ИЗ ГЛУБИН КОСМОСА

В период Тай-Хэ, в четвёртый год, во вторую луну, была видна необыкновенная звезда…

Из древних китайских хроник

ПОДСКАЗКА ДРЕВНИХ ХРОНИК

Девятьсот пятьдесят лет назад в созвездии Тельца вспыхнула новая звезда. Её яркость была столь велика, что звезду видели даже днём. Старинные китайские и японские летописи подробно описывают это необыкновенное явление. Они отмечают, что звезда-гостья была в три раза ярче Венеры. Примерно через полгода звезда начала гаснуть и исчезла.

Замечательное явление должно было быть видно во всём мире. Любопытно, что уже в наши дни на стене одного из пещерных жилищ древних обитателей Америки нашли примитивный, но знаменательный рисунок. На нём изображена звезда вблизи Луны так, как была видна эта сверхновая в момент вспышки.

Всё это происходило в 1054 году. В этом же году в Киеве умер Ярослав Мудрый. Собранное им государство стало ареной междоусобной войны. Летописцы подробно зафиксировали бурные события того времени, но ни в одной русской летописи не упоминается о небесном знамении — новой звезде. Занятые земными делами, наши предки не смотрели на небо.

4 октября 1957 года советские люди открыли космическую эру, запустив в небо первый искусственный спутник Земли. Началось планомерное наступление на тайны космоса. Стали падать последние покровы таинственности с давней загадки, которую разрешила невидимая частичка, случайно залетевшая в прибор Дмитрия Владимировича Скобельцына.

Эта частичка и ей подобные принесли людям важнейшие сведения о ещё не хоженых дорогах космических просторов, об истории рождения и гибели других миров, об исполинских силах, скрытых в ядре атомов материи. Они поведали и печальную повесть древней звезды, которая, внезапно вспыхнув, исчезла, не оставив, казалось, и следа… Мы подходим к самому фантастическому этапу исследований космических частиц. История изучения нового мира космических лучей делает ошеломляющий, удивительный, прекрасный скачок в мир абстракций, в мир чистой догадки, фантазии, блестяще предвосхищающих действительность…

Подготовили его два советских учёных: физик-теоретик академик В. Л. Гинзбург, ставший в возрасте 86 лет в 2003 году Нобелевским лауреатом, и астрофизик, член-корреспондент АН СССР И. С. Шкловский, создавшие признанную во всём мире теорию происхождения космических частиц.

Как ни кропотливы, как ни ювелирны были исследования ливней космических частиц, но это были явления, происходившие если и не рядом с людьми, то, во всяком случае, недалеко. Учёные при помощи приборов видели, чувствовали предмет своих исследований. И пока физики изучали космические лучи в пределах их досягаемости, они стояли на реальной почве эксперимента. Если они и не могли тотчас проверить свою теорию опытом, то, во всяком случае, надеялись сделать это рано или поздно.

Когда же дело дошло до проблемы происхождения космических частиц, учёным пришлось углубиться в мир, недоступный непосредственному вмешательству.

Но оказывается, как мы убедимся дальше, полёт фантазии, карандаш и бумага могут сказать человеческому разуму не меньше, чем плоть эксперимента.

И вот Гинзбург, блестящий «теорфизик», известный замечательными по глубине и прозорливости теоретическими разработками в области строения ядра и радиоастрономии, забыв на время о других задачах, засел за теорию происхождения космических частиц.

А Шкловский, иногда неожиданно для коллег увлекающийся гипотезами, которые кажутся необычными (кто не спорил, например, о его гипотезе искусственного происхождения спутников Марса!), заинтересовался тайной древней звезды.

Чутьём глубокого учёного Шкловский понял, что вспышка древней звезды не просто след дыхания космоса, но ключ к совершенно новому кругу явлений. Недаром он роется в древних китайских и японских летописях, ища в намёках неведомых астрономов, в их красочном, но наивном описании грандиозных космических катастроф подтверждения мучившей его мысли. Он перечитывает историю русской науки (а во времена вспышки легендарной звезды эта наука отличалась от современной как жёлудь от векового дуба) и ищет впечатления жителей Киевской Руси, которые бросили бы свет на его догадку.

А догадка заключалась в том, что звезда, исчезнувшая из поля зрения древних астрономов, должна иметь непосредственное отношение к происхождению космических лучей, тайне, давно волнующей умы исследователей. Теоретические соображения и расчёт подсказали учёному, что если на месте древней погасшей звезды произошла катастрофа, если звезда, разгоревшись вдруг ярким пламенем, взорвалась, то она должна была превратиться в газовую туманность, опутанную паутиной магнитных полей. Вещество её разлетелось во все стороны с большой скоростью. Электроны были не в состоянии вырваться из плена магнитных полей туманности и остались блуждать в них, излучая радиоволны и свет. Протоны же преодолели силу магнитных полей туманности и стали космическими странниками. Они и должны составлять большинство частиц, которые мы называем первичными частицами космических лучей.

Получив такой ответ теории, учёные взглянули на небо. Действительно, как раз в районе, указанном древними хрониками, мерцала еле видимая туманность, по форме напоминающая краба. Вот почему Шкловский жадно перелистывал пожелтевшие страницы, желая отождествить Крабовидную туманность с древней звездой и… боясь ошибиться! Если теория верна, если действительно в глубине веков произошло то, что подсказало ему воображение, Крабовидная туманность должна быть источником мощного радиоизлучения.

В это время быстро входила в силу новая наука — радиоастрономия. Она обещала разгадку многих тайн Вселенной тому, кто овладеет шифром радиоволн, приходящих на Землю из разных уголков космоса. И на загадку древней звезды ответила радиоастрономия.

Шкловский рассказывал:

— Мысль о том, что Крабовидная туманность может быть сильным источником радиоизлучения, возникла у меня ещё в 1948 году. В 1949 году в Крыму по моей просьбе была сделана попытка обнаружить радиоизлучение от неё. Увы!.. На имевшемся в то время в обсерватории радиотелескопе наблюдения можно было проводить только тогда, когда источник радиоизлучения восходит над морем. По невезению, место восхода туманности было закрыто горами, не хватало нескольких градусов по азимуту.

В том же, 1948 году австралийцы обнаружили очень сильное радиоизлучение Крабовидной туманности, обнаружили случайно. Излучение оказалось неожиданно мощным.

Изучив наблюдения радиоастрономов, учёные окончательно уяснили судьбу древней звезды. Действительно, много лет назад в небе произошла гигантская катастрофа. Невидимая глазу звёздочка внезапно разгорелась ярким пламенем и взорвалась, превратившись в слабую туманность, хорошо видимую в обычные телескопы. Около пяти тысяч лет шёл свет от места катастрофы до Земли и, достигнув её в 1054 году, рассказал эту историю. Но в то время люди не были подготовлены к пониманию рассказа светового луча.

К счастью, кроме света, продукты взрыва звезды излучают радиоволны, которые были недоступны нашим предкам, но теперь расшифрованы учёными. Эти радиоволны и поведали нам повесть о погибшем светиле.

Не все поверили в эту теорию астрофизиков. Ведь астрофизики, как шутят «земные» физики, часто ошибаются, но никогда не сомневаются. Неясными были некоторые тонкости явления, которые полностью разъяснились в 1954 году благодаря работам советских радиоастрономов. А затем, через два года, их подтвердили и американские учёные, проверив наблюдения на самом большом оптическом телескопе.

Но неужели только эта бывшая звезда — источник космических частиц? — задали себе вопрос исследователи. Чтобы проверить это, Гинзбург провёл расчёт. Оценив мощность радиоизлучения от Крабовидной туманности, он подсчитал количество электронов, блуждающих в плену мощной магнитной ловушки этой туманности. А так как при взрыве должно родиться приблизительно одинаковое количество электронов и протонов, то нетрудно было сравнить их число с числом космических частиц, обнаруженных в космосе. Оказалось, что результаты расчёта не совпадают с данными экспериментов.

Почему? — взволновались учёные. Ответ был один: значит, не только эта древняя звезда — поставщик космических частиц. Должны быть и другие.

И Шкловский снова ищет на страницах истории упоминания о вспышках новых и сверхновых звёзд — так названы звёзды, рождающие космические частицы. И находит то, что ищет! Находит описание вспышки звезды.

«В период Тай-Хэ, в четвёртый год, во вторую луну, была видна необыкновенная звезда возле западной стены Синего дворца. В седьмую луну она исчезла». Так написано в древних китайских хрониках.

Вот какой неточный адрес оставили древние наблюдатели! Но учёные нашли место катастрофы.

Астрономы внимательно взглянули через самые крупные телескопы на указанное место. Они увидели в этой точке неба маленькое туманное волокно. При наблюдении сквозь синий светофильтр оно по форме напоминало арку. В красных лучах обнаружились и другие клочья и обрывки туманности. Это был очень слабый источник света — известная астрономам туманность Кассиопеи.

Радиоастрономам же открылась совсем иная картина. В радиолучах туманность Кассиопеи предстала ослепительно яркой. Именно здесь когда-то давно произошла вспышка сверхновой. И случилось это не более не менее как 1635 лет назад, в 369 году нашей эры, в четвёртый год периода ТайХэ по китайской хронологии.

Так началось отождествление ныне видимых туманностей с некогда вспыхнувшими и погасшими звёздами.

Увлечённый почти детективной задачей разгадывания многовековых загадок, Шкловский говорил:

— Успехи новейшей науки — радиоастрономии, опирающиеся на сверхсовременные достижения радиофизики, электроники, теоретической физики и астрофизики, оказываются тесно связанными с текстами хроник, написанных древними астрономами Китая! Труд этих людей спустя тысячелетия ожил и как драгоценное сокровище вошёл в фонд науки середины XX века!

СМЕРТЬ ИЛИ РОЖДЕНИЕ?

Но и сверхновые оказались не единственными поставщиками космических частиц. Нашёлся ещё один вид небесных источников, рождающих космические частицы, — радиогалактики.

К ним учёные отнесли чрезвычайно интересный объект — туманность, видимую в созвездии Лебедя, расположенную далеко за пределами нашей Галактики. Этот объект оказался мощнейшим источником радиоволн. «Яркость» источника Лебедь-А в радиолучах раз в 500 больше яркости «спокойного» Солнца! Мощность его радиоизлучения во столько же раз превышает мощность крупнейшей из созданных трудом человека радиостанций, во сколько раз вся энергия, излучаемая Солнцем, превосходит энергию, излучаемую свечой, да ещё ослабленную в 10 тысяч раз по сравнению с обыкновенными свечами.

Но учтите, ведь созвездие Лебедя расположено на чудовищном расстоянии от Земли. Свет от него идёт к Земле 650 миллионов лет! А поток радиоизлучения его сильнеё, чем радиоизлучение Солнца, отстоящего от нас «всего» на расстоянии в 8 световых минут.

Внимательно изучая созвездие Лебедя, учёные, к своему удивлению, обнаружили в нём две очень слабые карликовые галактики, как бы прилепившиеся друг к другу. Этот объект оказался настолько любопытным и загадочным, что вызвал горячие споры среди учёных.

Открыв этот сверхмощный источник радиоволн, физики, конечно, задумались над причиной такого мощного излучения. Им, естественно, захотелось узнать механизм рождения в нём радиоволн. В сверхновых звёздах радиоволны являлись результатом взрыва. А в радиогалактике Лебедя?

Бааде, американский учёный, который первым наблюдал этот объект, опубликовал удивительное предположение. Это была настолько оригинальная, неожиданная гипотеза, что она захватила многих учёных и долгое время считалась общепризнанной. «Это, несомненно, две столкнувшиеся галактики!» — утверждал он. Хотя в космосе с его бесконечными просторами столкновение двух галактик так же мало вероятно, как столкновение двух птиц в воздухе, однако это именно такой случай. Радиоволны же, по мнению Бааде, родились в результате катастрофы.

Это была очень эффектная гипотеза, сразу нашедшая многочисленных сторонников.

Усомнился в ней только крупнейший советский астрофизик академик В. А. Амбарцумян. По ряду соображений он пришёл к выводу, что два ядра в туманности Лебедя — это отнюдь не результат столкновения галактик. Наоборот, решил он, здесь мы видим редкий случай деления галактик — распад огромной звёздной системы на две части.

— Бааде был очень талантливым учёным, — рассказывал Амбарцумян, — редким по своей страсти к науке. И азартным спорщиком. Чтобы убедить других и ещё больше убедиться самому в справедливости своей новой теории, мысли, предположении, он, встретив коллегу, молниеносно вовлекал его в спор.

Так было и на одной из международных научных конференций, где Бааде встретился с Амбарцумяном. Обоих занимала проблема двойственности галактик.

— Скорость одного ядра отличается от скорости другого, — отстаивал свою точку зрения Бааде. В разности скоростей oн видел след двух разных столкнувшихся махин.

— Скорость одного ядра отличается от скорости другого, — пользовался тем же аргументом Амбарцумян для утверждения своей, противоположной, точки зрения.

Так каждый аргумент Бааде, отразившись от Амбарцумяна, поражал американца, и оба понимали, что нужно искать новые факты, допускающие только одно толкование.

Говорят, что в споре рождается истина. Особенно это относится к научной дискуссии, из горнила которой выходят и безупречные формулировки законов природы и предсказания ещё не виданных явлений.

Но не всякий спор плодотворен. Если дискуссия не основана на фактах, не подкреплена результатами безупречных наблюдений, она не даёт ничего нового. Так домна, лишённая руды, наполненная пустой породой, не даёт металла. Из неё вытечет только шлак.

Короче говоря, каждому из спорящих надо было найти такое доказательство, которое бы начисто отметало точку зрения противника и однозначно подтверждало его собственную.

Вскоре Амбарцумян нашёл такие доказательства. Какова вероятность, рассуждал он, столкновения двух галактик таких размеров, как оба ядра туманности Лебедь-А? Эта туманность — очень маленький в астрономическом смысле объект, весьма малая галактика. Во Вселенной имеются гиганты, намного превышающие по числу содержащихся в них звёзд и по размерам обе части той галактики, которую мы видим в созвездии Лебедя.

Но учёные никогда не наблюдали столкновения таких гигантов, хотя столкновение больших объектов гораздо вероятнеё, чем встреча двух маленьких. Это значит, что столкновение малых галактик практически невероятно.

Второе доказательство вытекало из тончайших наблюдений астрономов Бюраканской обсерватории Академии наук Армянской ССР, руководимой Амбарцумяном. Они обратили внимание, что в некоторых случаях из центра гигантской галактики исходит струя, которая заканчивается карликовой галактикой голубого цвета в отличие от обычного для «старых» галактик жёлтого и красного цвета. Но голубой цвет — признак молодости космических объектов. Это был очевидный пример выброса молодой галактики-малютки из большой, материнской. Как видно, соединяющая струя — «пуповина» должна со временем исчезнуть, дав возможность «малютке» начать самостоятельную жизнь. Такие галактики-крошки были обнаружены возле многих гигантов.

Почему же Лебедь-А должна быть исключением? Несомненно, что два ядра — это признак её деления, признак активного процесса звездообразования.

А чем объяснить радиоизлучение, мощным потоком возникающее при этом процессе?

Дело в том, что время от времени старые галактики как бы набухают, проявляют тенденцию к делению и выбрасывают мощные облака газа, содержащего в себе свободные электроны. Они-то и являются причиной радиоизлучения. А где есть электроны, там естественны и космические частицы — быстрые протоны.

Эти замечательные работы группы армянских астрономов не только утвердили новую точку зрения на образование звёзд, не только опровергли старую теорию, которая укоренилась ещё в XIX веке и утверждала, что эволюция идёт от разрежения к уплотнению, от менее плотных тел к более плотным. Эти новые наблюдения не только подтвердили, что местами рождения галактик иногда становятся центры старых. Они опровергли теорию сталкивающихся галактик и послужили вкладом в современную теорию эволюции Вселенной.

Для учёных, занимающихся проблемой происхождения космических частиц, из этих работ стало ясно, что процессами, рождающими космические частицы, являются не только взрывы сверхновых, но и деление радиогалактик, что космические частицы порождает не только смерть звёздных миров, но и их рождение.

КОСМИЧЕСКИЕ ВУЛКАНЫ

Природа очень щедра на космические частицы. Нужно упомянуть ещё по крайней мере об одном источнике космических частиц в нашей Солнечной системе. Правда, он был обнаружен раньше, чем появилась гипотеза о вспышках сверхновых. Этот источник — наше Солнце. В период повышенной активности, когда поверхность светила бороздят и колышут огнедышащие протуберанцы, Солнце выбрасывает большое количество космических частиц. Во время Международного геофизического года удалось установить, что случается это в среднем один раз в месяц.

В это время на Солнце возникают взрывные процессы. Выброшенные из его недр частицы ускоряются магнитными полями и выплескиваются далеко за пределы околосолнечного пространства. Иногда вся Солнечная система становится гигантской ловушкой космических частиц. А эти скопления не так уж безобидны, как кажется на первый взгляд.

Только искусственные спутники Земли и космические ракеты помогли установить степень опасности для будущих космонавтов этого интенсивного потока частиц и разработать защитные меры.

Источники радиоизлучения и, следовательно, источники космических частиц были найдены даже в ядре нашей Галактики и во многих других звёздных скоплениях.

— Мы обнаружили столько источников космических частиц, — говорит Гинзбург, — что уже надо гадать, где они не рождаются.

Но всё-таки основными поставщиками кирпичиков материи для Вселенной оказались сверхновые звёзды, эти космические вулканы.

Чтобы убедиться в этом, Гинзбургу пришлось решить такую непростую задачу. В 1961 году в составе первичных космических лучей далеко за пределами земной атмосферы были зафиксированы электроны. Естественно, возник вопрос об их происхождении. Предлагалось несколько правдоподобных гипотез, и ни одна из них не могла быть отвергнута, для этого не было достаточно оснований. В 1965 году было открыто реликтовое радиоизлучение, оставшееся в мировом пространстве от ранних бурных процессов, последовавших вслед за Большим взрывом. Вскоре удалось точно определить температуру этого излучения (2,7К, то есть 2,7 градуса Кельвина). Энергия этого излучения составляет около четырёх сотых от миллиардной доли эрга на каждый кубический сантиметр. Но расстояния во Вселенной столь велики, что взаимодействие электронов с фотонами реликтового излучения полностью исключает предположение о том, что электроны доходят к нам от ближайших галактик.

Значит, они рождаются внутри нашей Галактики. Теперь учёные считают, что их источниками являются взрывы сверхновых звёзд в нашей Галактике. Учитывая, как часто вспыхивают в Галактике сверхновые звёзды, и зная, сколько частиц при этом рождается (как мы уже говорили, это можно выяснить исходя из величины потока радиоизлучения), Гинзбург рассчитал, сколько космических частиц родилось в результате вспышек сверхновых звёзд за 400 миллионов лет — средний век космической частицы. Результат подсчётов убедил: за это время должно было образоваться примерно столько космических частиц, сколько и наблюдается в действительности. Несомненно: вспышки сверхновых звёзд способны обеспечить компенсацию гибнущих от старости космических частиц, а значит, эти вспышки — основной источник космических частиц во Вселенной. Все остальные источники — звёзды, молодые галактики и другие, — вместе взятые, вносят лишь малый вклад в вечный круговорот космических странниц.

Так Амбарцумян, Гинзбург и Шкловский набросали картину событий, которые разворачивались в течение многих столетий на расстоянии в сотни тысяч световых лет от нас.

Теперь наблюдения радиоастрономов позволили надёжно подтвердить эту теорию.

…1054 и 1954 годы. Кто бы мог подумать, что события этих лет, между которыми пролегли века, имеют такое близкое отношение друг к другу, так тесно переплетутся на дорогах научного поиска. Наши далёкие предки не обратили внимания на такое грандиозное и загадочное явление природы, как вспышка звезды, происшедшая в 1054 году. Лишь наши современники, вооружённые всей мощью сегодняшней науки, смогли сопоставить эти явления и разрешить одну из сложнейших загадок природы.

Да, это были фантастические страницы истории космических лучей. Но ради чего же вписали их учёные? Может быть, их влекло только естественное стремление к знанию? Ведь понять тайну происхождения космических лучей — это значит познать процессы, происходящие при рождении и смерти звёздных миров!

Не нужно говорить, как это интересно и важно. Но эта задача имеет и другие стороны, ещё более актуальные.

Представив себе процессы, которые должны происходить при взрывах звёзд, учёные вдруг ясно поняли: да ведь именно при вспышках сверхновых варятся все химические элементы тяжелее железа! И медь, и свинец, все тяжёлые элементы таблицы Менделеева. Почти все вещества, из которых состоит и наша Земля, и вся Вселенная.

Стало ясно, что, если бы не эти редкие космические взрывы, мир состоял бы преимущественно из атомов лёгких элементов.

А совсем недавно многие придерживались совершенно другой точки зрения. Ещё в 1957 году некоторые думали иначе. И один из видных специалистов по космическим частицам писал: «После обнаружения в космических лучах тяжёлых ядер мало кому придёт в голову обращаться к представлениям о взрывном характере происхождения космических лучей во Вселенной: уж очень странно было бы, если бы при этих процессах тяжёлые ядра сохранились как нечто целое, получая вдобавок колоссальные энергии».

Вот как в наши дни, при бурном развитии науки, быстро меняются взгляды, как быстро сметаются неверные представления.

Понимание процессов, происходящих при формировании небесных тел и галактик, даёт ключ к разгадке многих проблем строения материи. Эти процессы часто с трудом поддаются объяснению на основе известных законов теоретической физики. Академик Амбарцумян говорит, что это, вероятнеё всего, связано с тем, что в таких процессах доминирующую роль играют многие глубокие свойства вещества, которые не проявляют себя в физических опытах, производимых в земных лабораториях. Поэтому можно быть уверенным, что тщательное изучение физических явлений, протекающих в отдалённейших областях космоса, поможет ещё глубже развить наши знания об основных физических свойствах вещества и о закономерностях развития материи.

Так, раздумывая о тайне рождения космических частиц, учёные поневоле затрагивают проблемы рождения Вселенной, всего окружающего нас мира.

КОМЕТА ГАЛЛЕЯ И МОЛЕКУЛЫ

Существование атомов и молекул в мировом пространстве казалось само собой разумеющимся после того, как Галлей в 1682 году доказал, что открытая им комета, а значит, и другие кометы — это материальные тела, появляющиеся из областей пространства, лежащих далеко за пределами Солнечной системы, если считать её границей орбиту наиболее удалённой планеты.

С тех пор известно, что многие из комет движутся по вытянутым орбитам, периодически приближаясь к Солнцу и вновь удаляясь от него, чтобы через определённое время возвратиться вновь. Галлей вычислил, что комета, носящая теперь его имя, проходит свою орбиту за 76 лет. Её появление в 1986 году было «запланировано». Учёные загодя готовились к её появлению во всеоружии не только традиционных телескопов. В наши дни на помощь астрономам пришла мощная космическая техника. Советские учёные вместе с учёными других стран направили навстречу гостье две космические лаборатории по проекту «Вега.» Название проекта указывает, что приборы космических лабораторий должны исследовать не только комету Галлея, но и планету Венера.

Но возвратимся к самому Галлею. Он объяснил, что кометы представляют собой сравнительно малые небесные тела, невидимые, пока они находятся вдали от Солнца, но становящиеся зримыми по мере приближения к Солнцу. При этом из ядра кометы выделяются пылевидные частицы и отдельные молекулы, образующие хвост кометы, они ярко светятся в лучах Солнца.

Астрономы изучали состав кометных хвостов, рассматривая спектры излучаемого ими света при помощи специальных приборов — спектроскопов, присоединяемых к обычным телескопам.

В 1937 году удалось выяснить, что в космосе имеются многие двухатомные молекулы. Первыми были обнаружены молекулы, состоящие из атомов углерода и водорода и из атомов углерода и азота. Одновременно были обнаружены и молекулы, состоящие из углерода и водорода, потерявшие по одному электрону. Их называют радикалами: обладая положительным электрическим зарядом (в результате потери электрона), они способны весьма активно участвовать в различных химических реакциях. Это вызвало большой интерес: какие ещё молекулы можно встретить в космосе? Но в течение последующих двадцати пяти лет там не удалось обнаружить других молекул. Это представлялось весьма удивительным. И. С. Шкловский в 1957 году подсказал учёным, участвующим в развитии радиоастрономии и в строительстве радиотелескопов, поискать в сантиметровом диапазоне радиоволн спектральные линии радикала, состоящего из атома кислорода и атома водорода (этот радикал, играющий большую роль в химии, называют гидроксилом). Шкловский и другие астрофизики называли ещё ряд нейтральных молекул и радикалов, спектры которых можно наблюдать при помощи радиотелескопов.

Прошло около одиннадцати лет до того, как радиоастрономы зафиксировали спектральную линию гидроксила. В семидесятых годах удалось обнаружить различные молекулы и в других галактиках. Пожалуй, наибольшим сюрпризом в начальный период было обнаружение в космосе сложных многоатомных молекул, среди которых первыми были молекулы воды и аммиака, а за ними молекулы окиси углерода и формальдегида, органического соединения, состоящего из четырёх атомов: по одному атому углерода и кислорода и по два атома водорода.

Теперь доказано, что в межзвёздном пространстве существуют более сотни различных типов молекул, среди которых многие десятки принадлежат к классу органических молекул, таких, как этиловый спирт, диметиловый эфир и многие аминокислоты, входящие в состав живых организмов. Обнаружено ещё много различных радикалов, в том числе и таких, которые не удавалось получить в газообразной форме в земных лабораториях.

КОСМИЧЕСКИЕ МАЗЕРЫ

Естественно, возник вопрос и о том, как образуются молекулы, существующие в космическом пространстве. В отличие от атомов они не могут быть образованы в недрах звёзд или при взрывах сверхновых. Это было ясно. Ведь молекулы неизбежно распадутся на атомы при температурах, намного более низких, чем существующие на поверхности звёзд, а тем более в их недрах или при катастрофических процессах рождения сверхновых.

Оставалось предположить, что молекулы образуются в результате соединения атомов, сталкивающихся в межзвёздном пространстве. Простейшие двухатомные молекулы могут возникать в результате случайных парных столкновений в окрестностях звёзд, где плотность межзвёздного газа сравнительно велика. Однако возникновение таким путём более сложных молекул мало вероятно. Более вероятно, что сложные молекулы возникают на поверхности частиц космической пыли. Здесь вероятность распада молекул меньше, чем в свободном пространстве, где молекула может быть разрушена ударом космической частицы или фотона, обладающего подходящей для этого энергией.

Точность спектральных измерений, обеспечиваемая радиотелескопами, столь велика, что удалось зафиксировать молекулы, отличающиеся между собой тем, что в их составе присутствуют различные изотопы одних и тех же элементов.

Исследования показали, что в большинстве случаев соотношение между количествами изотопов данного химического элемента в космосе близко к измеренному на Земле. Но обнаружены и значительные отклонения. Например, содержание изотопа углерода С-13 по отношению к изотопу С-12 может оказаться вдвое меньшим и вдвое большим, чем на Земле. Причина такого различия ещё не установлена.

Радиоастрономия преподнесла учёным много сюрпризов, но одним из наиболее загадочных было обнаружение странного излучения, идущего от туманности Ориона на волне 18 сантиметров. Оно было столь интенсивным, что, исходи оно от нагретого тела, температура излучающей поверхности должна была бы равняться десяти тысячам миллиардов градусов. Такая температура не может существовать даже в недрах звёзд.

Возможность обнаружения радиоизлучения, идущего из космоса на волне 18 сантиметров, не была сама по себе неожиданной. На этой волне, точнее, на частоте 1,667 МГц (МГц — миллион Герц), к тому времени уже было обнаружено поглощение радиоволн. Оно возникало, когда радиоизлучение удалённого источника встречало по пути к Земле облако межзвёздного газа, содержащее молекулы гидроксила. Аналогичное поглощение легко наблюдать в лаборатории при помощи радиоспектроскопа.

Учёные допустили, что такое облако, освещаемое мощным инфракрасным излучением близкой звезды, может испускать радиоволны на той же самой частоте. Объектами, в которых радиоастрономы ожидали обнаружить излучение молекул гидроксила на частоте 1,667 МГц, были облака межзвёздного газа, богатые атомами водорода. Предполагалось, что, если в водородном облаке находятся и атомы кислорода, некоторые из них соединятся с атомами водорода, образуя молекулы гидроксила. Ни в одном из таких облаков не удалось зафиксировать ожидаемое излучение.

Но, наблюдая радиоизлучение туманности Ориона, представляющей собой обширную область ионизированного атомарного водорода, радиоастрономы неожиданно наткнулись на излучение, имеющее непредвиденное значение частоты: 1,665 МГц. Спектральная линия с такой частотой была известна по лабораторным исследованиям. Она также принадлежала молекуле гидроксила, но всегда сопровождалась вдвое более интенсивной линией на частоте 1,667 МГц. Казалось невероятным, что более интенсивная спектральная линия, бывшая объектом поисков, отсутствовала, а более слабая не только присутствовала, но и оказалась невероятно интенсивной.

Слово «невероятно» применено здесь не для того, чтобы придать рассказу характер сенсации. Сенсационной была величина интенсивности. Повторяем — такой интенсивности можно ожидать от излучения гидроксила только в том случае, если его молекулы нагреты до десяти тысяч миллиардов градусов. Но такой температуры в наше время не существует нигде, даже в недрах самых ярких звёзд.

Столкнувшись с парадоксальной ситуацией, астрофизики не могли найти ей никакого объяснения. При обсуждениях природы обнаруженного излучения астрофизики называли неизвестный излучающий газ мистериумом (таинственным).

К счастью, эта история происходила в 1965 году, после создания мазеров — квантовых генераторов радиоволн Н. Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом с сотрудниками в США. Мазеры (в отличие от обычных генераторов радиоволн) излучают радиоволны сантиметрового диапазона так, что спектральные линии их излучения очень узки, а их интенсивность очень высока. Если бы такие электромагнитные волны излучал не мазер, а обычное вещество, оно должно быть раскалённым до таких же и даже до более высоких температур, чем нужно для излучения облаку мистериума.

Учёным не оставалось ничего иного, как предположить источником таинственного излучения космический мазер, созданный самой природой. Это была самая настоящая неожиданная сенсация.

СЮРПРИЗ КРАСНЫХ ГИГАНТОВ

Расчёты показали, что радиоастрономы действительно обнаружили природный мазер. Оказалось, что в облаке, содержащем молекулы гидроксила, при его освещении интенсивным инфракрасным излучением близких звёзд действительно возникают условия для возникновения мазерного излучения. Причём это происходит на частоте 1,665 МГц, а не на частоте 1,667 МГц, соответствующей излучению облака гидроксила, нагретого до температуры «всего» в несколько тысяч градусов.

Не будем говорить о механизме, приводящем к возникновению мазерного излучения, он подробно обсуждался выше. Достаточно сказать, что в облаках межзвёздного газа уже обнаружено мазерное излучение ряда других молекул. И число обнаруженных межзвёздных мазеров постепенно увеличивается. Следующий сюрприз ожидал радиоастрономов в 1968 году. Привыкшие к тому, что космическое мазерное излучение исходит от обширных облаков межзвёздного газа, они внезапно обнаружили точечные мазерные источники. Их излучение удаётся наблюдать, только если антенна радиотелескопа направлена на вполне определённые точки небесной сферы. Направив туда оптические телескопы, астрономы неизменно встречали звёзды, принадлежащие к вполне определённому классу красных переменных звёзд. Их называют красными гигантами. Пришлось признать, что и эти звёзды являются космическими звёздными мазерами. Но как же они становятся мазерами?

Красные переменные звёзды являются гигантами потому, что в них уже иссякают запасы водорода, необходимые для протекания термоядерных реакций, поддерживающих высокую температуру и большое давление внутри звезды. При этом гравитационные силы стягивают вещество звезды по направлению к её центру. В результате возникают ударные волны, приводящие к временному перегреву внешних слоёв и вызывающие периодические выбросы вещества в межзвёздное пространство. Мы наблюдаем при этом периодическое увеличение и уменьшение яркости звезды.

Первая изученная в 1957 году красная переменная звезда расположена в созвездии Кита и носит наименование Мирра. В каталогах она значится как Мирра Кита. Затем были обнаружены другие аналогичные звёзды, периоды изменения яркости которых лежат в пределах от 200 до 500 дней. От них отличаются другие красные переменные, имеющие ещё большую массу, сверхгиганты. Они обладают и большей светимостью, а период колебаний их яркости менее регулярен и лежит в пределах от 500 до 1000 дней.

Общим для этих двух подклассов является сравнительно низкая температура — около 2000 К (напоминаю: К означает «градусов Кельвина»). Температура светящейся поверхности Солнца составляет 6000 К, поэтому Солнце излучает наиболее интенсивно на волне 0,5 мкм в жёлто-зелёной области спектра. Красные гиганты и сверхгиганты излучают наиболее интенсивно на волне 1,5 мкм в невидимом инфракрасном участке спектра, причём на этой волне излучается значительно большая доля энергии, чем это было для наблюдаемой средней температуры 2000 К. Обнаружение такого избытка поставило учёных на некоторое время в тупик. Но излучение различных математических моделей атмосферы красных гигантов показало, что в ней находится значительное количество газов, выброшенных из её нижних слоёв ударными волнами, а затем остывших и образовавших молекулы и пылевидные частицы, имеющие температуру в несколько сотен градусов Кельвина.

В этих условиях вследствие интенсивного возбуждения инфракрасным излучением звезды молекулы гидроксила становятся активной средой мазера, излучающего ярче всего на частоте 1,612 МГц. Этот звёздный мазер излучает также на частоте 1,665 МГц, характерной для мазеров в межзвёздных облаках и на частоте 1,667 МГц.

В 1969 году в созвездии Большого Пса, видном в Южном полушарии, была обнаружена звезда, являющаяся звездным мазером на частоте 22,235 МГц (волна 1,35 сантиметра), характерной для молекул воды. Затем были обнаружены ещё много звёздных мазеров, в которых излучают молекулы гидроксила, воды и некоторые другие. Общее их количество уже измеряется сотнями.

Наиболее сенсационным открытием в этой области было обнаружение ряда переменных звёзд, обладающих мазерным излучением в миллиметровом диапазоне. Это излучение было первоначально отождествлено с молекулой моноокиси кремния, одной из наименее распространённых в космосе. Мнения учёных разделились. Одни соглашались с тем, что это звёздный мазер, но утверждали, что молекулы моноокиси кремния ни при чём. Другие считали, что излучение обусловлено моноокисью кремния, но не является мазерным. Потребовалось проведение тщательных наблюдений, расчётов и сопоставлений, чтобы доказать правильность первоначального предположения: это звёздный мазер, в котором излучают молекулы моноокиси кремния, находящейся при температуре свыше 1000 К.

Открытие звёздных мазеров дало астрофизикам новый источник информации. Линии излучения гидроксильных звёздных мазеров почти всегда разделяются на две группы, частоты которых слегка сдвинуты между собой. Одна группа — в сторону более высоких, а другая — в сторону более низких частот, совсем как это бывает со звуком гудка приближающегося и удаляющегося паровоза. Это несомненно эффект Допплера, а сдвиг мазерных линий обусловлен тем, что при расширении светящейся оболочки звезды её часть, обращённая к наблюдателю, приближается к нам, а часть, расположенная позади звезды, удаляется от наблюдателя. Величина сдвига излучаемых частот изменяется с тем же периодом, что и яркость видимого свечения звезды. Расчёты показывают, что для короткопериодических гигантов типа Мирры Кита скорости расширения атмосфер, содержащих гидроксильные мазеры, достигают 10 км/с, а для сверхгигантов даже 40 км/с.

Предположение о том, что допплеровский сдвиг вызван вращением звёзд, отпадает потому, что скорость вращения таких гигантов не может изменяться со столь малыми периодами, как сотни дней.

Звёздные мазеры позволили уточнить наши знания о красных гигантах. Диаметр самой звезды в несколько сот раз превышает диаметр Солнца, а окружающая газопылевая атмосфера в 15 раз превышает размеры Солнечной системы. Давление излучения, исходящего от звезды, ускоряет газ и пыль. Процесс идёт сначала медленно, затем быстрее, а во внешних областях опять медленно. Давление излучения, а следовательно, и скорости молекул и пылинок периодически изменяются вместе с яркостью свечения звезды. При этом в атмосфере пробегают расширяющиеся ударные волны. Таким образом, в красных гигантах происходят бурные процессы, по интенсивности уступающие только процессам в новых и сверхновых звёздах.

О межзвёздных мазерах, возникающих в газово-пылевых облаках, известно меньше. Однако данные наблюдений с определённостью указывают на то, что в облаках, обладающих мазерным излучением, вероятно, скрываются слабо нагретые протозвёзды, находящиеся на первых этапах звёздной эволюции. Это подтверждается как тем, что в этих облаках не видно горячих звёзд, так и тем, что в этих облаках ещё не удалось наблюдать межзвёздных мазеров на моноокиси кремния, для существования которых необходимы температуры порядка 1000 К.

* * *

В этой книге рассказано лишь несколько историй, они разные, в них разные действующие лица, разные области физики, но всё это истории о том, как учёные пытаются ответить на вечные вопросы. Познаваем ли мир? Может ли разум понять устройство природы? Можно ли предчувствовать истину? И что есть истина?

Прочитав книгу, читатель вправе продолжить перечень вопросов, а задумавшись над ними, попытаться ответить на некоторые из них по-своему. Ведь не все же найденные ответы правильные, не все решения единственные, не все варианты ответов перебраны.

Так и только так — усомнившись в истинности существующих ответов — поступали все те, о ком рассказано в этой книге.

Дальнейший рассказ — за Вами, мой читатель!

Загрузка...