С бумагой в клетку каждый из вас имеет дело практически с первых дней изучения математики, а может быть, и раньше. Однако вы вряд ли представляете себе, насколько мощным инструментом для геометрических построений является наличие на бумаге квадратной сетки.
Условимся, пользуясь вольностью речи, разделять линии сетки на два вида: горизонтальные и вертикальные. Горизонтальными будем считать все параллельные линии сетки, имеющие какое-то фиксированное направление, а вертикальными - все остальные параллельные линии сетки, перпендикулярные горизонтальным. Точки пересечения линий сетки будем называть узлами, а расстояние между соседними узлами на одной линии - шагом сетки, причем по определению длину шага примем за единицу.
Важную роль при построениях на клетчатой бумаге играет возможность расположить фигуру так, чтобы все ее вершины или как можно большее их количество оказались в узлах сетки. В таких случаях построение некоторых точек фигуры иногда можно выполнить без каких-либо чертежных инструментов, а лишь о помощью подсчета числа шагов вдоль линий сетки. Заметим, что любой отрезок с концами в узлах сетки задается двумя своими проекциями - горизонтальной и вертикальной (т. е. его проекциями на некоторые горизонтальную и вертикальную линии сетки соответственно).
При решении задач настоящего параграфа стоит задумываться о том, чтобы предложенные вами способы построения использовали минимум технических средств. Если уж вам приходится применять, скажем, линейку, то только для проведения прямых линий между двумя заданными точками, но никак не для измерения расстояний между этими точками. Ну и, конечно, никому еще не повредило умение делать рисунки на бумаге от руки, даже рисовать окружности - ив этом деле, как мы увидим ниже, также помогает знание математики.
16.1. Середина отрезка На клетчатой бумаге нарисован отрезок, концы которого находятся в узлах сетки. Вам нужно найти его середину. Укажите, при каких положениях отрезка это можно сделать, не проводя дополнительных линий, а используя лишь точки пересечения отрезка с линиями сетки?
Как с помощью линейки найти середину отрезка при других его положениях?
16.2. Симметрия относительно точки Как проще всего найти точку, симметричную данному узлу сетки относительно другого данного узла сетки? Будет ли эта точка также узлом сетки?
16.3. На n частей Как разделить на заданное число n равных частей данный отрезок с концами в узлах сетки, пользуясь разве только линейкой?
16.4. Медианы треугольника В данном треугольнике с вершинами в узлах сетки проведите медианы, пользуясь одной лишь линейкой.
Обязательно ли точка пересечения медиан является узлом сетки?
16.5. Параллельный перенос Точки А, В и С находятся в узлах сетки. Не проводя никаких линий, параллельно перенесите точку С на вектор .
Будет ли полученная в результате точка узлом сетки?
16.6. Середина третьей стороны Докажите, что если какая-то вершина треугольника и середины двух прилежащих к ней сторон находятся в узлах сетки, то и середина третьей стороны также совпадает с одним из узлов сетки.
16.7. Параллельные прямые Через заданный узел сетки с помощью одной линейки проведите прямую, параллельную данной прямой, проходящей через два данных узла сетки. Отразите проведенную прямую симметрично относительно той же данной прямой.
16.8. Поворот на 90° Не проводя никаких линий, найдите точку, которая получится, если повернуть данный узел сетки вокруг другого данного узла сетки на угол 90°.
16.9. Вершины квадрата Докажите, что если две заданные соседние вершины квадрата находятся в узлах сетки, то и остальные две его вершины также должны находиться в узлах сетки.
Найдите эти вершины, не проводя никаких линий.
16.10. Перпендикуляр к прямой С помощью одной линейки через заданный узел сетки проведите прямую, перпендикулярную данному отрезку с концами в узлах сетки.
16.11. Симметрия относительно прямой Пользуясь одной лишь линейкой, отразите симметрично заданный узел сетки относительно данной прямой, проходящей через два данных узла сетки. Будет ли полученная в результате точка узлом сетки?
16.12. Рациональный тангенс Докажите, что проходящая через некоторый узел сетки прямая содержит еще хотя бы один узел тогда и только тогда, когда она образует с какой-нибудь линией сетки угол, тангенс которого является рациональным числом.
16.13. Без транспортира Найдите величину угла ABC, изображенного на рис. 63. Пользуясь полученным значением, сообразите в уме, чему равна сумма
Рис. 63
16.14. С помощью клетчатой бумаги На середине стороны АВ квадрата ABCD взята точка Е, а на диагонали АС - точка F, делящая диагональ в отношении AF:FC = 3:1 (рис. 64). Найдите угол DFE и отношение DF:FE.
Рис. 64
16.15. Геометрия помогает тригонометрии Расположив на клетчатой бумаге угол DFE, описанный в задаче 16.14 и изображенный на рис. 64, подберите на луче FE несколько узлов сетки так, чтобы продемонстрировать равенства
16.16. Тангенсы углов треугольника Докажите, что если вершины треугольника лежат в узлах сетки, то тангенс любого непрямого угла этого треугольника является рациональным числом.
16.17. Другие повороты Прямая проходит через два заданных узла сетки. Предложите способ, как повернуть указанную прямую вокруг одного из этих узлов на угол, тангенс которого равен данному рациональному числу.
16.18. Правильный треугольник Докажите, что все вершины равностороннего треугольника не могут одновременно лежать в узлах сетки.
16.19. Правильный шестиугольник Могут ли все вершины правильного шестиугольника одновременно лежать в узлах сетки?
16.20. Одной окружностью Вы хотите разметить циркулем на клетчатой бумаге вершины правильного шестиугольника. Пользуясь циркулем, вы, конечно, всегда сможете это сделать на любой бумаге (см. задачу 15.5). Нельзя ли, однако, воспользоваться имеющейся сеткой с тем, чтобы после проведения специально подобранной вами окружности линии сетки сами указали вам на окружности вершины правильного шестиугольника?
16.21. Квадрат по трем линиям сетки На клетчатой бумаге требуется разметить вершины квадрата таким образом, чтобы три из них лежали соответственно на трех заданных параллельных линиях сетки. Как это сделать, не проводя никаких дополнительных линий?
Можно ли, кроме того, обеспечить попадание также и четвертой вершины квадрата на какую-нибудь из трех указанных линий?
16.22. Правильный многоугольник При каких значениях n все вершины правильного n-угольника могут одновременно лежать в узлах сетки?
16.23. С горизонтальной гипотенузой Если вам приходилось рисовать на клетчатой бумаге прямоугольные треугольники, то, наверняка, порядком наскучило располагать их катеты по линиям сетки. Можно ли построить такой прямоугольный треугольник со всеми вершинами в узлах сетки, чтобы на линии сетки оказалась его гипотенуза?
Равнобедренный прямоугольный треугольник так расположить довольно несложно. Укажите способ построения всех таких треугольников.
16.24. Окружность от руки Для проведения без циркуля какой-нибудь окружности на клетчатой бумаге, можно воспользоваться тем, что окружность с центром в узле сетки и радиусом 5 проходит через 12 узлов, изображенных на рис. 65. Докажите этот факт.
Рис. 65
Существует ли окружность с центром в узле сетки и целым радиусом, меньшим 5, также содержащая более 4 узлов?
16.25. Окружность с 20 узлами Какого наименьшего целого радиуса должна быть окружность с центром в узле сетки, содержащая более 12 узлов? Нарисуйте хотя бы четверть этой окружности.
16.1. Если хотя бы одна из проекций данного отрезка А В - горизонтальная АС или вертикальная AD - имеет четную длину, не равную, однако, нулю, то середина Е отрезка А В лежит на его пересечении с линией сетки, проходящей через середину F этой проекции перпендикулярно ей (рис. 66).
Рис. 66
Если обе указанные проекции имеют четную длину, то середина отрезка даже совпадает с некоторым узлом сетки (рис. 67).
Рис. 67
Если же ни одна из проекций не имеет четной положительной длины, то можно отступить от одного конца отрезка АВ на несколько клеток в одну сторону, от другого конца на столько же клеток в противоположную сторону и провести прямую через полученные точки С и D (рис. 68). Точка пересечения этой прямой с исходным отрезком и будет его серединой. Это вытекает из того факта, что четырехугольник АОВС является параллелограммом, ибо имеет пару равных и параллельных противоположных сторон АС и DB (точки С и D, конечно, всегда можно выбрать не лежащими на прямой АВ).
Рис. 68
16.2. Для того чтобы отразить узел А симметрично относительно узла Е, достаточно сосчитать по клеточкам длину горизонтальной проекции AF отрезка АЕ и длину вертикальной проекции FE этого же отрезка. После этого останется отложить от точки Е в вертикальном направлении точку G и от нее в горизонтальном направлении точку В так, чтобы выполнялись равенства (рис. 67). Симметричность точек А и В относительно точки Е вытекает из равенства прямоугольных треугольников AFE и BGE (по двум катетам). Из построения ясно, что точка Е обязательно является узлом сетки.
16.3. Как и в задаче 16.1, ситуация сильно упрощается, если хотя бы одна из проекций данного отрезка АВ положительна и кратна заданному числу n. В этом случае достаточно найти точки пересечения отрезка с линиями сетки, делящими указанную проекцию на n равных частей. Таким способом можно разделить отрезок АВ, изображенный на рис. 69, как на 5, так и на 7 равных частей. Но вот для деления того же отрезка, скажем, на n = 6 равных частей одних лишь линий сетки не хватает. Для этого можно поступить следующим образом: отложим от точки А в одном направлении на равных расстояниях друг от друга точки А1, А2 ... An-1 (на рис. 69 точки А1, ... An расположены в подряд идущих узлах сетки), а от точки В в противоположном направлении на тех же расстояниях друг от друга точки B1, B2 ... Bn-1 (на рис. 69 это точки B1, ... B5). Соединив прямыми линиями попарно А1 и Вn-1, A2 и Вn-2, ..., An-1 и B1, мы разделим этими прямыми отрезок AВ на n равных частей, поскольку все полуденные прямые параллельны, так как являются сторонами соответствующих параллелограммов) и отстоят друг от друга на равных расстояниях.
Рис. 69
16.4. Пользуясь методами, изложенными в решении задачи 16.1, можно построить середины сторон треугольника АВС, а затем провести его медианы. Точка Е пересечения медиан не обязательно попадает в узел, даже если середины всех трех сторон треугольника являются узлами сетки (рис. 70). Можно доказать, что это попадание произойдет тогда и только тогда, когда сумма горизонтальных, равно как и сумма вертикальных проекций векторов кратна 3.
Рис. 70
16.5. Сосчитаем по клеточкам длину горизонтальной проекции AE и вертикальной проекции EB вектора после этого точку С перенесем по горизонтали в точку F, которую затем перенесем по вертикали в точку D так, чтобы выполнялись равенства (рис.71). Тогда из равенства прямоугольных треугольников ABE и CDF и параллельности их соответствующих катетов следует равенство и параллельность их гипотенуз АВ и CD. Таким образом, имеем требуемое равенство Из построения ясно, что точка D совпадает с узлом сетки.
Рис. 71
Заметим, что точку D можно было построить и по-другому: параллельно перенеся точку В на вектор
16.6. В силу параллельности средних линий треугольника ABC соответствующим его сторонам получаем, что середины D, Е и F сторон АВ, ВС и СА этого треугольника образуют вместе с вершиной А параллелограмм ADEF (рис. 72). Поэтому, если три его вершины A, D и F находятся в узлах сетки, то четвертая вершина, будучи результатом параллельного переноса точки D на вектор также совпадает с узлом сетки (см. задачу 16.5).
Рис. 72
16.7. Пусть данная прямая проходит через узлы А и В, чтобы провести через данный узел С прямую, параллельную прямой АВ, достаточно параллельно перенести точку В на вектор (см. задачу 16.5) и через полученную точку D провести прямую CD.
Для симметричного отражения прямой CD относительно прямой АВ можно затем параллельно перенести точки A и В на вектор и провести через полученные точки G и H прямую. Хотя точки G и Н, вообще говоря, не симметричны точкам С и D относительно прямой АВ, но прямая GH параллельна прямой АВ и отстоит от нее на том же расстоянии, что и прямая CD (рис. 73).
Рис. 73
16.8. Чтобы повернуть точку А вокруг точки В в данном направлении на угол 90°, можно поступить следующим образом: сосчитать по клеточкам длину горизонтальной проекции ВС и вертикальной проекции СА отрезка AB, а затем отложить от точки В по вертикали точку D, а от нее по горизонтали точку L так, чтобы выполнялись равенства BC = BD и CA = DE (рис. 74). Тогда полученная точка Е и будет результатом указанного поворота точки Л, если, конечно, каждый из катетов BD и DE прямоугольного треугольника BDE является результатом поворота вокруг точки В катетов ВС и СА соответственно прямоугольного треугольника ВСА именно в том направлении, в котором требовалось (на рис. 74 - это направление против часовой стрелки). Равенство АВ = ВЕ вытекает из равенства упомянутых прямоугольных треугольников (по двум катетам), а перпендикулярность отрезков АВ и BE является следствием соотношения ∠ ABE = ∠ ABD + ∠ DBE = ∠ DBA + ∠ ABC = ∠DBC = 90°.
Рис. 74
16.9. Повернем одну из двух данных вершин А или В, скажем А, вокруг вершины В на угол 90°, затем вершину В вокруг полученной точки С на угол 90° в том же направлении (рис. 75). Полученная в результате точка D вместе с точкой С и двумя данными вершинами А и В образует вершины квадрата (поскольку четырехугольник ABCD, согласно построению, является параллелограммом с прямым углом при вершине В и равными соседними сторонами АВ и ВС). Попутно мы доказали, что вершины С и D искомого квадрата находятся в узлах сетки, так как они являются; результатом поворота, описанного в решении задачи 16.8.
Рис. 75
16.10. Во-первых, повернем один конец А данного отрезка АВ на угол 90° вокруг другого его конца В в любом направлении (см. задачу 16.8) и получим в результате точку С. Во-вторых, параллельно перенесем заданную точку D на вектор , получив точку Е (см. задачу 16.5). Искомый перпендикуляр совпадает с прямой DE (рис. 76), поскольку эта прямая параллельна перпендикуляру ВС к прямой АВ. Впрочем, при известной сноровке точку С можно и не строить, а откладывать известный вектор ВС сразу от точки D.
Рис. 76
16.11. Искомая точка А лежит как на перпендикуляре ВС к данной прямой DE, проходящем через заданную точку В, так и на прямой FG, параллельной прямой DE и отстоящей от нее на то же расстояние, что и точка В. Построение точек С и F, G можно произвести, не проводя никаких линий (см. решения задач 16.10, 16.7), а затем найти точку пересечения А прямых ВС и FG. Эта точка, вообще говоря, не обязательно является узлом сетки, что хорошо видно на рис. 77.
Рис. 77
16.12. Если прямая проходит через два узла А и В, то она либо совпадает с линией сетки и тогда образует с ней нулевой угол с нулевым тангенсом, либо является гипотенузой прямоугольного треугольника ABC, катетами АС и ВС которого служат целочисленные горизонтальная и вертикальная проекции отрезка АВ. В последнем случае тангенсом одного из острых углов треугольника ABC является отношение ВС/АС, которое есть рациональное число.
Для доказательства обратного утверждения допустим, что тангенс угла наклона данной прямой к горизонтали равен рациональному числу m/n, где m и n - натуральные числа. Тогда, отступив от узла сетки, через который уже проходит наша прямая, на n единиц по горизонтали, а затем на m единиц по вертикали (в соответствующую сторону), мы получим еще один узел сетки, который обязан лежать на той же прямой, поскольку отрезок, соединяющий два этих узла, составляет с горизонталью угол, тангенс которого равен как раз m/n.
16.13. Отметим точки D, E, F, G и соединим их с точками A, В и С и друг с другом так, как показано на рис. 78. Тогда из равенства прямоугольных треугольников ADB, АЕС и их расположения относительно линий сетки вытекает что точка С является результатом поворота точки В, вокруг точки А на угол 90° (см. задачу 16.8). Поэтому ABC есть равнобедренный прямоугольный треугольник с гипотенузой ВС. Отсюда имеем равенство ∠ AВС = 45°.
Рис. 78
Учитывая также, что угол ABC составлен из угла AВС, тангенс которого равен у, и угла FBC, тангенс которого равен 1/2, получаем равенство
16.14. Наложим на квадрат ABCD сетку с шагом, равным четверти стороны квадрата, и обозначим узлы G и Н так, как указано на рис. 79. Тогда из равенства и расположения прямоугольных треугольников EFG и DFH вытекает, что Е является результатом поворота точки D вокруг точки F на угол 90° (см. задачу 16.8). Поэтому из равнобедренного прямоугольного треугольника DFE имеем равенства
Рис. 79
16.15. Расположим сетку так же, как это было сделано при решении задачи 16.14, и обозначим на луче узлы сетки G, H, К, а также узлы L, М, N и Р, Q, R в соответствии на рис. 80. Учитывая, что угол DF5 прямой, получаем равенства
Рис. 80
Теперь остается заметить справедливость соотношений
и посчитать тангенсы углов
После этого требуемые равенства получаются, если вместо указанных углов подставить соответствующие арктангенсы.
16.16. Пусть вершины треугольника ABC лежат в узлах сетки, а угол ABC не равен 90°. Так как в этой ситуации невозможно, чтобы одна из сторон А В или ВС этого угла имела горизонтальное направление, а другая вертикальное, то без ограничения общности можно считать, скажем, вертикальное направление не занятым ни одной из указанных сторон. Поэтому тангенсы углов, образованных лучами ВА и ВС с некоторым горизонтальным лучом BD (рис. 81), окажутся определенными (ведь ни один из углов ABD и CBD не является прямым) и к тому же рациональными числами, так как и вертикальные, и горизонтальные проекции отрезков АВ и ВС имеют целую длину. Обозначив α = tg ∠ ABD, β = tg ∠ CBD, получаем, что тангенс угла ∠ ABC = ∠ ABD - ∠ CBD есть также рациональное число (здесь знаменатель 1 + αβ мог бы оказаться равным нулю только в случае прямого угла ABC). Таким образом, доказано, что угол ABC либо прямой, либо имеет рациональный тангенс. Аналогичные утверждения будут верны и для двух других углов треугольника ABC.
Рис. 81
16.17. Пусть прямая проходит через узлы В и С, а повернуть ее нужно вокруг узла В на угол с данным рациональным тангенсом α. Один из способов это сделать состоит в том, чтобы определить по узлам В и С тангенс β угла наклона прямой ВС к горизонтальному (или вертикальному) лучу BD, а затем найти тангенс γ угла наклона искомой прямой к тому же лучу по формуле
Поскольку полученный тангенс будет также рациональным числом (в случае 1 - αβ = 0 искомая прямая должна быть перпендикулярной к прямой BD), то некоторый узел В можно построить по значению у так, чтобы выполнялось равенство tg ∠ ABD = γ. Например, на рис. 81 показано, что получится, если прямую ВС повернуть на угол, тангенс которого равен α = 8: так как , то (знак минус у последнего тангенса означает, что угол ABD тупой).
16.18. Если бы все вершины равностороннего треугольника одновременно лежали в узлах сетки, то, согласно утверждению задачи 16.16, углы при вершинах этого треугольника имели бы рациональные тангенсы; Однако хорошо известно, что это не так: - иррациональное число.
16.19. Все вершины правильного шестиугольника одновременно не могут лежать в узлах сетки, поскольку три его вершины, взятые через одну, являются вершинами правильного треугольника и уже эти три вершины не могут оказаться в узлах (см. задачу 16.18), а тем более все шесть вершин.
16.20. Проведем окружность с центром в узле О сетки и четным радиусом (рис. 82). Тогда две диаметрально противоположные вершины А и D шестиугольника молено взять на горизонтальной линии сетки, проходящей через точку О (рис. 82). Еще две вершины В и F можно взять на вертикальной линии сетки, проходящей через середину H радиуса ОA, и, наконец, последние две вершины С и Е - на вертикальной линии, проходящей через середину G радиуса OD. Точки A, В, С, D, В, F являются вершинами правильного шестиугольника, поскольку угол АОВ равен 60° (из прямоугольного треугольника ВОН с гипотенузой ОВ, вдвое большей катета ОН), аналогично по 60° равны и углы AOF, COD, EOD. Следовательно, равные (симметричные относительно прямой AD) углы ВОС и EOF, в сумме составляющие 360° - 4*60° = 120°, также равны по 60°.
Рис. 82
16.21. Пусть три заданные линии сетки для определенности горизонтальны. Тогда рассмотрим вертикальную линию, которая пересекает их в точках A, В и С (рис. 83). Отложим от точки С по горизонтали точки D и Е так, чтобы выполнялись равенства CD = AB, DE = BC. Затем аналогично отложим от точки Е по вертикали точки F и G, а от точки G по горизонтали точку H, для которой GH = AB. Тогда точки В, D, F, Н являются вершинами квадрата (см. задачу 16.9), причем три из них В, D, H лежат на заданных линиях сетки.
Рис. 83
Для попадания четвертой вершины квадрата на одну из этих трех линий сетки необходимо и достаточно, чтобы средняя из линий была равноудалена от двух крайних, т. е. чтобы на рис. 83 выполнялось равенство АВ = ВС (четвертая вершина может находиться только на средней линии, которая тогда должна содержать диагональ квадрата со всеми вытекающими отсюда последствиями).
16.22. Докажем, что ни при каких значениях п, кроме л=4, правильный я-угольник не может иметь все вершины в узлах сетки. Случаи n = 3 и n = 6 рассмотрены в задачах 16.18 и 16.19. Пусть некоторый правильный n-угольник при n = 5 или n>6 все же удовлетворяет требованию задачи. Проведем в нем все; диагонали, соединяющие каждые две вершины, между которыми находятся ровно две вершины n-угольника (рис. 84). Тогда внутри рассматриваемого многоугольника образуется меньший, тоже правильный n-угольник, ограниченный проведенными диагоналями. При этом вершины меньшего многоугольника будут также лежать в узлах сетки, поскольку каждая из них будет являться четвертой вершиной параллелограмма (см. задачу 16.5), образованного некоторыми соседними сторонами большего многоугольника и параллельными им диагоналями: на рис. 84 таким параллелограммом является, например, четырехугольник АВСА'. Применив к меньшему многоугольнику те же рассуждения, мы получим еще меньший многоугольник, затем еще меньший и т. д. Однако этот процесс не может неограниченно продолжаться, так как сторона многоугольника при каждом уменьшении умножается на определенное число, меньшее 1, а значит, рано или поздно станет сама меньше шага сетки, что приведет нас к противоречию. Итак, сделанное выше предположение себя не оправдало.
Рис. 84
16.23. Каждый из искомых прямоугольных треугольников ABC отличается от других тем, что его высота BD, опущенная на гипотезу АС, имеет целую длину z и делит эту гипотезу на целочисленные отрезки AD и DC (рис. 85). Для начала будем считать, что числа x = AD и y = DC взаимно просты, так как любой простой делитель этих чисел является также и делителем числа z2 = xy, а значит, числа z (сравните с рассуждениями о пифагоровых тройках в § 7). Если произведение взаимно простых чисел хну есть квадрат какого-то натурального числа z, то и сами числа х и y являются квадратами натуральных чисел. Верной обратное. Поэтому для удовлетворения условия xy = z2 необходимо и достаточно в данном случае, чтобы выполнялись равенства х = m2 и y = n2, где (m, n) = 1. Наконец, если снять требования взаимной простоты чисел хну, то получаются общие формулы для искомых отрезков х, y и высоты z прямоугольного треугольника ABC: х = m2k, y = n2k, z = mnk, где k, m, n - произвольные натуральные параметры, причем числа тип взаимно простые. По каждой такой тройке чисел х, y, z теперь без труда строится нужный нам прямоугольный треугольник.
Рис. 85
16.24. Окружность с центром в узле сетки и радиусом 5 проходит, во-первых, через четыре попарно диаметрально противоположных угла сетки, лежащих на линиях, общих с центром окружности. Кроме того, она содержит по одной вершине от каждого из восьми прямоугольных треугольников с катетами 3 и 4, лежащими на линиях сетки, и с гипотенузой 5, один конец которой совпадает с центром окружности. Любая другая окружность указанного вида, содержащая более 4 узлов сетки, должна иметь радиус, равный гипотенузе прямоугольного треугольника с целочисленными сторонами. Наименьший такой радиус равен 5 (см. задачу 7.7).
16.25. Как было замечено при решении задачи 16.24, число узлов сетки, лежащих на данной окружности с центром в узле и целым радиусом, полностью определяется количеством пифагоровых троек чисел, большее из которых равно радиусу этой окружности. Если таких троек нет, то число узлов равно 4, а если тройка только одна, то число узлов равно 8, и вообще каждая очередная тройка порождает 8 дополнительных узлов (именно 8, а не 4, поскольку меньшие числа пифагоровой тройки обязательно различны). Так как наименьшее число, участвующее в качестве большего числа сразу в двух пифагоровых тройках, равно 25 (см. решение задачи 7.7, где указаны, в частности, тройки 15, 20, 25 и 7, 24, 25), то искомый наименьший радиус окружности указанного вида, содержащей более 12 узлов сетки, равен как раз 25. Эта окружность проходит сразу через 20 узлов сетки. Ее четверть изображена на рис. 86.
Рис. 86