина оставляет на асфальте темную полосу — тонкий слой материала шин, схватившийся под действием давления и вызванной им силы трения с поверхностью дороги. Круто поворачивающая дислокация тоже оставляет свой след. Когда полоса скольжения переходит из одного кристаллита в другой, изгиб траектории на границе ведет к тому, что в ней оседает так называемая разностная дислокация. Она и представляет собой «остаток» дислокации, застрявший в межзеренном сочленении.
Дислокацию, преодолевающую границу между двумя зернами, можно уподобить лыжнику, «взмахивающему» на бугорок. Если его скорость велика, он за бугорком пролетит какое-то расстояние, как с трамплина, по воздуху. Для того чтобы он плавно съехал с бугорка, скорость его должна быть достаточно низкой: тогда сила тяжести успевает прижать лыжника к поверхности бугорка. Если дислокация, движущаяся по плоскости скольжения, выходит на межзеренное сочленение, то, находясь на нем, она должна повернуться на угол разориентировки смежных зерен и пойти по новой плоскости скольжения. Но это означает, что она обязана изменить свой вектор Бюргерса, что возможно только, если на границе появится еще одна дислокация, вектор Бюргерса которой по правилу сложения векторов замкнет треугольник между векторами исходной дислокации и дислокации, перешедшей во второе зерно. Грубо говоря, роль этой дислокации заключается в том, чтобы заставить скользящую дислокацию «облизать» границу и перейти с плоскости скольжения одного зерна на плоскость скольжения другого. Если граница атакована большим числом полос скольжения, возникает множество разностных дислокаций. Слияние их друг с другом ведет к появлению трещины в границе. Могут эти дислокации образовать и собственную стенку. Тогда, как показывает теория, на краю стенки может также возникнуть зародышевая трещинка, как в механизме Стро — Фриделя. В. Л. Инденбом, а потом и американские физики Е. Дэш и М. Марцинковский нашли еще один вариант появления трещины. Под действием полосы скольжения, упершейся в межзеренную границу, в последней возникает ступенька. Это происходит примерно так же, как если бы нож бульдозера давил на вязкую стенку из сырой глины. Расчет показывает, что в окрестностях такой ступеньки возникли бы огромные внутренние напряжения (это и неудивительно — ведь процесс происходит в монолитном материале), настолько большие, что рано или поздно вместо ступеньки образовалась бы микротрещина. Поскольку она заняла бы место ступеньки и играла бы «примирительную» роль (ведь с ее появлением напряжения бы естественно снизились), ее называют аккомодационной. Иначе говоря, трещина — оппортунист, приспосабливающий обе половины кристалла и две части сдвинутой границы к сосуществованию.
Вряд ли можно в коротком рассказе изложить все, что известно о зарождении микротрещин. Но не рассказать о двойниках и их спорной роли непростительно. Уж очень это необычайный, экзотический дефект. Дислокация микроскопична и невооруженным глазом не видна. Другое дело двойник — он может быть размером, скажем, в половину большого кристалла. На монокристаллических материалах, например на висмуте, кальците, цинке и даже стали, двойники имеют форму полосок и хорошо видны. Как правило, обычная сталь всегда со-.держит двойниковые прослойки в большом количестве. Это связано с происхождением двойников — они легко возникают при динамическом нагружении. А поскольку при изготовлении сталь многократно подвергают различного рода ударам и деформациям при высоких скоростях нагружения, двойников в ней невероятное количество. В каждом зерне их может быть несколько десятков. Но размер зерна исчисляют сотыми долями миллиметра. Следовательно, по сечению куска металла в 50 см можно насчитать около миллиона двойниковых прослоек и ни один из этих двойников не равнодушен к прочности. Это очень важно. Дело в том, что нет в металле другого дефекта, в объяснении которого так много неопределенности. И ни один дефект, пожалуй, не умудряется быть одновременно столь полезным и столь же вредным, как двойник.
Но пришло время рассказать о том, что, собственно, представляет собой этот дефект. Буквально — это область переориентированной кристаллической решетки. Причем на вполне известные углы. Возьмем, к примеру, кристалл. Часть его зажмем в тиски, а на вторую будем давить. При определенном усилии кристалл повернется и займет зеркально отраженное положение по отношению к первоначальному.
Интересно, что тело двойникованного кристалла имеет ту же кристаллическую решетку, что и «материнская» часть, и при том совершенно неискаженную. Другими словами процесс двойникования только разворачивает кристаллический материал, но не насыщает его дефектами. Иное дело — граница между основной и сдвойникованной частями кристалла: она забита дислокациями. Их так и называют — двойникующие. По существу двойникование — это одна из разновидностей пластической деформации — формоизменение кристаллического материала.
В реальном кристалле двойникование протекает обычно в виде процесса, сосредоточенного в относительно узких полосах. Так и говорят: двойниковые прослойки. У такого двойника две границы с основным кристаллом. И на каждой — стенки дислокаций, создающие вокруг двойниковой прослойки поле упругих напряжений. Еще более интенсивное поле возникает в поликристалле вследствие того, что в процессе двойникования внутри кристалла материал смещается при неизменных внешних границах тела. Итак, двойникование способно повышать напряженность металла в его микрообъемах. Это одно из обстоятельств, причем не главных, ведущих к тому, что при близком расположении двух параллельных двойниковых прослоек между ними образуются пустоты, имеющие строгие кристаллографические очертания, так называемые каналы Розе I рода. Это самые настоящие зародышевые микротрещины.
Еще интереснее пересечение двойниковых прослоек. В очаге, где оно происходит, кристалл раскалывается на множество мельчайших кристалликов размером в микроны и доли микрона. Это канал Розе II рода — призматическая трещина кристаллографических очертаний, заполненная раздробленным материалом. Поскольку объем разрушенного материала всегда больше, чем плотного кристаллического, эта зародышевая трещина как бы распирает окружающий ее кристалл и вызывает появление в нем дополнительных микротрещин.
Особенностью двойниковых прослоек, обнаруженной Р. И. Гарбером, является их обратимый характер. Двойник считают образованием упругим. Это означает, что при снятии нагрузки или при нагрузке обратного знака двойниковая прослойка может исчезнуть. В. А. Федоров и автор книги, опираясь на эти представления, показали, что каналы Розе I и II родов тоже обратимы. После исчезновения упругих двойников они могут «залечиваться» и прочности кристалла в этих условиях уже ничто не угрожает.
Однако для двойников это явление исключительное. Значительно чаще они создают трещины определенно необратимые и возможностей у них для этого предостаточно. Например, они могут создавать дислокации и «пускать» их вперед себя. Такие опережающие дислокации от двух двойников способны взаимодействовать и создать микротрещины.
Двойники не упускают случая создать трещину и Другими путями. Так, при пересечении двойника с поверхностью металла, с межзеренной границей, с неметаллическим включением и вообще с любым достаточно жестким макроскопическим барьером можно ожидать появления трещины и далеко не всегда механизм ее возникновения ясен. Зато несомненно Другое: двойниковые прослойки опасны и являются потенциальными источниками зарождения микротрещин в металлах.
Значит, двойник, безусловно, вреден, значит, он зло?
Но тут всплывает органическое качество двойника — его невероятная многоликость.
В том-то и дело, что двойник — далеко не всегда зло. Начнем с того, что при нагружении металла двойник играет роль своего рода демпфера. Он довольно быстро включается в игру и, «протекая» по сечению металла, релаксирует, т. е. гасит внешнюю нагрузку тем, что осуществляет быстрое пластическое деформирование. Особенно эффективен этот процесс при динамическом, то есть очень быстром, нагружении. Дислокации еще только «расшевеливаются», освобождаются от своих атмосфер, отрываются от насиженных мест в кристаллической решетке, а двойник уже побежал. Да еще с какой скоростью. А. П. Королевым и автором этой книги определена эта скорость — 2–2,5 км/с. И все время, пока двойник «сломя голову» мчится по кристаллу, он снимает внешнее напряжение, работая на прочность металла. В процессе динамического нагружения стали в течение 20 мкс двойники остаются один на один с внешним нагружением и разряжают его до подхода главных оборонительных сил металла — потоков дислокаций. Именно они, таким образом, принимают первый удар и защищают металл.
Все ясно, скажет читатель, двойник — добро. Но этот хамелеон-двойник преподносит нам новый сюрприз. Пока он защищает металл, поглощая внешнюю нагрузку, он уже «думает» о будущем. И «мысли» его, к сожалению, «темные». Уже в процессе своего, казалось бы, защитного бега, бега ради жизни, двойники начинают создавать микротрещины. Увы, мы уже знаем, к чему это рано или поздно приведет…
Странный дефект! Ну, а если он уже есть, как с ним живет металл? Может быть, здесь двойникам можно, наконец, доверять? Может быть, они поддержат прочность? Можно ли на это надеяться?
Двойники верны своей природе и здесь. С одной стороны, они способны притормаживать макроскопическую трещину, коль скоро она распространяется в металле. С другой — они охрупчивают металл, понижая его сопротивление хладноломкости. Вот так всегда: с одной стороны… с другой стороны…
…Миг между светом и тенью…
В. Брюсов
Теперь мы знаем о первых мгновениях жизни трещины— от приложения нагрузки до появления зародышевой микротрещины. Следующим этапом ее бурного развития является медленное, как говорят, докритическое подрастание. Имеется в виду то, что на этом этапе своей истории трещина не опасна и полностью контролируема. Ее подрастание возможно лишь при повышении существующих напряжений. Это гарантия того, что разрушение не «сорвется с цепи» и не начнет безжалостно, без разбора крушить металл. Все это не означает, что здесь трещина обязательно микроскопически мала. Нет. Она при этом может быть достаточно большой, например в стали, — в несколько миллиметров. Но при этом длина ее все же не достигает тех размеров, после которых она перестает зависеть от внешних напряжений. На языке механики это звучит так: трещина меньше гриффитсовских размеров и для ее подрастания нужно подводить к ней больше энергии, нежели дает сама трещина.
Таким образом, докритическая трещина — устойчивая, «спокойная», я бы даже сказал «флегматичная». Словом, неопасная.
Однако рано или поздно эта «спячка» кончится и тогда перед нами возникает другая трещина — хищник. Именно поэтому всплывает вопрос: как же все-таки такая трещина растет?
Ответить одной фразой на этот вопрос нельзя потому, что трещины бывают разные. Читатель уже знает, что трещины делят на силовые и геометрические. Обратимся к первым.
Силовая трещина отличается своей демонстративной независимостью от пластической деформации. Во всяком случае она это «декларирует вслух». Такая трещина представляет собой разрыв межатомных связей в своей вершине. Сначала между первой парой атомов, затем после концентрирования напряжений — между второй, опять собирается с силами — и между третьей… Так этот разрыв и передается от одной пары атомов к другой, как чеховский мираж из «Черного монаха»… «От миража получился другой мираж, потом от другого третий, так что образ черного монаха стал без конца передаваться из одного слоя атмосферы в другой. Его видели то в Африке, то в Испании, то в Индии, то на Дальнем Севере…»[5]
Ну а что говорит по этому поводу эксперимент? К сожалению, эксперимент молчит. Потому что очень трудно, хотя, вероятно, и возможно, провести его так, чтобы трещина была начисто лишена признаков пластической деформации. Сегодня — это область, где безраздельно царствуют теоретики. И работают они примерно следующим образом. Рисуют на бумаге кристалл, состоящий, скажем, из 100 или 1000 атомов — эдакую кристаллическую решетку в десять атомов на десять. Выбирают некоторый закон взаимодействия атомов между собой и «строят» трещину длиной в несколько атомов. А затем с помощью электронно-вычислительной машины просчитывают, каким образом с приложением внешних напряжений изменится равновесие этого вымышленного кристалла и как трещина будет расти, то есть рвать межатомные связи в своей вершине. В этой области работают и отечественные, и зарубежные ученые. Успехи здесь не слишком обнадеживающие, по крайней мере, по двум причинам. Во-первых, уж слишком условны межатомные силы — в действительности они несоизмеримо сложнее. Во-вторых, уж очень мал кристалл, а для большего у сегодняшних машин не хватает памяти. Поэтому надежность получаемых результатов здесь не очень велика. Некоторые из результатов этой группы работ привели, например, к совершенно удивительному заключению. Оказалось, что, несмотря на отсутствие изначальных посылок, каким бы то ни было образом связанных с пластичностью, расчеты привели к появлению вблизи трещины… типичной дислокации. Не может ли оказаться, что дислокации, которым «по условиям игры» не место в хрупком разрушении, присутствуют и здесь?
А. Н. Орлов и В. И. Владимиров сообщают об одном механизме подрастания трещин, основанном на существовании в кристаллических материалах точечных дефектов. Само определение — точечный дефект — используют в физике для обозначения двух состояний. В первом из них атом сорвался из своего положения равновесия, как говорят, за счет тепловой флуктуации. Это означает, что в процессе теплового движения один из атомов подвергся «согласованной» атаке ряда ближайших соседей и оказался «вышвырнут» в междоузлие. Такой атом, потеряв насиженное место в решетке, переходит на нелегальное положение и бродяжничает по кристаллу со скоростью до 1 км/ч. Его называют дислоцированным атомом, или дефектом по Френкелю. Я. И. Френкель, как, вероятно, знает читатель, был великолепным физиком, исторгавшим лавину идей, одной из которых и была идея точечных дефектов. Вторым точечным дефектом, или так называемым дефектом по Шоттки, является вакантное место, оставшееся после перехода атома из «оседлого» состояния в бродячее. Дефект по Шоттки (вакансия или просто «дырка» — все это синонимы) обладает незаурядным темпераментом и способен двигаться с довольно значительными скоростями — до 10 км/ч, то есть во много раз быстрее дислоцированного атома. Читатель может удивиться, как это движется пустое место? Очень просто! Допустим, в некотором узле существует вакансия. На нее «садится» атом из соседнего узла. Естественно, теперь вакансия оказывается там, где был раньше атом. На это место переходит другой атом — тем самым перемещается и вакансия. Так она и путешествует по атомным узлам как тень ушедших атомов. В этом отношении кристалл напоминает неполный зал во время концерта. Если программа интересна, зрители стремятся пересесть поближе к сцене; вакансии — пустые места — все дальше от сцены. Бывает и наоборот…
Эти-то два дефекта и приводят к подрастанию микротрещины. Вот как это происходит. В вершине трещины под совместным воздействием термических флуктуации и приложенных напряжений атом вылетает в междоузлие, переходит в статус дислоцированного и диффундирует, то есть медленно, зигзагообразно, как частица в броуновском движении, мигрирует в районы, удаленные от трещины. Процесс этот повторяется неоднократно и вместо атомов в вершине образуются пустые места. Это означает, что трещина подросла.
В случае, когда подрастание трещины определяется вакансиями, конечный результат оказывается тем же самым, но механизм иной. Теперь к вершине трещины течет поток вакансий. Они замещают атомы в устье трещины, обеспечивая ее рост. Различие их в том, что первому процессу будет сопутствовать повышение плотности
дислоцированных атомов в окрестностях подрастающей трещины, в то время как при вакансионном механизме этого нет, и в том, что второй процесс протекает гораздо быстрее. Но итог один и тот же. С помощью точечных дефектов трещина способна докритически подрастать. Поскольку точечные дефекты «шустры» лишь при достаточно высоких температурах, эти механизмы могут быть активными только при очень малых скоростях нагружения сравнительно легкоплавких материалов. В противном случае высокая температура окажется совершенно необходимой. В целом этот процесс имеет статистический характер. Это означает, что в масштабе микросекунд активность оттока дислоцированных атомов от вершины трещины и притока к ней вакансий будет пульсировать — ведь это диффузионный процесс. Совсем как у Кэррола: «Тут не было «раз, два, три — и вперед!» Каждый начинал бежать, когда хотел, и останавливался тоже, когда хотел. Таким образом узнать, окончен ли бег, было нелегко…» Но при достаточно длительном времени процесса он протекает усреднение монотонно, размеренно.
И все-таки главными являются не эти механизмы. Большой опыт, накопленный и физиками, и механиками, говорит об одном: докритическое подрастание трещин неразрывно связано с пластической деформацией. Связь эта неслучайная — пластическая деформация не только сопровождает и в подлинном смысле контролирует процесс ранних стадий созревания, но, по-видимому, служит его основной движущей силой. Эта обрученность субкритической трещины с пластической деформацией хорошо проявляется во всех дислокационных механизмах «созревания» трещины.
Все они требуют для подрастания трещины поля распределенных дислокации той атмосферы, без которой субкритическая трещина «дышать» не может, — ведь подрастать за счет упругих напряжений она еще не в состоянии. Поэтому она нуждается в весьма высокой плотности дислокаций — примерно 1010 их на 1 см2. Но и этого трещине мало. Она весьма разборчива и для своего продвижения вперед требует не любых дислокаций, а только одноименных. Физики говорят, что одним из условий докритического разрушения является пространственное разделение дислокаций, то есть такое положение, при котором в некотором объеме существуют дислокации только (или преимущественно) одного знака. Не слишком ли все это сложно для трещины vulgaris, то есть трещины обыкновенной?
Дело заключается в том, что основным методом воздействия дислокаций на трещину является их самопожертвование — дислокации, «вливаясь» в полость разрушения, увеличивают ее. Сама дислокация после этого исчезает. Возникающая трещина расположена при этом так, чтобы приносимая дислокациями «пустота» располагалась по основанию трещины-клина под экстраплоскостями дислокаций. Поэтому-то и небезразлично, какого знака будет дислокация: положительная содействует росту трещины вниз, отрицательная — вверх. Ясно, что если нужно обеспечить устойчивое подрастание трещин, необходимы дислокации одного знака.
Действительно! Есть ли названия у механизмов роста докритических трещин? Есть, вот они. Механизм Орована, первый из них, опирается на отдельную полосу скольжения, подошедшую к уже существующей трещине и подкармливающую ее сваливаемыми в трещину дислокациями. Оказалось, однако, что дислокаций, атакующих с единственной полосы скольжения, мало. Е. Паркер послал к трещине пачки скольжения, то есть системы из большого числа параллельных линий скольжения.
А. Н. Орлов усложнил картину, рассмотрев продвижение докритической трещины вблизи барьеров, сдерживающих работу дислокационных источников. Это привело сразу же к. скачкообразному распространению трещин на самых ранних стадиях их существования. «Испортился характер» микротрещин, стал неровным, почти взрывным и тем самым сделал докритическую стадию немного более опасной.
Но если уж говорить начистоту, природа очень помогла нам тем, что у трещины существует период докритического роста. Представьте себе, что его не было бы. Сегодня не вызывает никакого сомнения, что в металлах и любых кристаллах всегда существует большое количество зародышевых микротрещин. Тем не менее материалы обладают определенным иммунитетом по отношению к ним — живут себе с зародышевыми микротрещинами и свой долг по отношению к конструкциям и, следовательно, к человечеству выполняют. Зарождение и подрастание трещин, таким образом, тревожно но нестрашно. Почему? Именно потому, что трещины эти докритические, и для того, чтобы они перешли в опасную стадию, неизбежно должен быть пройден медленный путь докритического подрастания.
Таким образом, докритический период — великое счастье для человечества — отсрочка разрушения, предоставленная нам природой. Время для спасения конструкций от аварий.
Происходило все мгновенно…
Л. Озеров
Мы только что кончили разговор почти на оптимистической ноте. И действительно, казалось, для этого были все основания — металл-то не разрушился. А те трещины, которые в нем были или образовались в процессе деформации, представлялись нам если не «милыми», то во всяком случае и не слишком страшными. Самое большее, что мы себе позволяли, — это академически благодушный вопрос:
Что же там за этим летом,
в мире ТАМ, в стране ПОТОМ?..
(Р. Казакова)
Между тем, наша ошибка была почти стандартна.
И действительно, все, что происходило при зарождении трещины и медленном докритическом ее подрастании было не только преамбулой, но, что гораздо страшнее, фундаментом наступающей катастрофы.
По мере подрастания докритической трещины в окружающем материале протекает пластическая деформация, ведущая к упрочнению металла. Особенно активна она в вершине медленно и как бы неуверенно ползущей трещины. Помимо этого, продолжается процесс создания новых трещин и рост основной из них осуществляется среди моря многих мелких. Это вводит в игру совершенно новый процесс — пожирание магистральной трещиной других, небольших трещинок, благодаря чему подрастание трещины ускоряется. Докритическая трещина то медленно семенит, поглощая дислокации своей вершиной, то совершает небольшие прыжки, заглатывая другие, поменьше. И все же пока еще скорость роста мала — лишь несколько миллиметров в час. Конструкция пока что жива и на вид здорова. Но поток энергии из ее напряженного массива плывет к трещине и обменивается на процессы необратимой деформации, готовящие металл к неизбежному. Все это время конструкция сопротивляется внешнему нагружению, несет свою службу.
Но вот процесс достиг такой стадии, когда объем металла вокруг трещины за счет пластической деформации упрочнился до предела. Это сразу же «благотворно» сказалось на трещине. Во-первых, она теперь движется в материале с огромным числом дислокаций одного знака. Во-вторых, кристаллиты материала пришли в движение как льдины во время ледохода — они разворачиваются в вершине трещины; подставляют свои уязвимые кристаллографические направления атакующему разрушению. Количество мельчайших трещин стало настолько большим, что магистральная «хватает» их направо и налево, все более темпераментно прыгая при этом из стороны в сторону. И хотя говорят, что двумя ключами нельзя открывать одну дверь, здесь дверь, охраняющую прочность металла, открывают едва ли не тремя ключами одновременно. Все это означает: трещина приближается к критической ситуации.
Наконец, трещина выросла до гриффитсовских размеров. Значит, начиная с этого мгновения вся поступающая из напряженной конструкции упругая энергия осваивается трещиной и только ею. Кончились активные прежде процессы деформирования окружающего объема, насыщения его дислокациями, разворот зерен и прочие. Теперь они если и протекают, то только в непосредственной близости от вершины и ее полостей — из главных стали второстепенными. Лишь ничтожной части упругой энергии конструкции достаточно, чтобы скомпенсировать теперь более чем скромные «пластические» аппетиты трещины; основной поток энергии идет на разрыв межатомных связей в вершине. Теперь уже процесс становится либо подлинно хрупким, либо, как говорят механики, квазихрупким, то есть ложно хрупким. Тем самым подчеркивается мысль, что пластическая деформация хотя и существует, но решающей роли уже не играет.
Говоря словами А. Блока, «… Вот срок настал. Крылами бьет беда»… Трещина начинает стремительно разгоняться. Трудно себе это представить, но делает она это с оперативностью, которой позавидует даже ракета ПВО. Ускорение трещины достигает 108 м/с2, что в 10 миллионов раз больше ускорения земного тяготения. Это, например, означает, что за тысячную долю секунды трещина способна развить скорость в 3 км/с. Из вялого увальня в мгновенье ока она превратилась в неудержимого спринтера, перелетела из области физики в область чистой механики и… перенесла нас туда. А ведь это не просто — оторваться от привычных нам теперь дислокаций, вакансий и дислоцированных атомов. Это означает вернуться в «будничный» мир макроскопических явлений и процессов. Это означает резкое изменение не только масштабов, но и направления мышления. Это означает, наконец, совершенную необходимость для нас увидеть романтическое и яркое «в неинтересной» нам механике.
…То, что казалось третьестепенным,
сглаженным, тусклым, плавным, —
вдруг вознесло свои башни и стены
и оказалось главным.
То, что казалось школьным, настольным,
скучным, отжившим, давним, —
вдруг оказалось краеугольным камнем…
(Я. Белинский)
В чем же проявляется господство механики на последнем этапе закритического разрушения? Прежде всего в надструктурном его характере. В стали, например, имеется несколько составляющих — феррит, цементит, перлит. Быстрая трещина как бы не замечает этого — она сечет все эти составляющие, не разбирая. Далее, когда трещина приобретает достаточно большую скорость, исчисляемую километрами в секунду, практически все известные нам материалы и вещества становятся хрупкими. Неудивительно, если речь идет о стали. Но вот плексиглас — вещество не особенно хрупкое, раскалывается быстрой трещиной как орех. Да что плексиглас, налейте жидкий кислород в обычную калошу и она будет ломаться, обвисая кусочками резины на тканевой подкладке.
Вы можете возразить: но ведь для этого желательно интенсивное охлаждение? Да, но даже при комнатной температуре можно построить опыт так, чтобы резина раскалывалась как стекло. Просто для этого нужно разогнать трещину.
Первую группу великолепных опытов еще до войны провел ленинградский физик М. И. Корнфельд. Он стрелял в обыкновенную струю воды. И оказалось, что пуля в полном смысле слова раскалывала воду. Последняя рассекалась не столько пулей, сколько возникающими трещинами и разлеталась на «осколки». Следовательно, даже жидкость можно колоть трещинами, если скорость приложения нагрузки достаточно велика. Ясно поэтому, что и сливочное масло можно было бы «рубить» пулей и трещинами. Впрочем, вы это знаете. Достаточно вспомнить, как ломается хорошо замороженное масло под тупым ножом. Таким образом, в механике структура материала уже не так важна — это обстоятельство отступает на второй план. Важнее некоторые макроскопические свойства вещества — его прочность, вязкость, модуль упругости и другие. Что касается дислокаций и иных дефектов, то они уходят в тень. И тогда разрушение самых различных материалов, металлов, монокристаллов, минералов, аморфных тел и… даже жидкостей происходит по некоторым общим законам, явно и недвусмысленно пренебрегающим физическим строением вещества и опирающимся на чисто упругие его характеристики.
Вот вам и характер трещины. При зарождении и медленном подрастании ею «руководит» физика. Зато в закритическом своем состоянии она подчиняется механике.
Самым ярким доказательством этого являются предельные скорости распространения быстрых трещин. Почти все теоретические исследования в этом направлении выполнены механиками разных стран и их можно разделить на несколько групп. Прежде всего классическими исследованиями Гриффитса показано, что скорость трещины, которую можно было бы ожидать после потери трещиной устойчивости, способна достичь скорости звука. Сразу же скажем, что эксперимент этого не подтверждает. Но вряд ли от этого трещина, разрушающая подчас ценнейшие труды человеческие, становится менее страшной.
Вторую группу работ начал англичанин Невилл Френсис Мотт. Пожалуй, это единственный известный физик, приложивший руку, и кстати с успехом, к закритической стадии роста трещины. Он, а затем Роберт Уэллс и другие более трезво оценили потолок скорости «сорвавшейся с цепи» трещины: они полагают ее в пределах 0,38—0,40 скорости продольных звуковых волн. Для стали, например, это 2000–2200 м/с, а для монокристаллов алмаза и того больше: 6000–7000 м/с. Вот каков спринтер! Да, пожалуй, не только спринтер, но и необычайно «выносливый» стайер.
Писатель Г. Честертон рассказывает о древней мусульманской легенде. Некий султан повелел построить пагоду, которая вознеслась бы превыше звезд небесных. «…Но Аллах поразил его громовым ударом, от которого разверзлась земля, и он полетел, пробивая в ней дыру, все вниз, вниз, до бесконечности, отчего в ней образовался колодец без дна, подобно задуманной им башне без вершины. И вечно низвергается с этой перевернутой башни душа султана, обуянная гордыней…»
Трещина может поддерживать скорость так же неограниченно долго. Лишь бы разрушаемое тело было большим и поток энергии из его объема или от прикладываемой нагрузки продолжался пока трещина находится в пути, быть может даже в очень долгом.
Третья группа исследований появилась благодаря первооткрывательской работе Элизабет Иоффе из Великобритании. Было показано, что при скоростях трещины, равных 0,6 скорости поперечных упругих волн, наступает ветвление. Именно это явление и соответствующая ему скорость были приняты Иоффе за предельно возможную скорость роста трещин. Многие авторы позднее просчитывали идею Иоффе и получили цифры от 0,53 до 0,794 скорости поперечных волн. Для стали получаются значения ритма трещины примерно от 1600 до 2000 м/с. Таким образом, они пониже предельных скоростей по Мотту. Основной «грех» этих работ состоит не столько в не вполне правильном определении скорости, сколько в том, что ветвление не прекращает распространения трещины, а лишь открывает новую дверь разрушению. Дверь эта такова, что после прохождения в нее трещины исправить уже ничего нельзя. Если при быстром, но обычном разрушении конструкция раскалывается на две части, которые все-таки можно как-то соединить, сварить, скажем, то после ветвления деталь превращается в ворох осколков. Их и собрать-то порой невозможно.
…Так и природа, доведя
До совершенства всякое свое,
Искусное подчас, сооруженье,
Вмиг начинает разрушать его,
Швыряя вкруг разрозненные частя.
(Дж. Леопарды)
Четвертая группа исследований отождествляет максимальную скорость роста трещины со скоростью рэлеевских волн. Что это за волны? К нашему несчастью, мы с ними хорошо знакомы. Вот произошло землетрясение. В очаге его возникают упругие колебания — продольные, поперечные и поверхностные. Если первые и вторые бегут по толще Земли, то третьи распространяются только по ее поверхности. При этом точки на поверхности движутся по эллипсам. В общем, это те же самые волны, которые возникают на поверхности воды, но их проявления более разнообразны. Например, поверхностные волны могут мчаться по дну океана, между двумя плотно соприкасающимися массивами. Главное их отличие от продольных и поперечных заключается в том, что поверхностные волны очень слабо затухают. Продольные и поперечные перемещаются в объеме и поэтому гаснут обратно пропорционально кубу расстояния. А поверхностные — обратно пропорционально квадрату. Поэтому с расстоянием продольные и поперечные из игры выходят, а поверхностные остаются и несут разрушительную энергию землетрясения, произошедшего где-то на другом конце земного шара.
Вот с этими-то волнами и связывают предельные возможности трещины. Абсолютные значения скорости рэлеевских волн в стали составляют примерно 3000 м/с. Г. И. Баренблатт считает, что если трещина добралась до этого предела, то возникает какое-то резонансное состояние, при котором она невосполнимо теряет свою энергию, хотя и продолжает «систематически» получать ее из деформированного объема. Трещина выступает таким образом в роли мота и транжира, тратя неизмеримо больше, чем получая. Автору этой книги кажется, что механизм здесь иной. Растущая трещина разряжает энергию, накопленную в объеме. Последняя стекает па полость трещины и преобразуется в поверхностные волны. Они-то и транспортируют энергию в вершину трещины. Если снабжение вершины трещины энергией осуществляется поверхностными волнами, то сомнения как-будто отпадают и можно ощутить причинную связь между скоростями рэлеевских волн и трещины. Беда лишь в том, что пока замкнутое кольцо перетока энергии прямо не доказано ни экспериментально, ни теоретически, хотя рэлеевские волны на полостях трещины обнаружить и удалось.
А что говорит опыт о скоростях, которые способна развивать трещина? Прежде всего трещина достигает предельной скорости не сразу. Она сначала разгоняется. Быстро, но разгоняется. Причем тем оперативнее, чем выше приложенные напряжения. Вероятно, можно считать установленной прямую связь между скоростью трещины и потоком упругой энергии, поступающей в ее вершину. На этапе разгона скорость разрушения определяется поэтому условиями опыта — напряжениями, размером образца, скоростью приложения к нему внешней нагрузки и многими другими. Иное дело, когда трещина выходит на предельные скорости. На стали, например, они колеблются от 2000 до 2600 м/с. Эти скорости практически не зависят от природы разрушаемого тела и определяются только упругими его характеристиками. Например, на сталях разного состава они близки друг к другу. Хотя пластичности различных сталей серьезно отличаются друг от друга, на скорость звука их значения не влияют. А предельные скорости разрушения в конце концов представляют собой ту или иную долю звуковой скорости. Неудивительно поэтому, что быстрая трещина способна достичь одинаковых предельных скоростей и в стали Ст3, и в высокоуглеродистой стали ШХ 15, и в закаленной стали и даже… в стекле. Поведение трещины при критических скоростях обезличивает материалы и потому вызывает в нас внутренний протест. Но ничего нельзя поделать — таковы законы природы.
Из всех оценок скорость трещины, достигающая рэлеевских волн, — наибольшая. Разогнать до такого ритма трещину трудно, но можно. Автору удалось это сделать лишь водном случае — при импульсном нагружении. Надеяться на подвод энергии из объема нагруженного образца не приходилось. Поэтому в непосредственной близости от возникающей трещины взрывали небольшой заряд взрывчатки. Именно его энергией и определялся рост трещины в первые микросекунды после взрыва. И на стекле, и на стали на непродолжительное время трещина умудрялась развивать скорости до 3000 м/с. Вот уж воистину, как заметил шведский журналист Л. Бьорг, «иной раз благодаря хорошему пинку, мы обретаем крылья». Лишь только волна, возникшая в очаге взрыва, обгонит трещину, стремительный рост приостанавливается и разрушение распространяется со скоростями «моттовскими» — примерно 2200–2600 м/с.
Таким образом, как-будто с рэлеевскими волнами действительно связаны предельные возможности движения трещины. Недавно это было еще и экспериментально подтверждено Л. М. Лезвинской и автором этой книги Оказалось, что поток энергии из объема разрываемого металла подтекает не буквально в вершину трещины, а, как это не удивительно, перед трещиной. С ростом скорости поток, снабжающий трещину, распределяется по все расширяющейся области перед устьем. Все большее количество энергии «промахивается» мимо вершины и тем самым устраняется от разрушения. При предельной скорости, равной рэлеевской, почти вся энергия в вершину не попадает, а убегает в пространство.
Длительное время точка зрения о рэлеевском барьере преобладала. Правда, складывалось впечатление, что если бы удалось осуществить энергоснабжение вершины трещины каким-либо другим способом со скоростью, превышающей рэлеевскую, образование трещины можно было бы ускорить и достичь сверхрэлеевских скоростей. Но прямо осуществить это было бы трудно. Сенсацией прозвучали в 1970 году работы зарубежных ученых С. Винклера, Д. Шоки и Д. Каррена. Они направили световой импульс рубинового лазера на кристалл хлористого калия. При этом в очаге поражения вещество превратилось в плазму с температурой в миллион градусов, расширяющуюся со скоростью в десятки километров в секунду. По фронту плазмы возникла трещина. Плазма проникла в ее полость и создала своеобразный клин, разгоняющий трещину. Скорость распространения оказалась удивительной — 60 км/с, то есть в 10–15 раз превысила скорость звука! Почему же это оказалось возможным? Но прежде надо объяснить, почему это было невозможным ранее.
Когда мы прикладывали нагрузку и растягивали образец, трещина получала энергию опосредованно — через материал деформированного металла. А он мог пропускать поток волн напряжений в лучшем случае только со звуковой скоростью. При нагружении же лазером энергия плазмы прикладывается непосредственно к вершине трещины. Отсутствие посредника позволяет накачивать энергию с неограниченной скоростью и, таким образом, разгонять трещину, как показывают расчеты, в 25 раз быстрее, чем скорость звука. Интересно здесь то, что материал перед клином «не предупрежден» о приближении трещины до тех пор, пока не подвергнется непосредственному удару. Речь идет не об обычном разрушении, а о своего рода сверхзвуковом течении твердого тела вокруг горячей плазмы и трещины.
На этом надо бы и окончить этот раздел. Но я хотел бы поделиться с читателем тем чувством, которое охватило меня много лет назад, когда я начинал свою работу. Каждый раз, когда моя кинокамера, хороший и надежный прибор, — приносила новые и новые цифры ошеломляющих скоростей разрушения, каждый раз, когда я читал статьи о сумасшедших скоростях трещины, мне казалось, что мало найдется сил, способных остановить это торжество бессмысленности и хаоса. Но на самом деле учеными разных стран уже был заложен крепкий фундамент в основание науки о прочности.
Нет ничего…
Это стремленье
К бегу, к движенью
Сущность всего…
М. Эминеску
Все предыдущее показало нам как бы обреченность детали с трещиной и, я бы сказал, торжество зла. Своего рода апофеозом бессмысленности явилась закритическая стадия разрушения, несущая беду со скоростью современного реактивного самолета. И действительно, на своей завершающей стадии процесс разрушения поражает прямолинейной нелепостью и неудержимостью.
Посмотрим внимательнее в связи с этим на «моральные устои» быстрой трещины. Начнем с того, что не только при медленном, но и при взрывном разрушении трещина появляется не сразу. Происходит так называемая задержка разрушения. Ее длительность определяется характером нагружения и качеством разрушаемого металла. Для пластичных сталей при очень «нежном» нагружении изгибом она составляет 6500 мкс. При предельно «жестком» взрывном разрушении закаленной стальной полосы — задержка всего 10–50 мкс. Природа этого явления сложна и связана в первую очередь с зарождением дислокаций и их движением, созданием микротрещины и формированием поля напряжений. Все вместе это, так сказать, «роды» разрушения. Естествен вопрос: зависит ли каким-либо образом последующее распространение трещины от этого первого этапа? Нет! Ибо «мораль» трещины проста — она живет настоящим моментом, идет в том направлении и так, как того требует поле напряжений в данной точке пространства и времени. Она не помнит прошлого. В физике это явление не редкое. Например, когда в какой-то части пространства наложились друг на друга и провзаимодействовали волны любой природы, их дальнейшее движение происходит так, как-будто никакого взаимодействия между ними никогда и не происходило. Существует даже специальный принцип суперпозиции, определяющий это явление. Согласно ему в любом сложном акустическом процессе каждая волна, каждый звук сохраняют свою «суверенность» и всегда могут быть выделены, правда, с теми или иными ухищрениями. «Это как ветер и вода, они движут друг друга, но каждый остается самим собой»[6].
Трещина растет в потоке упругих волн, обрушивающемся на нее. Волны подчиняются принципу суперпозиции и заставляют трещину покориться ему. Поэтому в каждый момент своего движения трещина поступает так, как ведет себя «непомнящий родства». Ее поведение диктуется только сиюминутной ситуацией реального поля напряжений. Инерцией и «совестливостью» она практически не обладает.
Невероятная чувствительность быстрой трещины к локальным изменениям упругого поля ведет к сложному явлению, называемому ветвлением. Внешне оно проявляется просто. При достаточно высокой скорости, достигающей в стали 1500–2000 м/с, трещина разделяется на две или три. Каждая из возникших трещин способна распространяться дальше и также ветвиться. Но после каждого акта ветвления трещина теряет свою скорость, иной раз до нуля! Затем следует быстрый разгон до пороговых скоростей — ветвление и опять спад.
Почему же это происходит? Да потому, что упругая энергия, идущая на хрупкое разрушение, тратится на компенсацию поверхностной энергии. Если при обычном разрушении возникают две поверхности, то при ветвлении их уже четыре, если трещина разделилась на две, и шесть, если она распалась на три. Поэтому запасы упругой энергии в микрообъемах материала, прилегающего к трещине, быстро иссякают и трещина гасит скорость, а то и вовсе останавливается. Нужно затем некоторое время, чтобы упругие волны принесли новые порции энергии издалека. Число таких циклов неограниченно, потому что вследствие огромных ускорений трещина развивает скорость молниеносно и на протяжении считанных миллиметров способна ветвиться многократно.
Рождение вторичных трещин всегда связано с искривлением траектории магистральной. Очередность событий при этом такова. Сначала основная трещина «ныряет» в сторону, выбрасывает ответвление, а затем, как бы оттолкнувшись от него, возвращается на прежнюю траекторию. В результате ответвление оказывается направленным по касательной к искривленному участку траектории. Впоследствии вторичная трещина отклоняется на углы до 30–40°.
Элементарный акт излучения вторичной трещины связан, таким образом, с искривлением основной магистральной. Последующее их расхождение обусловлено, вероятно, известной отдачей в соответствии с законом сохранения количества движения. Вместе с тем даже при многочисленных ветвлениях магистральная трещина распространяется сравнительно прямолинейно. Поэтому первичным является искривление трещины, вызванное ее нестабильностью, а излучение — вторичным. И действительно, Элизабет Иоффе показала, что ветвление должно наступать тогда, когда в широкой области перед быстрой трещиной возникают примерно равные напряжения и трещине, в сущности безразлично, куда «бежать». Трещина при этом может легко «заблудиться» и отклониться в сторону. В этих-то условиях испускание ответвленной трещины и способствует спрямлению траектории. Чем-то это напоминает реактивное движение, при котором, выбрасывая из ракеты вещество, может сообщить ей движение в противоположном направлении.
В предыдущем разделе мы говорили, что ветвление открывает совершенно новую дверь в разрушение, новую его страницу.
И действительно, необычный это процесс. Иной раз ответвления способны разворачиваться по отношению к основной трещине на 90° и даже идти в направлении, обратном трещине. Особенно часто это наблюдается при взрывном нагружении. Бывает, что трещина растет вдоль растягивающей нагрузки, что почти неправдоподобно. Правда, она в этом случае «виляет», как бы извивается вдоль направления приложенной силы.
Не менее сложны и процессы по фронту трещины. В обычных условиях он довольно полог. То есть трещина ведет наступление на материал примерно одинаково по всему его сечению. Иное дело при ветвлении. С его началом трещина атакует пластину металла двумя колоннами. Фронт ее расщепляется и имеет форму двух лепестков, прилегающих к поверхности. Обе эти трещины на противоположных сторонах образца приобретают при критической скорости значительную самостоятельность, позволяющую им «рыскать» из стороны в сторону и создавать ответвления. Чувствительность их огромна. Они реагируют на малейшие изменения поля упругих напряжений или структуры материала.
Необычайные формы приобретает подчас ветвление в закаленной стали ШХ 15. Оно рассекает массив металла на множество крупных осколков. Помимо них, из поверхности разрушения буквально выпадает огромное количество мельчайших металлических щепок сечением иногда в сотые и тысячные доли миллиметра. Эти щепки раскола появляются из-за того, что вибрирующие участки фронта ветвящейся трещины выкалывают их из материала.
Оказывается эта разновидность микроскопических усов встречается при разрушении различных монокристаллов и далеко не всегда связана с ветвлением. Однако в процессе ветвления образование «щепок» носит массовый характер и ведет к появлению усов сколь угодно мелкого размера, возможно до отдельных кристалликов мартенситных игл — тончайших структурными элементов закаленной стали поперечным размером в 10-4 — 10-5 см. Этот-то процесс вибрации фронта трещины, при котором одна или обе поверхностные трещины-лепестки дают ответвления, и является механизмом всего явления. Механизмом — да, но вряд ли его сердцем!
Что касается подлинных причин ветвления, то единого мнения о них пока нет. Хронологически первой является известная читателю точка зрения Элизабет Иоффе, связывающая наступление разделения трещин с пороговыми скоростями. Есть и другое мнение, согласно которому ветвление наступает в момент, когда напряжения в вершине растущей трещины достигают некоторых критических значений. Это, однако, не всегда подтверждается. Например, на ряде сталей быстрые трещины есть и напряжения в их устье могут быть как угодно большими, а вот ветвления нет. И вообще этот процесс тяготеет к определенным, далеко не любым веществам: на закаленных сталях трещина ветвится, а на термически не обработанных остается монолитной при любых скоростях трещины.
А закаленное стекло? Что происходит с ним при разрушении, читатель хорошо знает. Для этого достаточно представить себе, что будет, если камень попадет в лобовое стекло автомашины. Из точки удара разбегаются трещины радиальные, а кроме того, все секторы между ними раскалываются трещинами поперечными. И те, и другие бегут со скоростью в 1500 ― 1700 м/с и мгновенно превращают большое и монолитное стекло в груду из тысячи мельчайших осколков…
Неудивительно поэтому, что в годы войны на оконные стекла наклеивали крест накрест полоски бумаги. Сейчас для этой же цели на автомашинах используют так называемый триплекс. Два его слоя представляют собой закаленное стекло, а третий (промежуточный) ― вязкий пластик, не позволяющий стеклу развалиться при поражении.
Большие скорости, по-видимому, далеко недостаточный критерий для суждения о возможности или невозможности ветвления, Обратите внимание, читатель, на то, что материалы, в которых происходит размножение трещин, являются носителями больших внутренних напряжений. Исключение составляют целлулоид, плексиглас и некоторые другие пластики. Не известны случаи ветвления в ненапряженных материалах.
Процесс ветвления следует связывать с величиной и распределением остаточных напряжений в разрушаемом материале. Можно нарисовать следующий механизм их действия. Быстро растущая трещина разряжает остаточные напряжения в прилегающем районе. Упругие импульсы от поля распадающихся внутренних напряжений, подводимые произвольно к трещине, «ломают» ее установившееся движение. Отдельные участки фронта под действием этих импульсов врезаются в берега трещины, создавая ответвления.
Помните, у Ильфа и Петрова? В учреждении был сторож, который строго спрашивал пропуска. Если пропуска не предъявляли, пропускал и так. В последние годы выяснилось, что в принципе для ветвления не требуется поле внутренних напряжений. И на других материалах, в частности металлах, этот процесс мог бы реализоваться в виде однократного акта при условии подавления пластичности и ужесточения напряженного состояния в вершине трещины. Таким образом, внутренние напряжения, по-видимому, являются стимулятором, но не первопричиной ветвления. Причиной же следует считать нестабильность трещины, наступающую по достижении критических скоростей.
Таковы теоретические соображения о природе ветвления — интересного с научной точки зрения и отталкивающего с практической, инженерной. Это и понятно. Ведь если обычное разрушение оставляет нам какие-нибудь надежды, то ветвление развеивает их в прах ив переносном, и в прямом смысле слова.
Вы в распре яростной так оба беспощадны,
Так алчно пагубны, так люто кровожадны,
О братья-вороги, о вечные борцы!
Ш. Бодлер
Часто разрушение есть результат роста единственной трещины. Однако не менее редки случаи, когда возникают системы микротрещин, объединяющиеся затем разрывом перемычек. Иной раз оказывается, что монолитная, на первый взгляд, трещина представляет собой совокупность микроскопических щелей, смещенных вдоль и поперек направления разрушения. Опыт показывает, что для большинства материалов реальна именно система трещин, в то время как единый разрыв можно считать лишь известным и очень удобным теоретическим приближением. Удивительного в этом ничего нет. Зарождение микротрещин — механизм дислокационный. А дислокации расположены по всему металлу. Поэтому и возникновение микротрещин протекает по обширным пространствам пластически деформированного материала. И действительно, их наблюдали в поликристаллических сталях, металлических монокристаллах ряда металлов, в галоидных кристаллах, в целлулоиде и плексигласе. Не говоря уже о стекле, проходящем при изготовлении довольно сложную обработку, неизбежно приводящую к возникновению систем микроскопических нарушений сплошности.
…Там трещины скрываются коварно
За гладкой напряженностью стекла…
(Дж. Апдайк)
Читатель, конечно, и сам встречал такие «столпотворения» трещин. Например, вы хотите сломать тонкий слой прозрачного пластика. Если он достаточно вязок, вам придется сильно его изогнуть, причем вы сразу заметите, как в месте перегиба он помутнеет. Это результат того, что в нем возникает изобилие трещин, рассеивающих свет. Когда вы гнете тонкий полированный слой алюминия, его поверхность тоже мутнеет. Это связано в первую очередь с образованием на ней сложного рельефа из-за выхода полос скольжения. Но затем по этим полосам возникают мельчайшие трещины, в конечном итоге и разрушающие металл.
Число примеров без труда можно умножить. Ясно, однако, что образование систем микротрещин до разрушения и в его процессе — не исключение, а правило. На этом основании полагают, что любую разрушаемую упругую среду нужно рассматривать как тело, содержащее множество мельчайших острых трещин всевозможных ориентации.
Любой металл, из которого мы строим самолет, автомашину или корабль, не монолит в полном смысле этого слова. Пройдя прокатные станы, обработку на станках и прессах, он накопил в себе огромное число мельчайших трещинок как память о встрече с инструментом различных сортов и видов.
Сюрпризы такого рода, конечно, не могут радовать специалистов по прочности. Но что делать, ведь не случайно говорят: гони природу в дверь, — она войдет в окно.
Таким образом, всегда или почти всегда реальный металл работает с готовыми или появляющимися на самых ранних стадиях деформирования микротрещинами. Самое интересное здесь заключается в том, каким образом и когда закончится докритическое вязкое подрастание трещин и начнется вторая, неуправляемая и катастрофическая стадия лавинного их роста. Физические процессы, лежащие в основе такого перехода в системах трещин, не вполне понятны. Ведь речь идет об устойчивости не одной трещины, а огромного их числа. Тем более неясно решение этой задачи в микроскопических условиях, когда одна из микротрещин растет за счет того, что «поедает» многие другие. Да, я не оговорился, трещина — хищница, да к тому же питающаяся себе подобными.
Битвы трещин — это битвы близнецов. Какая из сотен и тысяч трещин окажется победительницей, а какая — жертвой? Любая из них может быть и тем и другим. Это зависит от одного: каким образом она ориентирована и насколько успела подрасти. Жесточайшей «хищницей» обычно становится трещина, наибольшая по размерам и перпендикулярная к направлению растягивающих напряжений. Именно она начинает свое продвижение вперед, прощупывая своим упругим полем окрестности. Речь, конечно, идет не о каком-то радаре, которым она располагает. Нет, просто она очень чувствительна к окружающему полю напряжений. А находящиеся рядом с нею микротрещины меняют его, заставляя магистральную хищницу это ощущать и реагировать движением своей вершины.
Пока две трещины взаимно удалены, то есть расстояние между ними намного превышает их размеры, они друг друга не чувствуют. Но если расстояние между их вершинами меньше длины одной из трещин, картина меняется. Обе, находясь в пластичном материале, скажем стали Ст3, начинают разворачивать свои вершины навстречу друг другу. Это происходит и в случае медленного статического нагружения и при динамическом процессе. Скорость разрыва перемычек в последнем случае достигает порой 50 м/с. При их объединении скачком увеличивается длина магистральной. Упругое поле такой трещины становится больше по размерам и она начинает «ощущать» более отдаленно расположенные трещины. Следует очередной «кровожадный» акт поглощения и возможности трещины еще более расширяются. «Съеденные» трещины не всегда и не строго расположены по линии основной. Поэтому ее форма сложная, ступенчатая. Таким образом, объединяя десятки и тысячи своих же сестер-трещин, магистральная достигает, наконец, критических размеров. Теперь уже она способна пренебречь пластическим течением в своей вершине и процесс кооперирования трещин ускоряется. Скорости трещин и разрыва перемычек между ними исчисляются сотнями и тысячами метров в секунду. «Волчий» характер при этом неизменен, а вот механизмы потери равновесия могут стать совсем другими. Например, небольшие трещины около устья магистральной, чем-то напоминающие рыбок-лоцманов у пасти некоторых видов акул, теперь уже легко возбуждаются мощным упругим полем основной трещины и сами сливаются с ней, образуя быстро растущее целое.
Совершенно понятно, что это уже беда. После начала стремительного роста трещины с повальным объединением всех попадающихся на пути мелких трещинок у конструкции нет будущего. Она обречена. Для практики интересен период докритического стабильного существования металла. Пусть с трещиной! Пусть с целой их системой! Но металл должен служить, сопротивляться внешним силам и нести нагрузку. Он должен жить. И мы хорошо знаем, что он живет. Все без исключения конструкции детали и узлы содержат трещины и в большом количестве, но служат великой прочности! Почему?
По двум причинам. Во-первых, они спроектированы так, что приложенные к ним напряжения всегда меньше тех, которые нужны для подрастания самой «агрессивной» трещины. А во-вторых, и мы об этом уже говорили, металлы имеют определенный иммунитет против трещин. Он создается «прививкой», в роли которой выступает пластическая деформация. Именно она отодвигает закритический процесс и содействует локализации разрушения вблизи его наиболее острых в вершинах трещин и дефектов. Процессы деформирования, как человек, сглаживающий возможные конфликты, обволакивающий их деликатностью и мягкостью, понижают поле упругих напряжений в вершине трещины и, не давая ей расти, растрачивают накопленную энергию на движение дислокаций. Плохо, если металл хрупок по своей природе. Обладай он даже высокой прочностью, это не спасет его от разрушения, появись в нем какой-то концентратор напряжений или микроскопическая трещина. Ведь теперь нет амортизатора — пластичности, а концентрация напряжения в остром концентраторе настолько велика, что без труда превзойдет изначальные прочностные свойства металла.
Вот поэтому-то и говорят, что чувствительность к надрезам высокопрочных сталей всегда выше, чем у низкопрочных.
Долго ли может жить металл с докритической системой трещин? Быть может вечно? Это было бы слишком хорошо, чтобы быть правдой!
Природа позаботилась и здесь о том, чтобы противопоставить плюсы минусам. Один из таких минусов заключается в следующем. Пусть нагрузка на деталь мала и несоизмеримо ниже, нежели любые пределы прочности. По всем законам механики трещины не должны были бы расти в этих условиях. Но советский физик С. Н. Журков показал, что даже в этом случае разрушение неизбежно. Вопрос лишь в том, когда оно произойдет. Чем больше приложенная нагрузка, тем неотвратимее конец и тем раньше он наступит. Эту закономерность так и называют временной зависимостью прочности.
С какими же физическими процессами связано убывание прочности со временем? Видимо, их много. Здесь и дислокационные явления, если речь идет о кристаллических материалах. Здесь и подрастание трещин за счет вакансий и дислоцированных атомов. Здесь, как считают некоторые физики, происходит и прямой разрыв атомных связей. И уж, безусловно, протекает разрушение за счет медленного докритического объединения трещин. Однако в целом это явление исключительно сложное и до конца пока что не изученное. Главное, однако, заключается в том, что даже при относительно низких нагрузках беспредельно долго прочным материал быть не может.
Что же делать? Прежде всего стремиться к тому, чтобы количество микротрещин в металлах было минимальным. Также важно, чтобы, уж коль они существуют, размеры их были возможно меньшими. Совершенно необходимо предусмотреть какой-то буферный механизм притормаживания трещин. Простейшим является, конечно же, пластическая деформация. Поэтому желательно, что-бы металл всегда был максимально вязким, без потери в прочности. При выполнении этих условий даже со многими микротрещинами, металл может долго, очень долго служить людям и быть воплощением надежности и прочности.
Но будто бы
Трещат при расщепленьи Мельчайшие
Частицы
Естества!
Леонид Мартынов
Когда-то французский поэт Жан Дипрео писал:
…Змеею трещина ползет,
Ползет неслышно по степе
В просторном доме…
Прав ли он был? Действительно ли трещина ползет так уж и неслышно? Опыт говорит о том, что трещину к молчальникам отнести нельзя. На каждом этапе своего существования — от зарождения до стремительного закритического роста — она непрерывно заявляет о себе вслух. При этом она «вещает» едва ли не во всех диапазонах — от неслышимого инфразвука через весь слышимый нами спектр до ультразвука, также не воспринимаемого нашим слуховым аппаратом.
С чем же связана «говорливость» трещины? Прежде всего дело не только в ней. Любое тело, в котором под воздействием внешней нагрузки распространяются упругие волны, способно совершать колебания. А поскольку каждому телу свойственна собственная частота колебаний, так называемая резонансная, то при нагружении, особенно динамическом, еще задолго до разрушения происходит излучение волн в окружающее пространство. Ударьте по пустому ведру или бочке! Щелкните ногтем по тонкому стакану и вы услышите его звучание. Вспомните, как проверяют хрустальную вазу при покупке. По ней слегка стучат карандашом или ложечкой. Если она цела, звук чистый, звонкий, а если в ней есть трещина, возникает дребезжание. Вот как рассказывает о звучании хрусталя писатель Г. Семенов: «…он любил показывать домочадцам свое искусство: жестким пальцем, смоченным в вине или, если вина не было, в уксусе, вел по краешку вазочки, как по струне, и в какой-то момент в воздухе рождался вдруг тонкий и грустный, серебряный голос баккары, который властно витал по комнате и тихо замирал, вызывая на лице у Демьяна Николаевича торжествующую улыбку. Звуки были чище и гуще, чем звуки виолончели или скрипки, и чудилось всегда будто не хрусталь звучал, не он издавал протяжный ветреный гул или звон, а сам воздух наливался звучным пением… Видя новую вазочку, он говорил возбужденно: — «Ты знаешь, она поет, как снегирь… Какой звон!..»[7]
Описанное Г. Семеновым звучание создается трением пальца о кромку вазы, возбуждающим так называемые автоколебания хрусталя. Грубо говоря, палец «тянет» участок поверхности до тех пор, пока силы упругости материала не превысят силы трения между хрусталем и пальцем. Тогда контакт разрывается и освобожденный материал вазы быстро движется, возвращаясь на место. Множество таких процессов и создает звучание. При механическом нагружении детали или конструкции в них возбуждаются и такие, и многие другие виды упругих колебаний. Потому уже на самых начальных стадиях чисто упругого деформирования металл звучит. Слабо, но звучит!
Но вот кончилась упругая стадия и началась пластическая деформация. Еще с древних времен известен «крик» олова, раздающийся каждый раз, когда этот металл деформируют. «Шумят» при деформировании все металлы, но слабее. Например, низкоуглеродистая сталь испускает звуковые волны при растяжении в широком интервале температур от +200 до —196 °C. Звук, издаваемый нержавеющей и другими сталями, зависит от степени деформирования. Особенно интенсивно звучание при начальных стадиях формоизменения. Из поликристаллического цинка деформация «исторгает» не только звуковые частоты, но и неслышимые ультразвуки частотой до одного миллиона колебаний в секунду (герц). При увеличении скорости деформирования интенсивность звучания всех металлов растет.
Практически любой процесс деформации — и растяжение, и усталость, и ползучесть — провоцирует звучание металла, однако это всегда процесс слабый, поэтому для регистрации возникающих волн нужны специальные чувствительные приборы. Большинство материалов «звучит» только при деформировании. Но некоторые «не умолкают» и после прекращения действия нагрузки. С чем же связана эта звуковая активность? Ведь, казалось бы, ничего не происходит, а металл «возмущается».
Отсутствие внешних проявлений сложности процесса деформирования металлов не означает, что он прост. И действительно, в основе акустического излучения металлов лежит элементарное движение дефектов — дислокаций, двойников и других.
Взрыв высокочастотных колебаний в виде огромного числа импульсов длительностью одна — три миллиардные доли секунды (наносекунды) происходит во всех изученных монокристаллах на самых ранних стадиях пластической деформации. Связана эта волновая эмиссия со скольжением дислокаций, происходящим с довольно высокой скоростью — 20 м/с. Чувствительность наших приборов такова, что можно уловить излучение отдельной дислокации или малого их числа. Но для этого нужно, чтобы длина участка дислокации была не меньше 8 мкм.
Существует несколько вариантов испускания дислокацией акустических сигналов. Линия дислокации, распространяющаяся в кристалле, может застревать в нем, зацепившись за какие-нибудь барьеры, но по мере роста нагружения дислокация отрывается от них. Тогда примерно 1 млн. сегментов, закрепленных между «гвоздями в кристаллической решетке», отрывается одновременно и создает акустический сигнал длительностью в 10–30 мкс. Харьковчанин В. Д. Нацик показал, что звук может издавать и дислокация, прорывающаяся через разнообразные границы в кристалле. Дело в том, что, переходя через барьер, дислокация вынуждена перестраивать свое упругое поле. В результате части этого поля как бы отрываются от дислокации и распространяются в кристалле в виде звукового сигнала. Оказалось, что «изрядно шумит» и дислокация, выходящая на поверхность кристалла. Здесь две причины. Во-первых, при этом дислокация исчезает и энергия ее упругого поля, оставаясь «бесхозной», преобразуется в звук. А во-вторых, выход дислокации на поверхность и высвобождение энергии, вызванное ее гибелью, возбуждает колебания атомов на самой поверхности.
Способны создавать шумы и двойниковые прослойки. Особенно когда они перемещаются вблизи поверхности кристалла. Не являются исключением здесь и другие дефекты кристаллической решетки. Если подытожить сказанное, то процесс пластической деформации, прежде всего деформации на ранних, неустановившихся стадиях, является источником акустического «эха» процесса тем более богатого и разнообразного, чем выше скорость деформирования и больше число механизмов, сопровождающих это явление. Таким образом, каждый акт пластической деформации имеет свое звучание, свои «имя и фамилию», выраженные в числе акустических сигналов и их частоте. В конечном итоге это определяется тем, как тот или иной дефект меняет упругое поле кристалла и насколько быстро. Диапазон частот «звучания» зависит от всего этого и может достигать ультразвуковых областей с частотами в несколько миллионов герц.
Если считать, что дефекты подобны певцам, то самая «талантливая» из них трещина: голос ее, пожалуй, наиболее богат. Дело в том, что голос определяется прежде всего двумя параметрами — диапазоном и тембром. У певцов, например, диапазон голоса колеблется в пределах примерно от 80 до 350 Гц (бас) и от 250 до 1300 Гц (колоратурное сопрано). Что касается тембра, то это результат сложения основных частот голоса (тона) с дополнительными большей частоты колебаниями (обертонами), которые и придают голосу индивидуальную окраску.
Звуки, лишенные тембра, орнамента, аранжировки, неприятны человеку и не воспринимаются им как музыка. Видимо, всегда мы тяготеем к звуковой гармонии, отражающей все фантастическое разнообразие окружающего мира, его беспредельность — ив пространстве, и во времени, и в нас самих, и в… частоте.
Среди объектов неживой природы, способных испускать звуковые сигналы, трещина обладает едва ли не самым высоким «голосом». Это связано с тем, что разрушение— процесс, в котором одновременно происходят и упругая, и пластическая деформации; сложное их сочетание сопутствует всем этапам развития деформации: при зарождении трещины, продвижении и после завершения разрыва. Естественно, что все стадии сопровождаются сложным взаимодействием волновых процессов.
Я думаю, что если бы частоты звуков были пониже, то «пение» трещины можно было бы слушать как подлинную мелодию. Вряд ли это были бы ритмы полонеза М. Огинского, вероятнее всего, нечто современное, в духе поп-музыки. Но все же…
Однако вернемся на землю. Услышать это невозможно, поскольку основной тон звучания трещины лежит в ультразвуковой области. Название этого раздела, таким образом, неточно — трещина «тянет свой мотив» в диапазоне гораздо более высоком, чем колоратурное сопрано.
Поговорим о некоторых типах упругих волн, связанных с разрушением. Прежде всего в большинстве случаев появление трещины предваряется пластической деформацией, а она, как известно, излучает высокочастотные колебания с очень низкой интенсивностью. Эта же составляющая сопровождает и весь последующий рост трещины, если по берегам ее идет пусть даже совершенно слабое пластическое течение. Но вот появилась первая трещина. Подобно новорожденному, она «заходится» в крике. Поэтому и интенсивность, и частота, и тембр звучания металла моментально изменились:
…И мы должны попять, что это есть значок,
Который посылает нам природа,
Вступившая в другое время года…
(Н. Заболоцкий)
И действительно, отличие настолько разительно, что акустика в этом случае превращается в первоклассный инструмент определения самых ранних стадий появления трещин. Дело, правда, пока не дошло до определения момента возникновения зародышевой микротрещины в две — пять стомиллионные доли сантиметра, то есть двух межатомных расстояний, но это вопрос техники. Надо думать, что в ближайшие годы мы вполне сможем его разрешить.
Следующий период докритического подрастания трещины в акустическом отношении процесс довольно вялый — шепот да и только. Он «оживляется» лишь вспышками звучания в моменты возникновения новых трещин и объединения их. Постепенно подрастая, трещина «расходится» и с переходом через гриффитсовский размер начинает говорить, да что там — «орать» в полный голос. Она умудряется «вещать» и «пищать» не только в звуковом диапазоне от 3 до 25 кГц, но и захватывает область ультразвука. И хотя основная энергия при этом приходится на волны частотой от 200 до 500 кГц, но полный спектр простирается за частоту 1 МГц. Нет никакого сомнения, что по мере совершенствования методов измерения выяснится: ультразвук — не предел. Видимо, возможности трещины куда больше и достигают они так называемого гиперзвукового диапазона. А это не что иное, как тепловые колебания кристаллической решетки и частоты их от 109 до 1012 ― 1013 Гц. И серьезные указания на этот счет имеются уже сейчас. Еще до войны группа немецких акустиков обнаружила на поверхности разрушенных кристаллов круговые борозды. Оказалось, что они возникают из-за распространения по полостям трещины волн Вальнера (названных по имени открывшего их физика). Фронт трещины при взаимодействии с этими волнами отклоняется и образует борозды и ступеньки. А частоты этих волн составляют 1010 ― 1011 Гц. Вот вам и колоратурное сопрано!
Разнообразию исполнительских жанров трещины можно только позавидовать. Если певец «пользуется» только продольными акустическими волнами (воздух-то другие не пропускает!), то трещина, «выступающая» в твердой среде, «поет» и на продольных, и на поперечных. Мало того, она умудряется солировать и на так называемых поверхностных волнах. Правда, соло это очень своеобразное — волны бегут только по поверхности самой трещины. Если она внутренняя, то есть замкнутая, то они «перекатываются» от одной вершины трещины к другой. Так сказать, концерт для собственного удовольствия. Если трещина открыта, то волны эти выбегают на поверхность металла[8]. Впервые их наблюдал автор книги, а также И. С. Гузь. Оказалось, частоты волн лежат в пределах до 200 кГц, а максимальная интенсивность соответствует 50–60 кГц.
По отношению ко всем волнам, связанным с разрушением, можно сказать, что их энергия растет при увеличении приложенных напряжений и энергии деформирования. Влияет на «шумливость» стали и термическая обработка. Правда, это происходит не прямо, а посредством изменения свойств самого металла.
Но вот настал и последний, финальный момент — трещина пересекла сечение детали и выбежала «сломя голову» наружу. Вот уж, действительно, «сломя голову», потому что она исчезла теперь и вместо одного куска металла мы имеем два. Но вспомним, в каком состоянии находятся две части металла по обе стороны бывшей трещины. Они, естественно, деформированы приложенными силами. После завершения разрушения сопротивление металла исчезло, следовательно, исчезла и внешняя сила. И тогда предоставленный самому себе металл начал восстанавливать свою форму. Если он был изогнут, то распрямляется; если был сжат, растягивается. Здесь-то и возникают мощные колебания, приводящие к распространению звуковой волны. Поскольку конструкция выступает сейчас в роли разорванной струны, ее частоты умеренны, акустический спектр, сопутствующий разрушению, как правило, сосредоточен на участке звуковых и начальных ультразвуковых частот. Но мощность их велика-ведь в едином ритме содрогается весь кусок освободившегося металла!
Звуки разрушения каждый раз индивидуальность, исключение, свойственное именно данному процессу разделения твердого тела. Неудивительно: ведь звучание процесса — это картина структурных особенностей и деформирования, и зарождения трещины, и закритического эпизода разделения материала, как бы нарисованная с помощью звука. Поэтому из серьезного анализа «спектра» звука можно понять, если не все, то многое, произошедшее и происходящее с металлом в процессе его разрушения. Другое дело, что это не просто, и сегодня по акустическому спектру нельзя еще получить полного представления о механических процессах, ибо далеко не все мы знаем и нам удается услышать эхо далеко не каждого физического процесса. Но это вопрос, безусловно, разрешимый и в ближайшие годы можно ожидать его прояснения. Однако уже сейчас кое-что понятно. Ясно, например: одна ли трещина или сто, уже по интенсивности звучания мы можем это определить. Поэтому «эхо» процесса четко различимо при обычном разрушении, и при ветвлении. Ветвление имеет несколько особенностей. Прежде всего относительно монотонный рост обыкновенной трещины выглядит во втором случае как скачкообразный, прерываемый эпизодами зарождения ответвленных трещин. Кроме того, из одной трещины при ветвлении возникает настоящая «метелка». Вспомните сотни трещин, лавиной расходящихся в закаленном стекле, пересекаемых другими, круговыми.
Все эти различия звуков, издаваемых материалами, как бы проецируются на наши приборы. Анализ данных показывает, что зарождение и разгон трещины до наступления ветвления в закаленной стали сопровождаются испусканием относительно низкочастотных упругих импульсов (40–50 кГц). Необычные акустические сигналы начинают появляться после преодоления трещиной скорости распространения 1900–2200 м/с, то есть с наступлением ветвления. В спектре трещины появляется высокочастотная компонента, состоящая из импульсов длительностью 0,5–2,0 мкс. Каждый из импульсов — визитная карточка самого элементарного процесса разветвления трещины. Ветвление в закаленном стекле происходит, примерно, за такой же промежуток времени — за 1 мкс. В целом, акустический сигнал всего процесса ветвления гораздо мощнее, нежели обычного разрушения, и по нему сразу же можно ясно установить его происхождение. Ибо рост одной трещины — это щебетанье по сравнению с гулом землетрясения при ветвлении.
К слову, нужно сказать, что акустическое отображение разрушения — не единственный процесс, в котором проявляет себя разрыв сплошности. Например, в некоторых кристаллах разрыв сопровождается различными видами свечения в форме импульсов длительностью 1 мкс.
При разрушении кристаллов оба берега трещины покрываются разноименными электрическими зарядами — электризуются. Образуется обычный конденсатор. В процессе роста трещины берега раздвигаются, а на языке электротехники это означает рост электрического потенциала. С его повышением происходит пробой промежутка, иначе говоря, возникает разряд, сопровождаемый электромагнитным излучением и световой вспышкой.
Наряду с этими явлениями вскрывающаяся трещина излучает поток электронов. Да не обычных, а ускоренных напряжением до 15–40 кВ. Взяться этим напряжениям неоткуда. Разве что возникнуть из тех самых зарядов, которые имеются на полостях трещины. И тогда окажется, что заряды эти довольно велики. Они велики и на плоскостях трещины, и в ее вершине.
При росте трещины она способна вызывать еще один эффект — излучение электромагнитных импульсов, длящихся микросекунды, повторяющихся через несколько миллисекунд. Отличительная особенность этих явлений в том, что они возникают не только во время роста трещины, но и после его завершения. Это и неудивительно, ведь электрические процессы, лежащие в их основе, продолжаются при раздвижении заряженных берегов трещины, все еще «чувствующих» друг друга даже на довольно значительных расстояниях.
Вот, оказывается, какова певица-трещина! Она — исполнительница и в звуковом диапазоне, и на языке ультра- и гиперзвука. Но этого ей мало — она поет и на электромагнитном, и «электронном» диалектах, а еще… на световом жаргоне! Многообещающая исполнительница! Судя по всему, все это для нее не потолок!
…Жаждешь узреть и собрать воедино
Все, что известно уму твоему.
Ираклий Абашидзе
Подведем итоги этой главы. Прежде всего нам понятно, что разрушение — процесс неслучайный. Он предопределен самой природой. Возможно, это одно из проявлений второго начала термодинамики, согласно которому всякая физическая система, предоставленная самой себе, рано или поздно распадается.
Если это термический очаг, он потухнет и температуры выровняются. Если это скопление вещества, то со временем оно распылится и равномерно распределится в окружающем пространстве. Если это живое существо, то рано или поздно оно погибнет. Если это металлическая конструкция, она разрушится.
Мы видели, как времени рука
Срывает всё, во что рядится время.
Как сносят башню гордую века
И рушит медь тысячелетий бремя.
(В. Шекспир)
Трещина, вероятно, и есть своеобразный инструмент второго начала термодинамики. И действительно, весь наш опыт говорит о преходящем характере прочности и о том, что даже металл, обладающий теоретической прочностью, может быть разрушен внешними усилиями.
Все это, конечно, не означает, что прочности вообще не существует и конструкция развалится тотчас после ее создания. Ведь и живой организм до половины своего бытия успешно сражается со «вторым началом». Поэтому, работая над прочностью, нужно быть оптимистом и понимать, что многое в наших руках. Мы можем отодвинуть любой из механизмов разрушения на более поздний срок. Мы в состоянии затормозить процессы, лежащие в основе разрушения. Поэтому-то, чтобы уметь с ними бороться, а если понадобиться, то и использовать их в наших «корыстных» целях, нам нужно хорошо представлять себе, что же такое разрушение.
Итак, что же такое разрушение? Это смерть материала или конструкции как единого целого, подготовленная прежде всего упругой деформацией, протекающей в условиях статических или динамических нагрузок. В последнем случае она представляет собой распространение в материале упругих волн. Затем это некоторая пластическая деформация, сопровождаемая необратимыми изменениями структур. Осуществляется эта деформация движением дислокаций по кристаллографическим плоскостям. Взаимодействуя друг с другом, дислокации способны образовать микротрещины. С этого и начинается собственно разрушение. Микротрещины могут медленно подрастать. Длительность этого периода иногда исчисляется годами. Это так называемый докритический рост трещины, когда конструкция не потеряла способности сопротивляться внешнему нагружению. Это жизнь со злокачественной опухолью, рост которой почему-то остановился… Но вот барьер перейден — трещина перевалила через критический размер. Поток энергии из напряженного объема хлынул в нее, легко скомпенсировал затраты на пластическую деформацию и стремительно «погнал» трещину вперед. Теперь жизнь металла исчисляется не минутами и даже не секундами. При скорости распространения трещины, измеряемой километрами в секунду, речь идет о милли- и микросекундах. Металл обречен.
Акустический, световой, электромагнитный — вот «языки», на которых вначале монолитный, а затем распадающийся металл-полиглот рассказывает нам о своем состоянии все это время — от упругой деформации до полного разрушения.
Такова краткая история разрушения. Очень образно «смоделировал» ее на примере погибающего дерева польский писатель А. Минковский:
«…Я увидел, как убивают дерево: с одной стороны топором делают глубокую зарубку, а с другой — пилят вдвоем. Сначала ничего особенного не происходит. Огромная сосна, ни о чем не подозревая, стоит себе спокойно, растопырив игольчатые сучья. Вдруг по ней пробегает озноб. Легчайшая дрожь, вслед за нею тревожный шум ветвей. И спокойствие, нарушаемое только ритмичным повизгиванием пилы. Потом тихий треск лопающихся волокон, шелест кроны: сосна как будто осматривается, испуганная, полная изумления… Треск нарастает, ряд одиночных выстрелов — сосна шатается, напрасно пытается удержать равновесие, в отчаянии трясет пучками игл. Края раны раздвигаются, лесорубы вынимают пилу, отскакивают в сторону. Дерево еще защищается, еще балансирует, как канатоходец, у которого под куполом цирка вдруг закружилась голова. Наконец, сначала медленно, а потом все быстрее, стремительнее хвойная громада с треском рушится, задевая соседние деревья, тяжело ударяется о землю, пружины сучьев ломаются и неподвижно замирают на придавленных кустах. Борьба окончена…»[9]