Часть III. ПРОРЫВ

В этой части мы описываем теорию космологической инфляции, или раздувающейся вселенной, которая ответила на фундаментальные вопросы, разрешила парадоксы, касающиеся Большого взрыва, и находит всё новые подтверждения.

19. Откуда взялась Вселенная

Выше описаны детали картины, которая впоследствии получила название «космологическая инфляция». Эти детали оставалось только собрать воедино для того, чтобы выявилось нечто очень важное, произошедшее в самом начале. Напомним, Большой взрыв давно стал такой же очевидностью, как шарообразность Земли. Однако теория Большого взрыва имела одну очень смутную сторону: начальные условия. Они привели к удивительной однородности в причинно не связанных областях, к гигантским размерам, «плоской» геометрии и обеспечили громадное содержимое. Начальные условия выступили тем ковром, под который приходилось заметать основные проблемы космологии. Причем казалось, что вопрос о начальных условиях будет в терминах науки решен не скоро, что это, скорее, вопрос для философов или, прости господи, теологов.

Оказалось, что этот проклятый вопрос решается той же силой природы, что придала Земле шарообразную форму, — гравитацией. Только не в ее тяготеющей ипостаси, а в отталкивающей.

Это был, конечно, прорыв. Возьмем на себя смелость назвать его второй космологической революцией, которая произошла в начале 1980-х годов в несколько стадий, которые мы осветим, придерживаясь хронологической последовательности.

Исторически первый достаточно проработанный вариант механизма инфляции предложил Алексей Старобинский в 1980 году. В основе механизма лежала модификация уравнений Эйнштейна — такая, что сказывается только при огромной кривизне пространства-времени. Модификация заключалась в добавлении члена, пропорционального квадрату кривизны пространства-времени. Основания для такой модификации были почерпнуты из квантовой теории поля. Это напоминает эффект Казимира, в котором металлические пластины «деформируют» нулевые колебания электромагнитного поля в вакууме. В модели Старобинского нулевые колебания вакуумных полей «деформируются» большой кривизной четырехмерного пространства-времени. При этом энергия вакуума не уменьшается, как в эффекте Казимира, а увеличивается, причем очень сильно. Это в точности соответствует возникновению скалярного поля, которое дает гравитационное расталкивание пространства. Тот же эффект, с другой стороны, эквивалентен действию лямбда-члена Эйнштейна, только в данном случае он не постоянен, а становится ничтожным, когда ускоренное расширение Вселенной прекратилось.

19.1. Алексей Старобинский (фото из «Википедии»)


Ретроспективный анализ показал, что модель Старобинского эквивалентна более поздней и наиболее реалистичной модели инфляции с сильным полем (сценарий медленного скатывания). К сожалению, в момент появления эта работа не вызвала должного резонанса. Называют разные причины, в частности, вспоминают о самоизоляции советской науки тех времен. Однако статья была опубликована в хорошем международном журнале и впоследствии неплохо цитировалась. Более того, в свете новых данных по реликтовому излучению модель Старобинского, дополненная работой В. Муханова и Г. Чибисова (см. ниже) вышла в число фаворитов. Сейчас, когда опубликованы окончательные данные космического микроволнового телескопа WMAP и когда они проанализированы вместе со всей совокупностью разнообразных данных, добытых разными инструментами, видно, что эта модель лучше многих других вписывается в общую картину.

Рис. 19.2. Потенциал поля инфлатона в сценарии Алана Гута. Разные кривые соответствуют разным температурам

19.3. Алан Гут (фото из «Википедии»)


Наконец работа Старобинского завоевала заслуженную популярность. Осознавал ли сам Алексей всё значение своей работы? Действительно, в статье не говорится, что этот механизм позволяет решить главные проблемы космологии. Впрочем, лучше мы об этом спросим его самого ближе к концу книги.

Заявления, что инфляция решает основные парадоксы, совершенно явно и с изрядной настойчивостью начал делать Алан Гут, опубликовавший в том же году, но позже статью с другим механизмом космологической инфляции. Именно эта статья привела к появлению новой парадигмы. Возможно, даже не столько статья, сколько интенсивная пропагандистская кампания, которую вел Гут, выступая на десятках конференций и семинаров по всему миру, убеждая и вдалбливая.

Научные работники зачастую опасаются докладывать свои результаты, пока они не опубликованы, дескать, украдут. Как правило, это не слишком опытные ученые. Конечно, бывает, что и крадут, но редко — намного чаще не замечают или игнорируют. Особенно когда работа открывает направление, перпендикулярное мейнстриму, или находится вне сферы внимания основных действующих лиц данной области науки. В этом случае упорное продвижение новых результатов в круг внимания научной общественности — такая же неотъемлемая часть работы, как и написание статьи. Алан Гут хорошо справился с этой частью работы.

Вот сценарий Алана Гута. Существует скалярное поле с потенциалом, где есть метастабильное и основное состояния. Это, например, может быть аналог поля Хиггса, но с гораздо более высокой плотностью энергии. Такое поле может отвечать за нарушение симметрии, связанной с великим объединением. Мы этого поля не «щупали» и никогда не сможем этого сделать напрямую. Скалярное поле можно обнаружить, возбудив его — родив частицу поля, что и произошло недавно с полем Хиггса. В данном же случае частица поля имеет такую массу, что о перспективах ее рождения на ускорителях можно забыть. Однако есть достаточно сильные аргументы в пользу того, что такое поле должно существовать. Например, теория Великого объединения, в которой энергетический масштаб этого поля, т.е. характерный потенциал V1 неплохо экстраполируется из физики доступных нам масштабов: видно, что он лишь на два-три порядка ниже планковской энергии.

Сценарий Гута начинается с очень плотного и очень горячего зародыша Вселенной. Откуда этот зародыш взялся — отдельный вопрос, многократно обсуждавшийся. Например, микровселенная может появиться как результат редкой (но не безнадежно редкой) квантовой флуктуации. Важно, чтобы зародыш расширялся (по закону Фридмана) и чтобы все поля были в термодинамическом равновесии. Характерное время первой стадии сценария — 10-37 или 10-36 с, за это время зародыш расширился и остыл до 1016 ГэВ. Это важный момент, поскольку при такой температуре плотность энергии поля φ становится сравнимой с плотностью энергии частиц, а у эффективного потенциала поля появляется новый минимум, как показано на рис. 19.1. Это момент фазового перехода.

Но переход поля в новый минимум задерживается — происходит переохлаждение, подобное тому, что может происходить при замерзании воды. Поле φ «успокаивается», оставаясь в локальном минимуме φ1 — именно в том, где величина поля равно нулю, а потенциал V1 огромен. Это метастабильное состояние также известно как «ложный вакуум». Согласно остроумной формулировке Андрея Линде, «тяжелое ничто» (heavy nothing). По мере остывания плотность энергии статического поля всё больше начинает перевешивать тепловую плотность энергии. А давление у постоянного и однородного скалярного поля, напомним, отрицательное. И в какой то момент суммарное давление в зародыше вселенной меняет знак — становится отрицательным. Вселенная переохлаждается — скалярное поле застревает в локальном минимуме, в метастабильном состоянии. По мере охлаждения давление идет всё дальше в минус и наконец пересекает критическую черту -1/3 ε.

Как только это происходит, знак самотяготения вселенной меняется. До этого гравитация стремилась замедлить скорость расширения пузырька, теперь она начинает его раздувать. Размер вселенной начинает расти, кривизна уменьшается. А скалярное поле никуда не девается — оно по-прежнему занимает весь объем, лишь становится однородней. Получается тот же самый закон роста, что у размножения нейтронов при ядерном взрыве или бактерий в идеальных условиях, — экспоненциальное расширение. Каждый равный промежуток времени типа 10-37 с размер вселенной удваивается, а кривизна уменьшается в два раза. И это продолжается довольно долго — пока поле φ остается в минимуме φ1 могут пройти многие десятки или сотни времен удвоения размеров Вселенной. За это время из микроскопического зародыша вселенная становится гигантской, ее пространство совершенно «плоским» — евклидовым.

При этом скорость удаления любых двух точек друг от друга быстро становится выше скорости света. Это ничему не противоречит — точки попадают в причинно не связанные области пространства, никакая информация от одной точки к другой не может быть передана в принципе. Ограничение на относительную скорость движения тел в специальной теории относительности — локальный принцип. Он глобален в стационарной вселенной, но не в расширяющейся. Возможно, причинная связь теряется не навсегда — когда-нибудь при более медленном расширении вселенной она восстановится, но на стадии экспоненциального раздувания любой объем быстро «рассыпается» на гигантское количество ничего не знающих друг о друге областей. Однако важно то, что эти причинно не связанные области имеют общее происхождение — они помнят общие условия, с которых стартовали.

Наконец, скажем через 10-35 с, метастабильное поле «вскипает», выделяя свою энергию в частицы. Как это происходит? В сценарии Гута поле в отдельных местах туннелирует через потенциальный барьер в основное состояние φ0. При этом образуются растущие пузырьки новой фазы — истинного вакуума. Пузырьки сталкиваются, ложный вакуум «выгорает», передавая свою энергию частицам. Вселенная снова разогревается, давление меняет знак — становится положительным. Экспоненциальное расширение заканчивается.

Дальше всё снова происходит по сценарию Фридмана, только вселенная уже имеет гигантские размеры и почти нулевую кривизну. Она продолжает расширяться с замедлением и еще вырастет на много порядков, испытав в самом начале ряд других метаморфоз. При этом ей гарантировано практически вечное, а может быть и просто вечное существование.

Таков сценарий возникновения нашей Вселенной с помощью механизма космологической инфляции, который первым получил широкую известность. В этом сценарии, однако, есть один неправильный эпизод. О нем скажем ниже. Очень часто достижения, менявшие представления о мире, содержали в себе неправильные элементы: Колумб думал, что открыл периферию Индии, Коперник считал орбиты планет круговыми, Хаббл ошибся в определении своей постоянной более чем в пять раз. Гут предложил сценарий рождения Вселенной, который в данном конкретном виде работать не мог, но ухватывал суть. Поэтому прежде, чем перейти к последующим более правильным сценариям, мы перечислим важнейшие вещи, зафиксированные и четко изложенные Гутом в основополагающей статье.

Вернемся к фундаментальным вопросам, перечисленным в начале части И.

1. Почему Вселенная так велика и сбалансирована (близка к «плоской») с невероятной точностью? Потому, что инфляция раздула ее на десятки порядков, сделав кривизну Вселенной ничтожной. Напомним, согласно уравнениям Фридмана динамику расширения Вселенной определяет отношение кривизны трехмерного пространства к постоянной Хаббла (мы можем сравнивать величины разных размерностей, выразив их в планковских единицах или, в данном случае, помножив кривизну на скорость света). Это отношение Ωk могло быть порядка единицы до начала инфляции. В процессе инфляции кривизна уменьшилась на много порядков, а постоянная Хаббла не изменилась. Вселенная стала «плоской» с огромной точностью — это и есть та «точность броска», которая обеспечила огромное время расширения с замедлением до ничтожной скорости в отдаленном будущем. Если Вселенная раздулась, например на 100 порядков, то после инфляции Ωk~ 10-100 . Можно говорить в терминах средней плотности Вселенной — ее отличие от критической как раз и определятся параметром Ωk, т.е. инфляция автоматически обеспечивает точнейший баланс между скоростью расширения и плотностью — настолько точный, что он будет сохранятся неопределенно долгое время.

2. Почему Вселенная столь однородна, хотя ее наблюдаемые области не были причинно связаны в первые мгновения? Что так согласовало параметры Большого взрыва в причинно не связанных областях? Все наблюдаемые части Вселенной составляли одну причинно связанную область до начала инфляции. Эта связь была потеряна, но общее прошлое, а вместе с ним и общее скалярное поле остались. Поле, практически не меняясь, раздулось вместе с пространством и к окончанию инфляции было повсюду одинаковым. «Выгорание» однородного поля дало однородные условия в областях, потерявших причинную связь.

3. Почему во Вселенной так много частиц (порядка 1090 только в ее видимой части)? Другими словами, откуда у Вселенной такая большая энтропия? Частицы образовались в результате распада скалярного поля, которого стало очень много — при расширении вселенной заполняющее ее поле, в отличие от газа частиц, не меняет своей плотности и остается тождественным себе самому. То есть суммарная энергия поля на инфляционной стадии росла экспоненциально. Вся эта энергия перешла в частицы. При дальнейшем расширении Вселенной число частиц в сопутствующем объеме оставалось примерно одинаковым. Причем никакого нарушения закона сохранения энергии не было: в каждый момент отрицательная гравитационная энергия связи вселенной равна по абсолютной величине энергии скалярного поля (а потом и энергии частиц). Так что всё содержимое огромной Вселенной получено как бы «бесплатно».

Этим вселенная как целое отличается от любого объекта внутри нее: в ней глобально не действует принцип сохранения материи — всё, что есть во вселенной, образовалось практически из ничего, вопреки классикам естествознания, начиная с древних греков утверждавшим невозможность подобного. Необъятное содержимое Вселенной перед нами. А то, что оно получено ценой абстрактной отрицательной энергией связи, не портит впечатления от грандиозного процесса творения всего из ничего.

5. Что дало начальный толчок расширению Вселенной? Сценарий космологической инфляции как раз и представляет собой описание этого начального толчка.

Пока оставляем в стороне четвертый вопрос: почему физика Вселенной оказалась как будто специально подогнанной под существование человека? На этот вопрос будет дан ответ ниже, когда речь пойдет о следующих стадиях развития теории.

Теперь о неправильности этого замечательного сценария. Она заключается в его конечной стадии — в выходе из режима инфляции. Гут предположил, что поле переходит в новое состояние с нулевой энергией путем туннельного перехода в разных точках — образуются пузырьки новой фазы, которые потом растут и объединяются. Оказывается, не объединяются! На самом деле пузырьки удаляются друг от друга продолжающейся инфляцией гораздо быстрее, чем они растут, — расстояние между ними увеличивается экспоненциально, и никакого темпа рождения новых пузырьков не хватит, чтобы победить эту экспоненту.

Если вернуться к исходным предположениям, то неправильной оказалась форма потенциала, точнее, барьер между двумя минимумами. Но, как выяснилось, никакой барьер и не нужен — без него всё работает лучше и проще.

20. Всё даже еще проще

Где-то году в 1982-м в столовой ФИАН произошел разговор, который хорошо запомнился Игорю Ткачёву. Рассказ об этом разговоре заслуживает того, чтобы передать его полностью.

20.1. Игорь Ткачёв иллюстрирует варианты туннельного перехода инфлатона — как это предполагалось в работе Гута (вверху) и как это должно происходить на самом деле (внизу). Снимок Б. Штерна


Игорь Ткачёв о давнем разговоре с Андреем Линде

В то время, когда работа Гута по инфляции была у всех на слуху, Андрей рассказал про некоторые свои соображения по этому поводу. Это было в фиановской столовой. Как сейчас помню, ели борщ.

В сценарии Гута инфляция заканчивается, когда поле туннелирует через потенциальный барьер. Он считал, что туннелирование происходит сразу из локального минимума в основной, как на верхнем рисунке. Для оценки вероятности он использовал так называемое тонкостенное приближение. В его сценарии образовывалось много пузырей новой фазы, которые сталкивались и объединялись в горячую однородную вселенную.

Андрей сказал, что это большой вопрос, куда туннелирует поле. А если потенциал устроен так, что второго минимума нет и кривая уходит вообще вниз? Что тогда — туннельный переход произойдет в минус бесконечность? Да нет, конечно! То, куда оно перейдет, надо считать, и тонкостенное приближение здесь не годится. Потенциал после туннельного перехода не может стать выше из-за закона сохранения энергии. Ниже может, но не сильно ниже — вероятность этого очень мала: под барьером наберется больший отрицательный интеграл действия, который идет в экспоненту, когда считаешь вероятность.

Андрей честно посчитал, куда с наибольшей вероятностью попадает поле после туннельного перехода, причем считать пришлось на компьютере — это не так просто. Оказалось, поле туннелирует немного ниже минимума на склон, как на нижнем рисунке. И здесь, на склоне, его значение велико — не намного ниже, чем в локальном минимуме. Андрей посчитал, что происходит после этого — тут считать даже легче. Оказалось, что инфляция отнюдь не заканчивается. Поле продолжает раздувать пространство и успевает раздуть его на много порядков, пока не «сползет» вниз по склону.

Из этого следовали важнейшие вещи: сценарий Гута неверен в своем конце — пузыри новой фазы, протуннелировавшие через барьер, не успевают объединиться, перемешаться и разогреться, дав однородную горячую вселенную, — они разносятся на огромные расстояния. И второе следствие: не нужно изобретать хитрые потенциалы с барьером. Инфляция может работать и без них. Это очень серьезные следствия, и Андрей, еще не очень доверяя своим результатам, стремился обсудить их с возможно большим числом коллег, заручившись поддержкой и уверенностью перед публикацией статьи.

Рис. 20.2. Потенциал инфлатона в модели «новой инфляции»


Итак, потенциальный барьер был призван задержать скалярное поле в локальном минимуме, чтобы оно успело раздуть вселенную прежде, чем «упадет» в основное состояние. Но, оказывается, поле и без барьера может «застрять» вблизи своего первоначального значения. Для этого нужно, чтобы расширение было быстрым, а потенциал поля пологим. На языке хорошо знакомых явлений быстрое расширение играет роль вязкого трения, а наклон потенциала V{(p) аналогичен наклону поверхности, по которой катится шарик. Есть разные возможности сконструировать скалярное поле. Вариант, предложенный взамен сценария Гута Андреем Линде и на три месяца позже Андреасом Альбрехтом и Полом Стейнхардтом, — потенциал с плоской вершиной при нулевом поле и минимумом в стороне, как изображено на рис. 20.2.

Вход в стадию инфляции, как и в сценарии Гута, — термодинамический: горячая протовселенная расширяется и адиабатически охлаждается. Если в начале поле находится в термодинамическом равновесии при высокой температуре, оно должно «сесть» в нуль. Это довольно общее свойство систем — находиться при высокой температуре в наиболее симметричном состоянии (на самом деле изображенный потенциал похож на донышко бутылки в комплексных координатах, и нуль оказывается центром симметрии). При расширении зародыша вселенной опять происходит переохлаждение, и инфляция стартует точно так же, как изложено выше. И точно так же вселенная успевает раздуться на десятки порядков величины, пока поле, преодолевая вязкое трение, катится вниз с «пологой горки».

Разница в том, что в этом сценарии поле, не встречая никаких барьеров, в конце концов целиком сваливается в минимум. Потенциальная энергия поля превращается сначала в энергию его колебаний, а потом в конечном счете передается рождаемым частицам. Наступает новое термодинамическое равновесие, дальше всё идет по хорошо знакомому закону Фридмана, хотя впереди остается еще много нетривиальных событий.

Этот вариант выхода из инфляции пережил придирчивую проверку многими авторами — он действительно работает при достаточно общих предположениях.

Как в исходном сценарии Гута, так и в новом сценарии (он так и называется: «новая инфляция») остается один этап, который для своего объяснения требует слегка напрячься: как протовселенная добралась до старта инфляции? Она должна была достаточно расшириться и остыть, чтобы скалярное поле с отрицательным давлением перевесило энергию частиц и переменных полей. Дистанция от планковского состояния до начала раздувания относительно невелика, и проблема ее преодоления решается несравненно проще, чем создание огромной Вселенной без механизма инфляции. И всё же зазор в три порядка по температуре и интервал в миллион планковских времен требуется преодолеть (он именно таков, если механизм приводится в действие полем масштаба великого объе-динения).Вероятно, для описания этого скачка можно было бы использовать что-то вроде квантомеханического описания подбарьер-ного туннелирования (распад ядер и т.п.). Можно было бы… если б существовала наука под названием «квантовая гравитация». Увы, до применения квантовой механики к подобным задачам еще далеко. Но, по крайней мере, концепция туннельного перехода дает подходящую метафору (см. рис. 20.3), позволяющую легко смириться с проблемой доинфляционной стадии.

20.3. Микеланджело. Сотворение мира. Фрагмент

21. …И еще проще

Следующий важный шаг сделал Андрей Линде уже без других претендентов на приоритет. На самом деле всё может быть еще проще — инфляция может произойти без всяких хитростей типа специального потенциала с плоским максимумом в нуле и без термодинамического равновесия с переохлаждением. Возьмем произвольное поле с естественным чашеобразным потенциалом.

Предположим, что вблизи планковского состояния образовался фрагмент пространства-времени, заполненного скалярным полем. «Вблизи» означает удаление от планковских условий, достаточное для того, чтобы фрагмент мог рассматриваться в рамках классической теории. Пусть поле будет достаточно однородным, а вклад горячей материи незначительным. Тогда давление в нем может оказаться отрицательным, удовлетворяющим условию инфляции: р < -1/3 ε.

Примет ли эта инфляция «вселенский» масштаб (т.е. раздует пространство на много порядков) или тут же прекратится? Это зависит от того, насколько пологий склон потенциала и насколько быстро пошло раздувание. Напомним: скорость раздувания (постоянная Хаббла) играет роль вязкого трения. Для большой скорости раздувания требуется большое отрицательное давление, значит, и большая плотность энергии, она же — потенциал поля на картинке (V(φ) и ε в формуле совпадают, если поле однородно и постоянно). А для пологости склона ось X должна быть длинной, т.е. величина φ должна быть большой. Величина поля имеет размерность массы, и необходимое значение оказывается больше планковской массы. Ничего страшного, величина поля — достаточно абстрактная величина, главное, чтобы значение потенциала было ниже планковского масштаба — тогда есть классическое пространство-время, с которым можно работать. Еще важно, чтобы поле было достаточно однородным в некоторой области пространства, в несколько раз превышающей размеры горизонта.

21.1. Андрей Линде, 1989 год. Фото из архива А. Линде


Так вот, если «чаша» потенциала достаточно широка и если природа пробует любые стартовые условия, то она обязательно попробует и те, что перечислены выше. И тут уже возврата нет — готова гигантская вселенная. И не только… Но об этом «не только» — ниже Из-за того, что для запуска механизма достаточно подходящей комбинации из разнообразного множества случайных начальных условий, Андрей Линде назвал этот сценарий хаотической инфляцией. Только надо помнить, что термин «хаотический» относится лишь к старту. В дальнейшем всё происходит как и в предыдущем варианте — вполне регулярно и с предсказуемым исходом.

Большое преимущество этого сценария в том, что не требуется ни термодинамического равновесия, ни фазового перехода, предшествующих инфляции. В сценариях Гута и «новой инфляции» цепочка событий выглядела следующим образом: горячая вселенная — переохлаждение — инфляция — горячая вселенная. В случае с хаотической инфляцией первые две стадии, каковые, безусловно, являются обузой, отпадают. Не надо больше объяснять, как установилось доинфляцион-ное термодинамическое равновесие (далеко не очевидно, что это возможно), не нужен весьма специфический вид потенциала и т.п.

Пожалуй, хаотическая инфляция и есть общепринятая ныне концепция зарождения Вселенной, точнее, ее часть.

Рис. 21.2. Схема потенциала в концепции хаотической инфляции: поле находится на склоне потенциала, но скатывается настолько медленно, что пространство успевает раздуться на десятки порядков

22. Почва под ногами

В этот момент, прежде чем продолжать рассказ, стоит остановиться и задаться вопросом: а не потеряна ли у нас почва под ногами? Мы заглянули в такие дикие масштабы природы, которые невозможно ни представить, ни воспроизвести, — откуда у нас может быть уверенность, что наши методы познания работают и там? Не является ли всё вышеизложенное лишь буйной фантазией теоретиков, которую невозможно хоть как-то сопоставить с опытом?

Про сопоставление с опытом речь пойдет ниже, а сейчас попробуем понять статус теории на уровне общих соображений.

Во-первых, в науке уже есть немало примеров, когда теория, экстраполированная из земных лабораторий на недосягаемые масштабы, получала фактическое подтверждение. Пример из области космологии — первичный нуклеосинтез. Модель горячей Вселенной описывает, как в первые секунды и минуты от Большого взрыва менялась температура и плотность. Зная из земных экспериментов, как протекают ядерные реакции, можно оценить, сколько каких элементов синтезировалось из протонов и нейтронов в ранней Вселенной. Это вычислили. Потом определили состав межгалактических облаков газа по линиям поглощения в спектрах далеких квазаров. Всё совпало. Это довольно старый результат, есть гораздо более эффектные примеры того, как теоретики предсказывали явления на совершенно запредельных масштабах, а потом это блестяще подтверждалось наблюдениями. Об одном таком случае (сахаровские осцилляции) рассказано в главе 31.

Во-вторых, теория, на основе которой построен изложенный выше сценарий, очень жесткая и никаких безудержных фантазий не допускает. Посмотрим, как выглядит космологическая инфляция с точки зрения критерия фальсифицируемости Поппера. Согласно Попперу, только та теория может претендовать на звание научной, которая может быть опровергнута. Напомним, что первый получивший широкую известность вариант инфляции Гута был тут же опровергнут из-за теоретической несостоятельности.

А как насчет экспериментальной фальсифицируемости? Предположим, что какую-то часть темной материи составляют черные дыры планковской массы или какие-то другие экзотические вещи, скажем, космические струны и т.п., которые могли образоваться только ДО инфляции. Во время инфляции и тем более после нее они образоваться не могут, поскольку требуют для своего рождения очень больших возмущений метрики, близких к планковским по своей амплитуде. А плотность энергии при инфляции недостаточна для возникновения таких возмущений. Если подобные объекты будут обнаружены, то теорию инфляции можно считать отвергнутой. По данной теории вся «околопланковская» экзотика разнесена на гигантские расстояния, так что плотность доинфляционных образований на десятки порядков меньше плотности обычного вещества. Если это не так, инфляции быть не могло.

Теория инфляции могла бы быть поставлена под сомнение, если бы оказалось, что средняя плотность всех видов энергии во Вселенной существенно отличается от критической. В теории инфляции такое могло получиться только случайно с весьма малой вероятностью. Это к вопросу об эмпирической фальсифицируемости теории космологической инфляции. Ниже, в интервью с Вячеславом Мухановым, перечислены другие жесткие критерии, невыполнение которых означало бы, что теория инфляции должна быть отвергнута. Она пока все их успешно проходит.

Еще один аргумент в пользу теории, на сей раз «эстетический»: концепция инфляции проста, красива и эффективна. Эффективна в том плане, что, исходя из очень простых предположений, объясняет сразу несколько фундаментальных парадоксов происхождения Вселенной.

Такая теория обязана работать! Правда, никогда нельзя окончательно отрицать, что могут появиться и другие теории, которые будут работать еще лучше. Об этом мы поговорим в конце книги.

Как же насчет верифицируемое™? Что касается эмпирических подтверждений, так они пока косвенные, но их несколько и вместе они весьма убедительны. Подтверждения заключаются в том, что все предсказания теории инфляции, которые удалось проверить, выполняются. Мы вернемся к ним ниже, а сейчас только один факт: космологическая инфляция (правда, намного более медленная) идет прямо сейчас, и это факт, твердо установленный с помощью наблюдений.

23. Инфляция здесь и сейчас

Где-то с 1980-х годов стало возникать подозрение, что с расширением Вселенной по классическому закону Фридмана что-то не так. В интервью с Владимиром Лукашем, уже было упомянуто, что в 1970-х Ганн и Тинсли опубликовали данные, говорящие в пользу расширения Вселенной с ускорением. Тогда это казалось нонсенсом и не могло быть принято всерьез. Однако в 1990-х, когда теория космологической инфляции уже получила широкое признание, некоторые космологи начали поговаривать об ускоренном расширении современной Вселенной как о реальной возможности. Одна из причин состояла в том, что измерения постоянной Хаббла всё уверенней давали высокие значения, означавшие слишком маленький возраст Вселенной, если бы она расширялась с замедлением. Постепенно ускоренное расширение Вселенной превращалось из экзотической гипотезы в рабочий сценарий, и стали появляться работы с аргументами в его пользу.

Наконец, в 1998 году вышли статьи двух групп с одинаковым выводом: данные по далеким сверхновым свидетельствуют об ускоренном расширении Вселенной. Первая статья (Адам Рисс и др.) опубликована Группой поиска сверхновых с большим z (High z Supernova Search Team). Вторая (Сол Перлмуттер и др.) — группой Проекта космологии сверхновых (Supernova Cosmology Project). Обе группы охотились за очень далекими сверхновыми типа 1а.

Почему именно этот тип? Потому, что такие сверхновые — лучшая «стандартная свеча» огромной яркости, видимая с космологических расстояний. По своей природе это белый карлик, постепенно набиравший массу за счет перетекания вещества с соседней звезды. Белый карлик очень прост и предсказуем: он сопротивляется дальнейшему сжатию огромной силой тяготения за счет давления вырожденного ферми-газа электронов в своих недрах (это эффект из области квантовой механики — электроны не дают звезде сколлап-сировать по той же причине, по которой электроны атома не падают на ядро). Однако у массы белого карлика есть четкий предел имени

Чандрасекара, выше которого давление электронного ферми-газа не способно удержать тяготение. Как только белый карлик набирает вес до этого предела, он взрывается. Взрыв при этом грандиозен и, главное, стандартен как по яркости, так и по кривой блеска — взрываются одинаковые по массе и по устройству объекты. Небольшая разница может быть связана с химическим составом (важно число электронов на единицу массы, разное для водорода и, например, железа), но эта зависимость калибруется по форме кривых блеска. Далекие сверхновые важны потому, что их яркость чувствительна к разным вариантам кинематики Вселенной, только если звезда взорвалась на огромном (космологическом) расстоянии.

Рис. 23.1. Диаграмма Хаббла для сверхновых 1а из статьи A. Reiss et al., По горизонтальной оси — красное смещение. По вертикальной оси — звездная величина сверхновой за вычетом ее абсолютной звездной величины. На общедоступном языке это означает 2,5 log (L10/L), где L10 — светимость данного объекта, как он наблюдался бы с 10 парсек, L — светимость, наблюдаемая с Земли. Чем выше точка, тем ниже наблюдаемая светимость. Линии соответствуют разным космологическим параметрам (см. в тексте). На нижней панели — та же диаграмма, отнормированная на теоретическую зависимость для Ωm = 0,2; ΩΛ = 0


На рисунке — диаграмма Хаббла для далеких и близких сверхновых, опубликованная в статье Группы поиска далеких сверхновых. Сверху — диаграмма Хаббла как она есть, снизу — отнормированная на «нулевую гипотезу». В качестве последней авторы приняли плотность материи (обычной и темной) 0,2 от критической (Ωm = 0,2), как показывали в то время данные наблюдений, и предположение, что больше во Вселенной ничего нет.

Мы видим, что разные модели Вселенной согласуются с данными по-разному. Эффект вроде бы небольшой. Точки для далеких сверхновых отклоняются вверх от нулевой гипотезы в среднем всего лишь на величину стандартной ошибки. Но поскольку точек много, и все отклоняются вверх, факт отклонения оказывается статистически значимым. Отклонение вверх в данных координатах означает меньшую яркость (примерно на 20-30%). Значит, сверхновые дальше, чем предсказывает «нулевая модель». Значит, расширение происходило дольше и немного по другому закону. Чтобы свести концы с концами, требуется расширение с ускорением. Чтобы расширение шло с ускорением, у Вселенной должно быть уравнение состояния с отрицательным давлением, как это изложено в главе 13: р < -1/3 ε. Значит, содержимое Вселенной не ограничивается обычной и темной материей, значит, в ней также есть совсем другая субстанция. Ее назвали «темной энергией». Вклад в темной энергии состав Вселенной обозначается как ΩΛ — по ассоциации с лямбда-членом Эйнштейна.

Очень скоро вышла статья Перлмуттера с соавторами, где число далеких сверхновых на диаграмме Хаббла было уже около 30, и они свидетельствовали об ускоренном расширении Вселенной уверенней. Но часть космологической общественности медлила с признанием этого факта. Например, списывали наблюдаемое отклонение на эволюционный эффект, дескать, раньше химический состав белых карликов был другим. Но сомнения оставались недолго.

В том же 1998 году (и еще несколько раз позднее) в Антарктиде проводился эксперимент BOOMERanG (Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics). Аэростат с микроволновым телескопом запускали на волю циркулярных ветров «Полярной воронки», и за две недели он подобно бумерангу (в чем был второй смысл аббревиатуры) описывал круг на высоте около 40 км. Наблюдалась лишь небольшая часть неба, зато с хорошим угловым разрешением. Результат оказался поразительным. На угловом спектре неоднородностей реликтового излучения проявился четкий пик под названием «акустический». О том, что это такое, подробно рассказано в главах 30 и 31. Вскоре открытие было подтверждено экспериментом MAXIMA с еще меньшим охватом неба, но с еще большим угловым разрешением.

23.2 BOOMERanG перед запуском. На заднем плане — вулкан Эребус («Википедия»)


Положение акустического пика четко свидетельствовало: наша Вселенная трехмерно-плоская, или, иными словами, евклидова, Это значит, что сумма плотностей энергии всех субстанций во Вселенной точно равна критической. В то же время измерения масс скоплений галактик по разбросу скоростей уверенно давали значения средней плотности Вселенной заметно меньше критической — не более 30%. Этот предел включал всю материю, подверженную гравитационной неустойчивости, — обычную и темную. И если мы видим, что плотность энергии обычной материи вместе с темной не выше 0,3 критической, значит, по меньшей мере еще недостающие 0,7 содержатся в совсем другой субстанции, давление которой должно быть отрицательным, иначе вообще концы с концами не сходятся. Потом последовали новые подтверждения из изучения крупномасштабной структуры Вселенной а также из данных новых космических микроволновых телескопов. Сейчас ускоренное расширение Вселенной — столь же твердо установленный факт, как и то, что Земля имеет форму эллипсоида.

Что из себя может представлять темная энергия, составляющая около 70% содержимого Вселенной? Первый возможный ответ: это вакуум с ненулевой плотностью энергии. Почему она могла оказаться ненулевой? Во-первых, потому, что, как уже обсуждалось выше, вообще непонятно, почему энергия вакуума близка к нулю — она может быть любой из-за огромных нулевых колебаний полей, дающих вклад разного знака. Во-вторых, пространство может быть заполнено неким скалярным полем, находящимся в стационарном состоянии — в минимуме потенциала, который, тем не менее, отличен от нуля. Эти два варианта различаются лишь терминологически. В обоих случаях имеем уравнение состояния р = -ε и определенный прогноз: Вселенная всегда будет расширяться экспоненциально, если только вдруг вакуум не окажется метастабильным и не «перепрыгнет» в более низкое состояние. Тогда случится катастрофа. В обоих случаях, перефразируя выражение Андрея Линде, мы имеем дело с «легким ничто» плотностью 10-29 г/см3 .

Второй вариант: темная энергия — это скалярное поле, находящееся не в минимуме, а «на склоне» своего потенциала. Тогда оно постепенно меняется, находясь в режиме медленного скатывания. В этом случае давление находится где-то в интервале между -1/3 ε и -ε. Такой вариант темной энергии называется «квинтэссенция». Это уже «легкое нечто»: у квинтэссеции есть выделенная система отсчета и определенная динамика. В принципе, параметр со в уравнении состояния темной энергии (p = -ωε) поддается измерению — квинтэссенцию можно отличить от вакуума. Это дело обозримого будущего.

Как бы там ни было, благодаря открытию темной энергии теория инфляции получила новую опору. Пусть это уже не та инфляция, а на много порядков более медленная — принцип тот же. Между прочим, темная энергия, как и инфлатон, раздувавший Вселенную перед Большим взрывом, тоже из области невообразимо далеких от нас масштабов, но далеких в другую сторону: низкая энергия, низкая плотность. Как поле, раздувшее вселенную в первые мгновения ее существования, так и темная энергия связаны с новой физикой — мы ничего не знаем ни про первое, ни про второе напрямую из лабораторных экспериментов. Но если масштаб взаимодействий, ответственных за раннее раздувание, просматривается вдали как результат экстраполяции экспериментальных данных, то уровень темной энергии не связан с нашей физикой никак, по крайней мере, не видно, как он может быть связан. Таким образом, явление, наблюдаемое нами воочию, более загадочно, чем ранняя инфляция. И вместе с тем оно явно демонстрирует, что найденный «на бумаге» механизм, призванный объяснить происхождение Вселенной, прекрасно работает прямо сейчас, неважно, что с другими параметрами и другим результатом.

Кстати, насчет результата современного раздувания. Никто не может исключить, что когда-нибудь (скажем, через триллион лет), раздув нашу Вселенную на много порядков, это «слабенькое» скалярное поле тоже не «выгорит», породив совершенно новый мир из частиц ничтожной массы, образующих связанные структуры огромного размера на основе взаимодействий, неизвестных нам из-за своей слабости. Интересно, что скопления галактик никуда не денутся и в ту эпоху. Как уже предположено в главе 1, кое-где и тогда будут происходить рецидивы массового образования звезд. И разумные жители тех планетных систем никак не ощутят, что Вселенная перешла в новую фазу жизни, — слишком эфемерными для их инструментов будут эти новые структуры. Но в них будет заключаться основное содержимое будущей Вселенной. Это только предположение, но отнюдь не бессмысленное.

24. Рябь Вселенной

Пока мы описали только часть сценария возникновения Вселенной. Ту часть, которая объясняет, откуда взялись начальные условия, давшие огромную однородную Вселенную с богатым содержимым. Но есть и другой вопрос, который поначалу казался не столь фундаментальным: откуда взялись галактики, их скопления и более крупная структура Вселенной, называемая крупномасштабной. Этот вопрос встал во весь рост в 1970-х годах и тоже относился к начальным условиям при возникновении Вселенной: без неких первичных неоднородностей всё наблюдаемое великолепие не смогло бы появиться.

Как выглядит современная Вселенная? Она однородна в целом, на больших масштабах, — скажем, на расстояниях 300 мегапарсек (миллиард световых лет) однородность соблюдается с хорошей точностью. На меньших масштабах есть галактики, скопления галактик и так называемая крупномасштабная структура, похожая на трехмерную сеть с перепонками, — нечто ячеистое неправильной формы. Самый крупный масштаб этих неоднородностей — примерно 100 мегапарсек (300 млн световых лет). Крупномасштабная структура была выявлена на трехмерных картах распределения галактик в 1980-х годах.

Пространство внутри ячеек, между перепонками, называется войдами — там практически нет галактик. Толщина стенок — около одной десятой от их размера. Там, где стенки пересекаются, плотность еще выше, а в узлах находятся гигантские скопления галактик.

Контраст плотности в этой структуре довольно велик. В стенках плотность вещества на порядок больше, чем в войдах. В волокнах на пересечении стенок — еще на порядок выше. А в узлах, где находятся гигантские скопления галактик, плотность порядка на три выше средней. Откуда взялась эта сеть, скопления галактик, сами галактики? Оказывается, если бы Вселенная изначально была абсолютно однородной, то эта структура не смогла бы возникнуть.

Любая среда, заполняющая пространство, подвержена гравитационной неустойчивости, носящей имя Джинса. Любые сгущения стремятся сжаться под действием собственного тяготения. Сжатию может препятствовать давление среды, но если неоднородность имеет достаточно большой размер (критический размер Джинса пропорционален скорости звука в среде), то сгущение начинает сжиматься — сначала по экспоненциальному закону, затем при ряде условий может перейти в режим свободного падения. Именно неустойчивость Джинса привела к образованию звезд в галактиках.

Рис. 24.1. Крупномасштабная структура Вселенной по данным Слоановского цифрового обзора неба (Sloan digital sky survey). Сюда попал «срез» неба раствором 2,5°. Темные сектора — плоскость Галактики, где наблюдения затруднены из-за пыли. Синими точками обозначены эллиптические галактики, красными — остальные. Некоторые массивные и плотные скопления галактик приобретают вид радиально направленных черточек из-за большого разброса скоростей — эти скорости добавляются к измеренному красному смещению


В случае расширяющейся Вселенной неустойчивость работает иначе. Возмущения растут медленнее: не по экспоненте, а линейно — контраст возмущений растет пропорционально масштабному фактору Вселенной. В какой-то момент, когда сгущение становится гравитационно связанным, рост становится нелинейным, причем на стадию нелинейности раньше выходят неоднородности меньшего размера — галактики и скопления галактик. А еще раньше — первые звезды, которые были гигантскими.

Ячеистая структура из стенок и войдов не успела выйти на нелинейную стадию (и уже не выйдет). Как она образовалась? Трудно допустить, что начальные возмущения плотности имели такую хитрую структуру. Ответ прост: крупномасштабная структура является сетью каустик.

Подобное явление можно наблюдать на стене, куда падает свет, отраженный от поверхности воды с легкой беспорядочной рябью. Или в виде аналогичной световой картины на мелком дне. Мы видим подвижную сетку из ярких полос. Именно сеть, а не плавные переливы яркости, подобные самой ряби. Помните, что писал Николай Гумилёв про жирафа:

…И шкуру его украшает волшебный узор,

С которым равняться осмелится только луна,

Дробясь и качаясь на влаге широких озер.

Это в точности про сеть каустик в отражении от ряби, на которую действительно похожа раскраска жирафа. Математически суть «волшебного узора» и крупномасштабной структуры одна и та же, только на воде фокус происходит с углом отражения или преломления, а в случае крупномасштабной структуры — со скоростями и расстояниями — гравитационная неустойчивость в расширяющейся Вселенной работает так, что материя преимущественно накапливается на ближайшей плоскости сгущения.

Еще в 1970 году Я. Б. Зельдович аналитически показал, что положительная флуктуация плотности собирается в плоский блин (термин «блины» прижился надолго). Таким образом, структура из пересекающихся блинов была предсказана еще до своего открытия. Впоследствии путем моделирования с привлечением всё возрастающих вычислительных ресурсов ячеистая структура была воспроизведена во всем ее великолепии.

Рис. 24.2. Результат численного эксперимента «Миллениум», в котором моделировался рост первичных возмущений из-за гравитационной неустойчивости, вплоть до образования галактик и их скоплений. Каждая точка на рисунке — галактика. Яркие пятна — большие скопления галактик. Архив изображений Астрофизического института Общества Макса Планка (МРА) www.mpa-garching.mpg.de/galform/millennium/


Но ни ячеистая структура, ни галактики, ни их скопления не смогли бы возникнуть, если бы ранняя Вселенная была совершенно однородной. Известный закон роста возмущений диктует, что для появления наблюдаемой структуры контраст неоднородностей плотности в эпоху рекомбинации должен быть чуть больше одной тысячной: Вселенная с тех пор расширилась в тысячу раз, и контраст должен был вырасти в тысячу раз, чтобы стать порядка единицы и перейти в нелинейную стадию, образовав галактики.

Эпоха рекомбинации важна здесь потому, что у нас есть «фотография» Вселенной этого возраста (380 тыс. лет) — карта реликтового микроволнового излучения. Значит, мы должны видеть эту затравочную «рябь» на карте реликта! Причем неоднородности температуры реликтового излучения вроде должны быть того же порядка, что и контраст плотности, хотя и не точно такими же: при переводе одного контраста в другой замешан ряд нетривиальных эффектов.

В 1970-1980-х годах сложилась довольно напряженная ситуация. Уже делались измерения реликтового излучения с хорошей чувствительностью. Однако оно выглядело однородным даже тогда, когда уровень чувствительности в одну тысячную был достигнут на наземных радиотелескопах. Тогда наиболее чувствительной установкой был РАТАН-600 на Северном Кавказе (радиотелескоп Академии наук диаметром 600 м). Первый результат, доложенный руководителем научной программы радиотелескопа Юрием Парийским, вызвал недоверие. Получалось, что неоднородностей температуры реликтового излучения нет на уровне 10-4 . А как же тогда образовались галактики!? Кое-где раздавался ропот, что данные неверны. Но вскоре результат об отсутствии неоднородностей с контрастом 10-4 был подтвержден на других радиотелескопах. А предел по данным РАТАН-600 был снижен до уровня 10-5 и даже меньше. Это заставило изрядно поволноваться космологов — вырисовывался самый настоящий кризис. Почва уходила из-под ног: мы видим галактики и их скопления, точно знаем, как эволюционируют неоднородности, но не видим того, из чего они должны развиваться.

25. Темная материя, спасительная и неуловимая

Здесь на сцену вышла темная материя. Примерно в то же время стало ясно, что галактики существенно тяжелей, чем составляющие их звезды, газ и пыль. В галактиках есть что-то еще, поскольку они вращаются слишком быстро — требуется большая масса, чтобы своим тяготением уравновесить центробежную силу. Появился даже кандидат на роль темной материи — нейтрино. Если у нейтрино есть небольшая масса, то реликтовые нейтрино, подобные реликтовым фотонам, но уже медленные из-за своей массы, могут скапливаться в галактиках и делать их тяжелее. Как раз к месту появился и экспериментальный результат, дававший массу нейтрино около 30 эВ — даже больше, чем требовалось. Как выяснилось, результат этот был неверным, но мысль о массивном нейтрино продолжала носиться в воздухе — она, по крайней мере, смягчала кризис.

Если у нейтрино есть масса, например 10 эВ, то во времена рекомбинации газ нейтрино составлял большую часть массы Вселенной. И что важно, нейтрино были уже медленными еще задолго до рекомбинации. Гравитационная неустойчивость на большом масштабе неоднородностей начала работать для них раньше, чем для обычного вещества (нейтрино очень слабо взаимодействуют и распространяются во Вселенной свободно начиная с первых секунд после Большого взрыва). Поэтому к моменту рекомбинации они могли создать большие ямы гравитационного потенциала (в пересчете на современную Вселенную — 20 мегапарсек и больше), куда потом «стечет» обычное вещество, образовав крупномасштабную структуру. С помощью нейтрино удавалось свести концы с концами, если первичные неоднородности, запечатлевшиеся в реликтовом излучении, оставались на уровне одной десятитысячной. Но этот уровень был уже пройден — на нем не обнаружилось никакой анизотропии!

Выход мог быть лишь один: темная материя состоит из неизвестных частиц, почти не взаимодействующих с обычным веществом, скорее всего, гораздо более тяжелых, чем нейтрино, и более тяжелых, чем протоны. Нужно, чтобы в первые минуты Вселенной они уже были медленными. Подобная темная материя получила название «холодной». В этом случае контраста начальных неоднородностей чуть больше, чем 10-5, хватает, чтобы к моменту рекомбинации темная материя успела «скомковаться» до контраста 10-3, необходимого для образования галактик. Обычное вещество потом потянется за темной материей. При этом сеть каустик, о которой шла речь выше, формируется именно темной материей, и лишь потом обычная ба-рионная материя стягивается в эту сеть и подсвечивает ее образовавшимися звездами. Так и возникает крупномасштабная структура.

25.1. Центральная часть массивного скопления галактик Abell 1689. Голубые дуги — изображения галактик, находящихся за скоплением, растянутые и усиленные из-за эффекта гравитационного линзирования. С помощью подобных дуг измеряют массу скопления и даже распределение массы по его площади. Из этих оценок видно, что для объяснения огромной массы скопления не обойтись без темной материи, количественно превосходящей обычную в несколько раз.


Получается так: первичные неоднородности (их происхождение обсуждается ниже) имели амплитуду 5·10-5 (современная оценка) — как в темной, так и в обычной материи. До эпохи рекомбинации обычная материя осталась с тем же контрастом — в ней слишком большое радиационное давление и нет условий для развития гравитационной неустойчивости. А в холодной темной материи условия есть! Поэтому до эпохи рекомбинации она могла увеличить свой контраст почти на два порядка. Но не больше — на большее не хватает времени. Выходит, первичные неоднородности, а значит, и неоднородности обычного вещества к моменту рекомбинации и анизотропия реликтового излучения (которые близки по величине) не могут иметь контраст меньше, чем 10-5! Это противоречило бы факту формирования галактик. Анизотропия 10-5 (которая традиционно обозначается как дисперсия температуры излучения ΔТ/Т) была последним рубежом, дальше которого теория не могла отступать — за этим рубежом начиналась мистика. А из заявлений команды РАТАН-600 следовало, что этот рубеж уже пройден. Перед космологией как наукой замаячила суровая проблема. Почва уходила из-под ног: мы видим галактики и их скопления, точно знаем, как эволюционируют неоднородности, но не видим того, из чего они должны развиваться. Казалось, еще немного — и останется только развести руками: космология как наука не работает — никто ничего не понимает.

Проблема рассосалась к концу 1980-х, началу 1990-х годов. Серия экспериментов в космосе («Реликт», СОВЕ) показала, что неоднородности реликтового излучения существуют, и их амплитуда как раз порядка 10-5, чуть выше. Наука выстояла!

Что касается данных РАТАН-600, то, похоже, просто произошла некоторая путаница в определениях величин. Сейчас видно, что РАТАН-600 не мог достигнуть уровня 10-5 — этому препятствовали существующие фоны галактического происхождения и аппаратные шумы.

Тем не менее, напряженность, вызванная долгим ожиданием открытия анизотропии реликтового излучения (в которую внес свою лепту РАТАН-600), сыграла большое значение, приведя теоретиков в тонус, заставив их как следует продумывать модель холодной темной материи. В частности, поэтому обнаружение анизотропии реликтового излучения было встречено во всеоружии.

В существовании темной материи не сомневается почти никто из ученых: она очень нужна в космологии и астрономии, причем ставит всё на свои места. Известно, сколько ее, примерно известно, какими свойствами она должна обладать. Но в современной физике частиц темная материя остается загадкой. В стандартной модели элементарных частиц нет ничего похожего на темную материю. Дело в том, что она требует новой физики. Есть теории, имеющие статус гипотез, где такие частицы существуют. В принципе, темная материя может быть найдена, если она хоть как-то связана с обычной. Если она, пускай слабо, взаимодействует с обычными частицами, то ее можно зарегистрировать в больших детекторах, расположенных глубоко под землей. В других экспериментах пытаются обнаружить поток нейтрино из центра Земли или от Солнца — частицы темной материи могут скапливаться там под действием тяготения и аннигилировать друг с другом, рождая нейтрино. Пока ничего не нашли.

25.2. Столкновение двух скоплений галактик. Наложены три изображения: оптическое (галактики), рентгеновское (розовый цвет — горячий газ) и реконструкция распределения массы (синий цвет), сделанная с помощью гравитационного линзирования. Галактики с их звездами свободно прошли друг через друга и с ними — облака темной материи, в которых заключена основная масса (два синих облака). А газ скоплений, который по массе на порядок превосходит звезды галактик, неупруго провзаимодействовал -облака газа отстали от своих скоплений


Если темная материя распадается на обычные частицы, в частности, на гамма-кванты, то последние можно обнаружить в космосе. Уже было несколько не подтвердившихся заявлений по этому поводу:

• Утверждалось, что вклад от распада темной материи видят в данных космического гамма-телескопа EGRET, но потом выяснилось, что это результат неправильного учета свойств детектора.

• Утверждалось, что космический спектрометр PAMELA регистрирует избыток позитронов, каковой объясняется распадом темной материи, но оказалось, что позитроны неплохо объясняются и обычными астрофизическими источниками.

• Утверждалось, что космический гамма-телескоп «Ферми» «увидел» особенность в спектре электронов больших энергий. Но после тщательной калибровки инструмента особенность «рассосалась».

• Наконец, в данных «Ферми» нашли пик в спектре гамма-квантов высоких энергий, летящих от центра нашей Галактики. Это приписали аннигиляции частиц темной материи. Уже вышли десятки, если не сотни работ на это тему. Автор недавно (в январе 2013 года) собственноручно проверил этот пик по открытым данным — вместо того, чтобы стать более значимым за последний год наблюдений, пик этот тоже практически «обнулился». То есть это была статистическая флуктуация.

Таким образом, темная материя пока старательно ускользает от нас.

26. Сверхскопления галактик как результат квантовых эффектов

Итак, современная структура Вселенной, включая скопления галактик и сами галактики, выросла из небольших флуктуаций плотности, которые прекрасно отражены на карте реликтового излучения. Далее приходится задаться вопросом: откуда взялись эти затравочные неоднородности? Мы видим их в эпоху рекомбинации, мы видим, что их амплитуда была порядка 10-5 . До этой эпохи возмущения барионной компоненты вырасти практически не успели — они были такими с самого начала. С какого начала? Что породило эти флуктуации?

Оказывается, космологическая инфляция умеет делать и это.

Напомним, что в квантовой механике любое поле имеет нулевые (вакуумные) колебания, которые обычно не наблюдаемы. Скалярное поле, вызывающее инфляцию, — тоже. Но при разных видах воздействия вакуумные колебания могут становиться реальными флуктуациями полей — волнами, частицами — в зависимости от конкретной ситуации.

Ускоренное расширение пространства — один из видов такого воздействия. Вакуумное колебание поля имеет шанс превратиться в реальную флуктуацию, если пространство за период колебания данной частоты существенно расширится. Именно это и происходит при космологической инфляции.

Напомним, скорость расширения выражается через постоянную Хаббла H, для случая инфляции а = аo·eHt где а — расстояние между произвольной парой точек пространства (масштабный фактор, определенный с точностью до постоянного множителя). Обратная величина 1/Н — время, за которое все расстояния в расширяющемся пространстве увеличиваются в е раз (для простоты слога ниже будем пользоваться словом «удвоение»).

Величина Н пропорциональна квадратному корню из плотности энергии скалярного поля. Если «мотором» инфляции (инфлатоном) является поле, связанное с физикой великого объединения (как поле Хиггса связано с физикой электрослабого взаимодействия), то естественное значение H, выраженное в планковских единицах, — где-нибудь 10-6, а время удвоения расстояний — 106 планковских времен, т.е. 10-37 с. Это не обязательно точно так, просто остановимся на этих числах как на вероятной возможности.

При такой инфляции наиболее эффективно «реализуются» флуктуации с периодом порядка тех же 10-37 с, или характерного размера 10-27 см. Меньшие по размеру флуктуации не генерируются. Большие — генерируются, но с меньшей амплитудой, поэтому можно считать, что основные флуктуации инфлатона происходят именно на масштабе 10-27 см. Какова их амплитуда? Грубо говоря, ее относительная величина порядка H ~ 10-6 . Более точное значение определяется конкретной зависимостью V (f).

Итак, самые сильные квантовые возмущения скалярного поля, раздувающего вселенную, рождаются с размером около 10-27 см. Через каждые 10-37 с их размер удваивается. Через 10-36 с увеличивается в тысячу раз. А всё это время возникают новые флуктуации исходного размера. Работает своеобразный конвейер — флуктуации рождаются всё время, пока продолжается инфляция, возникают и растягиваются. А их амплитуда при этом не меняется, как не меняется и само поле. Допустим, инфляция продолжается 10-35 с — это вполне вероятно (равно как и 10-32 с, может быть и больше). За это время происходит сотня удвоений размера первых флуктуаций. Это рост на 30 порядков. Самые первые флуктуации растягиваются до размера 10 м. Цифра условная, поскольку если инфляция продлится вдвое дольше, то максимальный размер флуктуации намного превзойдет современный размер горизонта Вселенной. Итак, если инфляция идет с постоянным темпом, в результате имеем к ее завершению спектр возмущений поля с одинаковой амплитудой, простирающийся от 10-27 см до макроскопических величин. Такой спектр (амплитуда не зависит от длины волны) называется плоским. Или спектром Гаррисона-Зельдовича (по имени авторов, впервые предположивших, что первичные флуктуации описываются таким спектром, еще задолго до появления концепции космологической инфляции). В реальности темп инфляции меняется и спектр слегка отличается от плоского. Этот важный факт обсуждается в следующих главах.

Инфляция заканчивается «скатыванием» инфлатонного поля к нулю, причем это «скатывание» происходит с ускорением. В конце инфляции все флуктуации усиливаются в результате переходного процесса до относительных амплитуд плотности 5·10-5 (среднеквадратичное отклонение). С таких значений впоследствии начинается их эволюция.

Картина квантового рождения первичной ряби Вселенной была впервые и довольно исчерпывающе изложена в работе Вячеслава Муханова и Геннадия Чибисова в 1981 году. При этом они опирались на сценарий Старобинского.

Итак, по завершении инфляции Вселенная перешла на обычный режим расширения по инерции — по сценарию Фридмана. Всё ее содержимое к этому моменту было «сотворено» — все частицы, правда, имевшие другой тип, чем сегодня. Ее температура была порядка 1016 ГэВ, если измерять ее в единицах, привычных для физиков высоких энергий, или 1029 градусов Кельвина. С тех пор она расширилась почти на 29 порядков. Положительные флуктуации плотности, имевшие размер в десяток микрон на конец инфляции, превратились в гигантские скопления галактик, содержащие сотни триллионов звезд. Напомним, еще раньше десятимикронная флуктуация появилась как квантовый эффект на масштабе 10-27 см. Таким образом, любое скопление галактик, любая галактика — прямой потомок микроскопической квантовой флуктуации, растянутой до микронных размеров за время инфляции и еще на 29 порядков — по инерции после ее окончания.

27. Логарифмическая история Вселенной

Попытка представить огромное скопление галактик, спрессованное в сферу диаметром 10 мкм, перекручивает мозг в бараний рог. Если без предисловий рассказать про данный факт человеку, далекому от космологии, он скорее всего скажет, что это ерунда, что такого быть не может — здравый смысл протестует! При этом никаких рациональных аргументов против человек сформулировать не сможет. Чтобы урезонить здравый смысл, надо приучить его к логарифмической шкале явлений. Кстати, шкала, доступная непосредственному восприятию человека, не как уж коротка. Безо всяких устройств наш глаз способен окинуть сотню километров ландшафта, оценив расстояние, и разглядеть детали в одну десятую миллиметра. Это девять десятичных порядков. Во времени человек воспринимает даже больший диапазон — от десятой доли секунды почти до века — десять порядков. История Вселенной простирается от планковского времени (10-43 с) до нынешнего (410-7 с) — 60,5 порядка. Нынешний размер Вселенной неизвестен — он может быть как 1031, так и 10100 см. Но можно взять за максимальный масштаб размер современного горизонта 5 1028 см. Тогда диапазон расстояний, начиная от планковского масштаба и кончая горизонтом, — 61 порядок. Теперь можно изобразить историю Вселенной в дважды логарифмической шкале. Для начала проследим судьбу квантовых флуктуаций — как они росли и развивались после инфляции.

Здесь важно выбрать удобную систему отсчета для времени. Мы не знаем, сколько продолжалась инфляция, — как показано в следующей части, ее продолжительность могла быть любой. По сути, у нас есть только одна точка, за которую мы можем зацепиться — окончание инфляции и переход к фридмановской стадии. Треки на рис. 27.1 начинаются от времени 10-37 с, характеризующего темп инфляции, — это условность, на самом деле переход от инфляции к фридмановскому расширению происходил не мгновенно. Саму инфляцию откладываем в отрицательную область, нуль будет ее окончанием. Ее удобней изобразить в линейной шкале на отдельном рисунке (рис. 27.2).

Рис. 27.1. История Вселенной после инфляции в дважды логарифмическом масштабе. Линиями показано, как менялся со временем размер области пространства, ставшего видимой частью Вселенной (горизонт), большой галактикой (сгусток X) и первыми гигантскими звездами. Вертикальные пунктиры показывают фазовые переходы материи во Вселенной. Наклонный пунктир показывает размер горизонта


Когда инфляция заканчивается, треки выходят на степенную зависимость а ~ t1/2 (степенной закон в дважды логарифмической шкале выглядит как прямая линия с наклоном, равным показателю степени). Такой закон расширения возникает из решения уравнения Фридмана для вселенной, в которой доминируют ультрарелятивистские или безмассовые частицы. Такая ситуация продолжается до t ~ 3·1012 с (80 тыс. лет, незадолго до эпохи рекомбинации), после чего в балансе энергии Вселенной начинают доминировать холодные частицы (темная материя и барионы). При этом меняется уравнение состояния Вселенной — давление падает почти до нуля, и закон расширения меняется на а ~ t2/3 (см. главу 13).

В самом конце добавляется новое экспоненциальное расширение, связанное с темной энергией, но пока оно слишком мало, чтобы его можно было увидеть в масштабе рисунка.

Прямая линия, пересекающая весь рисунок, — размер горизонта. При инфляции практически все флуктуации плотности, кроме самых последних, очень быстро растягиваются за пределы горизонта и таким образом «замораживаются». Возмущение не может эволюционировать, когда оно распределено по множеству причинно не связанных областей. После инфляции расширение становится медленней роста горизонта, и флуктуации вновь входят под горизонт — сначала те, что поменьше, потом большего размера. Скорость роста масштабов увеличивается на отметке времени 80 тыс. лет и приводит к формированию наблюдаемой структуры уже в возрасте вселенной во многие миллионы и миллиарды лет — в довольно узкой полосе в масштабе рисунка. Об этом более подробно рассказано в следующей главе.

Рис. 27.2. Рост масштабов неоднородностей во время инфляции. Сиреневая полоса обозначает пространственный масштаб, на котором всё время до τ = 0 рождаются квантовые флуктуации. Линии показывают, как растут неоднородности, соответствующие будущим знакомым нам объектам. Поскольку продолжительность инфляции не имеет четкого ограничения, она могла продолжаться и тысячу единиц времени — тогда треки роста первых флуктуаций придут к τ = 0 на метр выше начала координат, достигнув значения порядка 10500 см — вполне возможно что Вселенная имеет такой или еще больший размер. Линии для простоты изображены прямыми — на самом деле при подходе к τ = 0 темп инфляции снижается и линии плавно загибаются.


Наша эпоха, когда существуют планетные системы и возможна жизнь, в данном масштабе не больше ширины штрихов линии, обозначающей современную Вселенную на рис. 27.1 (справа). А между стадией инфляции и электрослабым фазовым переходом лежит самая долгая в логарифмическом плане эпоха, про которую мы мало что можем сказать. Есть подозрение, что в эту эпоху не происходило ничего интересного: по своей температуре эпоха соответствует так называемой Великой энергетической пустыне — области от сотен гигаэлектронвольт до 1016 ГэВ. Вероятно, где-то там сформировалась барионная асимметрия, возможно, жили разнообразные супер-симметричные партнеры нынешних частиц — фотино, скварки… Конечно, никто не даст голову на отсечение, что и посредине пустыни не происходило что-то интересное, просто это никак не просматривается из физики частиц в ее современном состоянии.

Могли ли на этом логарифмически длиннейшем отрезке истории случиться «искусства, знанья, войны, троны и память сорока веков»? Для этого прежде всего нужны частицы с массой, на много порядков превосходящей температуру Вселенной. Сейчас температура 3·10-4 эВ — масса электрона на 9 порядков больше. В принципе, такие частицы могли остаться от эпохи окончания инфляции — с массой чуть меньшей, чем масштаб великого объединения, скажем, 10-5 ГэВ. Допустим, есть какой-то закон сохранения, заставляющий эти частицы жить долго, например 1 не — до конца эпохи энергетической пустыни. Вполне возможно, что они могли бы образовывать что-то вроде атомов и молекул.

Однако, первая проблема заключается в том, что этих частиц оказалось бы маловато внутри горизонта Вселенной того времени. К концу эпохи энергетической пустыни таких частиц внутри горизонта оказалось бы где-то 1050 — на 30 порядков меньше, чем барионов внутри нынешнего горизонта. Это число примерно того же порядка, что число барионов в Земле. Явно мало, учитывая, что пространство внутри горизонта быстро расширяется.

Следующая проблема заключается в том, что эти частицы не успели бы сконденсироваться в космические тела. И, наконец, достаточно ли 1 не для эволюции структур в их естественном масштабе времени? Вопрос о том, что такое естественный масштаб времени, не так прост, но, вероятно, для очень грубой оценки можно использовать единицы атомного времени, определяемого с помощью принципа неопределенности как t ~ ћ/E, где Е — энергия связи электрона в атоме. Для внешних оболочек в атоме примем Е = 10 эВ, тогда характерное атомное время будет 1016 с. За последние 3 млрд лет (10-7 с) прошло 1033 атомных времен. Этого хватило на всё.

Энергия связи электрона в атоме по меньшей мере на пять порядков меньше массы электрона. Наши гипотетические частицы эпохи конца Великой энергетической пустыни имеют массу не более 1015 ГэВ, и если следовать аналогии, то энергия связи в гипотетических атомах должна быть не больше 1010 ГэВ. Соответствующее атомное время — 10-34 с. В таком случае за интересующую нас эпоху в 1 не прошло 1025 атомных времен, что соответствовало бы 30 годам в пересчете на наши атомы. Явно мало.

Таким образом, за длинную, богатую метаморфозами логарифмическую историю Вселенной только наш короткий интервал в пол-порядка богат на сложные эволюционирующие структуры. А гораздо больший интервал в 14 порядков и впрямь остается пустынным.

28. Судьба сгустка X

Итак, инфляция приготовила затравочные возмущения плотности энергии. Они растягивались в пространстве, покрывая огромный диапазон размеров и имели примерно одинаковые амплитуды на всех масштабах. Это изложено в общих чертах в главе 24, а сейчас попробуем проследить более подробно судьбу одной положительной флуктуации плотности, которая при окончании инфляции имела размер около микрона. Назовем эту флуктуацию «сгусток X», хотя слово «сгусток» на тот момент является некоторым преувеличением — его контраст, т.е. относительное превышение плотности всего около 510-5 (взяли среднеквадратичное отклонение).

При тех параметрах инфляции, которые мы приняли в главе 24, сгусток X родился размером 10-27 см и раздулся на 24 порядка за 70 удвоений масштаба. По времени это заняло чуть меньше 10-35 с, отделяющих конец инфляции от момента рождения сгустка X. Если следовать нашим допущениям, то при рождении сгусток X имел массу примерно 10 г, а по выходу из инфляции — 1071 г при почти микроскопическом размере, что на много порядков больше массы наблюдаемой части современной Вселенной. Избыток его массы над окружением тоже превосходил все мыслимые величины. Но этот микронный сгусток не мог сколлапсировать в черную дыру: он расширялся со скоростью, на много порядков большей скорости света, что не противоречит специальной теории относительности, поскольку сгусток X был растянут на огромное число причинно не связанных областей. По этой же причине его контраст оказался «замороженным»: одни части сгустка X ничего не знали о других частях, не чувствовали их тяготения — он как будто оказался разбит на огромное множество независимых вселенных.

Но со временем ситуация изменилась. Размер сгустка X, как и масштабный фактор Вселенной, увеличивался как корень квадратный из времени. А размер горизонта рос пропорционально времени. Когда-нибудь пропорциональная зависимость обязательно перешибет корневую. Для сгустка X это произошло в возрасте Вселенной около трех месяцев. Он оказался внутри горизонта и приобрел причинную связность: разные части сгустка почувствовали тяготение друг друга. В этот момент сгусток сильно потерял в массе (энергии), которая составляла уже 1049 г, или 1016 масс Солнца. Потеря массы связана с работой по расширению Вселенной, совершаемой давлением вещества. Энергия сгустка X (а его масса m = Е/с2 складывалась из энергии ультрарелятивистских частиц) пошла на уменьшение его отрицательной гравитационной энергии связи.

С этого момента контраст сгустка благодаря его самотяготению начал расти.

Мы хорошо знаем состав Вселенной той поры. Он складывался из водородно-гелиевой плазмы, фотонов, почти безмассовых нейтрино и медленно движущихся частиц темной материи. Львиная доля энергии-массы заключалась в фотонах и нейтрино. Они (как и связанная с фотонами плазма) не могли поддаваться самотяготению из-за своего огромного давления. А темная материя могла подчиняться гравитации, поскольку была не зависима от фотонов и обладала ничтожным давлением. Именно ее контраст начал расти, правда, медленно — как логарифм времени. В первые месяцы доля темой материи была ничтожной — порядка одной тысячной от плотности энергии фотонов с нейтрино. Но соотношение росло в пользу темной материи: ее количество в сопутствующем объеме не менялось, а фотоны с нейтрино остывали, и их вклад уменьшался.

Паритет наступил в возрасте 80 тыс. лет. К этому моменту логарифмический рост довел контраст сгустка до 3·10-4 . При этом изменилось уравнение состояния Вселенной, ее расширение пошло по другому закону: масштабный фактор а стал зависеть от времени t как а ~ t2/3 (до этого, напомним, расширение шло по закону а ~ t1/2). А рост возмущений при этом ускоряется еще радикальней: из логарифмического он превращается в линейный. К отметке 80 тыс. лет масса сгустка X составила порядка 1013 масс Солнца и с тех пор изменилась менее чем в два раза — в массе стала доминировать холодная темная материя, которая никуда не девается. Контраст темной материи продолжал расти, но обычное (барионное) вещество по-прежнему не участвовало в гравитационном росте возмущений по той же причине: давление излучения намного превосходило силы самотяготения. Однако, плазма с излучением продолжали жить своей весьма интересной жизнью: они были подвержены акустическим колебаниям плотности. Эти колебания привели к важнейшему эффекту: акустическим (или сахаровским) осцилляциям, которые непосредственно наблюдаются на карте реликтового излучения. Это явление и роль, которую оно сыграло, описаны ниже в главе 28.

В возрасте 380 тыс. лет происходит рекомбинация, барионы «отклеиваются» от фотонов. Реликтовое излучение сохранило и донесло до нас карту распределения плазмы той поры, и мы видим возмущения с амплитудой порядка 10-5 . Но реально возмущения плотности темной материи в то время были в сто раз больше и продолжали расти. Контраст сгустка X составил 210-3 и продолжал расти. После рекомбинации барионное вещество стало вести себя в больших масштабах как пыль (давление пренебрежимо) и скатываться в ямы гравитационного потенциала, образованные темной материей, догоняя последнюю по амплитуде возмущений. Сгусток X стал сгустком не только темной, но и обычной материи.

Как только амплитуда возмущений становилась порядка единицы, начинался более быстрый нелинейный рост, заканчивающийся формированием объектов. Со сгустком X это произошло в возрасте 2-3 млрд лет. Он оказался гравитационно связанным и перестал расширяться вместе со Вселенной.

Конечно, любой сгусток не оставался изолированным — распределение плотности Вселенной было наложением неоднородностей разных масштабов. Сгусток X сам был неоднородным, включал в себя более мелкие уплотнения. Поэтому он разбился на группу небольших галактик, в которых начали интенсивно рождаться звезды. Вероятно, потом эти галактики слились, и часть сгустка X объединилась в одну большую галактику. Может быть, в нашу.

С другой стороны, он входил в состав какой-то неоднородности большего размера. Из этой неоднородности позже, возможно, образовалось скопление галактик а из еще большего — стенка крупномасштабной структуры.

Из рис. 27.1 видно, что возмущения меньшего размера раньше входят под горизонт, значит, начинают расти раньше и потому раньше выходят на нелинейный рост. Первые астрофизические последствия дали возмущения, стартовавшие от размера 10-6 см после инфляции (красная линия). В возрасте сотни миллионов лет они вышли на нелинейную стадию и дали начало первым звездам, которые были гораздо больше современных, имея другой химический состав и другие параметры устойчивости.

Эти звезды обладали массой около 100 масс Солнца, но масса вещества (вместе с темной материей), вовлеченного в конденсацию каждой из этих звезд, была в тысячи раз больше. Неоднородности массы меньше 105 масс Солнца в ту эпоху не могли образовывать объектов из-за значительного давления вещества. Меньшие объекты возникли позже в галактиках. Самыми крупными объектами, которые успели образоваться, стали элементы крупномасштабной структуры, которые не являются гравитационно связанными и находятся на линейной стадии до сих пор.

Такова судьба микроскопических квантовых флуктуаций метрики пространства, возникших за 10-35 с до конца космологической инфляции.

29. Реконструкция из-подо льда.

Здесь надо перевести дух и вернуться к европианам с их научными проблемами, которые нам, живущим на планете с прозрачной атмосферой, кажутся совсем простыми. Из-подо льда они простыми не кажутся.


Лишенные возможности видеть за пределами ближайших сотен метров, европиане попробовали прощупать окружающее пространство через ледяной панцирь посредством самого панциря. Для этого был предпринят дорогой и длительный эксперимент под названием «Второе дыхание». Он продолжал прошлый эксперимент «Небесное дыхание», который выявил существование Большого Аттрактора огромной массы, вокруг которого обращается Мир.

Между этими экспериментами прошло много времени, и, можно сказать, пролегла пропасть, точнее — кризис цивилизации. Эпоха удовлетворения приказала долго жить благодаря переходу через критическую точку, предсказанную математиком Хурум Бразом.

Теория была проста до очевидности. Инфраструктура цивилизации ветшает и требует регулярного ремонта. Элементы инфраструктуры взаимосвязаны, и одна поломка влечет за сбой цепную реакцию неполадок. Обычно всё идет благополучно, поскольку инфраструктура чинится и модернизируется. Это продолжается до тех пор, пока хватает специалистов, способных чинить и модернизировать. Казалось бы, эти специалисты не должны перевестись даже в эпоху удовлетворения, поскольку существуют детальные писаные правила и инструкции, пользоваться которыми можно выучить последнего идиота. Однако аварии и поломки бывают как штатные, предусмотренные инструкциями, так и нештатные, когда единственное спасение заключается в специалисте, умеющем самостоятельно принимать решения в незнакомой ситуации. Хурум Браз показал на обильном статистическом материале, что доля подобных нештатных поломок около пяти процентов.

Но главная заслуга Хурум Браза заключалась в его теореме о критическом числе специалистов, способных действовать вне рамок инструкций. Как только доля последних упадет ниже 8,2%, число неполадок начинает расти лавинообразно по экспоненте. Вскоре за конечное время (по оценке Хурум Браза, за одно поколение) наступает полный коллапс цивилизации, и темп аварий и поломок падает до нуля из-за исчезновения предмета неполадок. При этом образование в эпоху удовлетворения вело к планомерному снижению числа европиан, способных мыслить самостоятельно, что признавалось даже оппонентами Хурум Браза. Такая способность не соответствовала духу времени и признавалась идеологами эпохи излишней, а то и вредной.

И всё же математик ошибся. Он полагал, что критическая точка будет пройдена через пол поколения, тогда как на самом деле она была пройдена уже в момент публикации его статьи. К тому же время достижения коллапса оказалось вдвое короче предсказанного. Таким образом, Хурум Браз получил возможность воочию наблюдать торжество своей теории во всех деталях, таких как паническая скупка продуктов, грабежи, голод в городах, расправы над правителями. Цивилизация окончательно рухнула, когда остановились последние электростанции на гейзерных струях — разрушился крепеж турбин из-за коррозии и вибрации, протекли обмотки генераторов.

Однако потом произошло то, что ученый не предсказал, так как это уже выходило за пределы его компетенции. Цивилизация проявила удивительную живучесть. Шок заставил многих европиан очнуться — они с удивлением обнаружили, что вызубренные в школе сведения не просто словесные заклинания. Иногда они, будучи применены к окружающей действительности, помогают выживать. Бывшие винтики цивилизации, столкнувшись лицом к лицу с настоящим миром, были вынуждены учиться через кровь и пот, осмысливая знания, добытые предками. Потом этот феномен назовут «шоковой педагогикой».

Стремительность кризиса обернулась быстрым восстановлением. Так, страны разрушенные войной, быстро восстают из руин, а медленно деградировавшие цивилизации веками прозябают во мраке. Бывшие инженеры и учителя осваивали выращивание донных моллюсков и питательных растений на самозахваченных клочках поверхности. Вскоре началась стихийная самоорганизация, разделение труда и так далее — всё, что уже проходили, только в сотни раз быстрее.

Однажды собралась большая бригада крепких европиан, сделавшая то, что казалось невозможным. Они с помощью воротов, веревок, катков, полозьев со старинной тягловой песней («Ломим-ломим жморов дрынь, жмо-ров дрынь! Гнется-гнется жморов дрынь, жморов дрынь!» — и т.п.) водрузили валявшуюся неподалеку турбину на фундамент, обрамлявший мощную гейзерную струю. И когда, закрепив ее уцелевшими шпильками, опустили затвор холостого выпуска, турбина, издав поначалу отвратительный скрежет и выплюнув облако мути, пришла в движение и стала набирать обороты. Потом восстановили обмотки генератора, пропитав их по рецепту предков смолой черного стланика, и генератор заработал. Наконец, оживили гидролизную установку, давшую первое послекризисное топливо. И первый винтоход, бывший среднемерный контейнеровоз по имени «Неукротимый», будучи отремонтирован и заправлен, отправился в триумфальный круиз по оживавшим развалинам.

На подходе к поселениям его встречали стаи бродячих улзеней — сначала издавая испуганно-агрессивный треск и наливаясь багрово красным свечением. Потом, осознавая, что чудовище не обращает на них внимания, любопытные улзени осторожно подплывали. Наконец, будто вспомнив, как встречали винтоходы их предки, начинали радостно носиться вокруг с отрывистым попискиванием, искрясь зелеными вспышками.

Изумленные поселенцы возникали из темноты, светясь бледно-голубым. Половина из них видела живой винтоход впервые. Выслушав парламентеров, они пытались задарить команду самыми вкусными моллюсками и провожали корабль, резко вздергивая конечности и вспыхивая голубым светом, что означало высшую степень сердечности в пожелании счастливого пути.

«Неукротимый», уходя с эскортом возбужденно чирикающих искрящихся улзеней, оставлял за собой поселения, зараженные надеждой, переходящей в уверенность: они тоже могут, у них всё получится — кончится убогое существование, будет энергия, топливо, яркий свет, медикаменты, связь, защита от мародеров — они всё это сделают сами, размяв руки и объединившись.

С круиза «Неукротимого» восстановление пошло в режиме цепной реакции. Цивилизация возрождалась в новом качестве. Ее героями были уже не звезды масс-медиа, а созидатели. Как только началось восстановление индустрии, взялись за науку. Ее тоже пришлось восстанавливать из руин, но, к счастью, кое-что сохранилось. Сохранились ученики докризисных ученых, впитывавшие знания и навыки в условиях, близких к подполью. Остались в живых и в ясном уме даже некоторые из тех ученых, которые сделали себе имя еще до кризиса. Их были единицы, они были весьма стары, но ценились на вес золота.

Одним из первых больших научных проектов и стал эксперимент «Второе дыхание». Он заключался в следующем.

К небу на разных широтах прикрепили несколько так называемых «пищалок» — акустических станций с параболическими тарелками, посылающими звуковые лучи в разных направлениях. Излучатели запитывались от генераторов со стабильной частотой, и сигнал одновременно передавался вниз по кабелю, так что приемники на дне могли запросто регистрировать сдвиг фазы акустического сигнала, определяя смещение с точностью до одного когтя. Причем не только вертикальные смещения, но и горизонтальные. Конечно, точность в коготь была чисто теоретической, практически картину портили конвективные течения. Их пытались измерять и учитывать, в результате точность составила двадцать когтей для горизонтальных и десять когтей для вертикальных перемещений льда.

Но цель была даже не в этих когтях. Она была в поиске периодических смещений. Здесь конвекция вредила не так сильно — периодический сигнал очень хорошо вытаскивается из помех за большое время наблюдений.

Первое открытие заключалось в том, что ледяная оболочка Мира совершала суточные вращательные колебания туда-сюда относительно дна. Небольшие колебания, как раз в плоскости экватора. Здесь было всё ясно. Из-за небольшой вытянутости орбиты Мир чуть проворачивался относительно направления на Большой Аттрактор. Из-за вытянутости самого Мира, сила тяготения стремилась его чуть-чуть повернуть обратно, причем вращающий момент больше сказывался на ледяной скорлупе, чем на недрах. Так оценили эксцентриситет орбиты — 0,009.

Следующим достижением стало измерение массы Большого Аттрактора. Как уже говорилось выше, для этого надо было измерить разницу в вертикальном дыхании в противоположных точках Мира. Масса Аттрактора оказалась равной 40 тысячам масс Мира, а расстояние до него — 200 с небольшим диаметров Мира. Это были поразительные, но ожидаемые открытия.

Неожиданное открытие было закопано в гармоническом разложении движений ледяного панциря. С объявлением результатов тянули до той поры, когда поползли слухи, грозящие свести на нет всю помпезность события. Наконец, было принято решение провести церемонию оглашения не как пресс-конференцию, а как научный семинар, но с приглашенной прессой и прямой трансляцией.

Аудитория имела форму купола, с которого свисали штанги для аппаратуры журналистов и для «швартовки» ученых старшего поколения у которых уже были проблемы с вегетативной регуляцией плавучести — было несколько случаев, когда посреди доклада уснувшие патриархи науки медленно опускались на пол, служивший экраном, и просыпались, подергиваясь и вскрикивая в лучах проектора. Публика помоложе свободно висела под куполом, изредка перестраиваясь, чтобы не загораживать друг другу экран.

Семинар открыл высокопоставленный чиновник — уклониться от этого всегда очень сложно, когда пахнет чем-то важным. К счастью, его пышная речь была короткой, и он передал слово руководителю проекта. Тот без предисловий вывел на экран график, где, слегка подрагивая, шли две кривые, описывая в середине рисунка высокий узкий пик.

— Что по осям? — закричали из-под купола раньше, чем докладчик успел издать первый звук.

— Перед вами результат гармонического разложения движений ледяного неба. По горизонтали — частота в обратных гироскопных сутках, по вертикали — квадрат коэффициента гармонического разложения. Это называется гармонический спектр мощности. Черная кривая — экваториальная мода, синяя — вертикальная, то есть смещение поверхности вверх-вниз. Этот хорошо известный пик на единице отражает наше орбитальное движение вокруг Большого Аттрактора, иначе говоря, гироскопные сутки. В дальнейшем я буду опускать прилагательное «гироскопные», которое не более чем дань истории. Сутки есть сутки.

Напомню, этот пик есть то, что давно известно под названием «дыхание».

Теперь, едем в более высокие частоты (кривая и числа на оси побежали влево). Вот. Увеличим вертикальный масштаб. Смотрите, какой замечательный пичок! Период — ровно полсуток!

— И что с того? — донесся голос сверху. — Это же всего-навсего вторая гармоника суточного пика!

— Конечно, вторая гармоника, но такова ли это гармоника, какой она должна быть? Мы хорошо умеем считать дыхание и его гармоники. И вот то, что мы посчитали: пунктирные кривые. Это реконструкция того, как должна выглядеть вторая гармоника для вращения нашего Мира по слегка вытянутой орбите вокруг Аттрактора. Пунктиры заметно ниже. То есть амплитуда полусуточного пика больше, чем должна иметь вторая гармоника. Но если с амплитудой еще можно допустить, что мы ошиблись, то в соотношении экваториальной и вертикальной мод ошибиться невозможно. А здесь оно другое! Экваториальная мода выражена сильней. Значит, в этом пике действительно кроме второй гармоники есть нечто другое. И это нечто… — докладчик поднял две конечности, что означало «сейчас произойдет самое важное!» — Это нечто прекрасно описывается двойником Мира, движущимся вокруг Аттрактора по орбите меньшего радиуса с периодом ровно в половину суток! — шум в аудитории.

— С какой стати у него период оказался ровно в два раза меньше?

— С такой стати, что есть резонанс Хруам Мзеня, и здесь для него все условия. Кстати, резонанс не обязательно должен быть один к двум. Соотношением периодов орбит может быть любая дробь — 2/3 или 3/5, например. Резонанс 1/2 — самый сильный, конечно.

— Между прочим, я этот резонанс описал на пять периодов раньше Хруам Мзеня, почему меня никто не упоминает? — раздался голос со штанги.

— Ты имеешь в виду твою статью про движение двух тел в центральном поле с возмущениями? Читал. Ну, нет там ничего про резонанс. Формулы правильные и много. Но про резонанс нет ничего.

— А надо в формулах лучше разбираться — из них всё следует!

— Ты хочешь, чтобы читатель доделал за тебя работу и сделал вывод, до которого ты сам не додумался? И чтобы тебе еще присудили приоритет? Хруам Мзень всё четко и ясно разложил по полочкам… — председательствующий прерывает дискуссию, предлагая закончить ее в кулуарах.

— Так, идем дальше. Значит, масса этого двойника чуть больше, чем масса нашего мира. Он движется в той же плоскости, поскольку есть сильная экваториальная мода, а меридиональной нет вообще. Теперь идем в другую сторону (кривые бегут вправо), увеличиваем вертикальный масштаб… Вот! Симпатичный пичок, период — почти ровно двое суток. Половинной гармоники здесь быть не может! Еще один мир на большей орбите! Опять почти в резонансе с нашим. Этот будет потяжелее нашего раза в три, — шум в аудитории.- Меридиональной моды опять нет.

Но и это еще не всё. Вернемся к главному пику. Вот здесь, справа от пика, что-то, похоже, тоже есть. Увеличим масштаб. Видите бугорок — он почти статистически значим. Частота на двадцать с лишним процентов меньше, чем у главного пика — тут заведомо не может быть никаких гармоник. Надо продолжить измерения, и если эта деталь подтвердится, значит, есть и четвертый мир с периодом обращения 4,7 суток.

Итак, имеем систему по меньшей мере из трех, а вероятно из четырех миров, вращающихся вокруг Большого Аттрактора в одной плоскости. Наш Мир — второй и, видимо, самый маленький. На протяжении долгой истории цивилизации считалось, что он объемлет всё сущее. Теперь мы знаем его настоящее место. Но знаем не до конца. Есть еще Внешний Источник, вокруг которого, вероятно, вращаются такие же системы. Но об этом мы можем только гадать. Только гадать — до тех пор, пока не пробурим лёд.

Более того. Теперь мы знаем ответ еще на один вопрос. Почему наш Мир теплый? Откуда берется энергия извергающихся вулканов? Вроде бы ответ уже был известен: из-за того, что орбита Мира чуть вытянута, поэтому под тяготением Аттрактора Мир дышит, отчего греется изнутри. Это так, но почему Мир долго сохраняет вытянутую орбиту? Ведь из-за трения, вызванного дыханием недр, орбита со временем должна стать точно круговой. Наш Мир очень древний, судя по тому, что значительная часть урана в кристаллах успела превратиться в свинец. Его возраст во много раз превышает то время, за которое орбита стала бы точно круговой и бы Мир замерз. Теперь мы знаем ответ, почему этого не произошло: три мира, обращающиеся в резонансе, раскачивают орбиты друг друга, не дают им стать круговыми! Есть вопросы?

— А может ли на этих мирах быть жизнь, подобная нашей?

— Для ответа на этот вопрос надо знать, насколько вытянуты их орбиты. От этого зависит, сколько в их недрах выделяется тепла. Если у всех эксцентриситет такой же, как у Мира, то на первом должны быть расплавлены недра, должно быть очень много извержений. Непонятно, может ли он быть покрыт при этом водой. Скорее всего нет. Третий и тем более четвертый миры греются слишком слабо. Там, вероятно, только лёд и скальные недра, без жидкой воды. Но это если эксцентриситеты орбит одинаковые.

— Ты сказал: «Пока не пробурим лёд…» А это в принципе осуществимо?

— Появилась надежда. В северо-западном секторе есть мощный вулкан, который извергался десять-пятнадцать периодов назад. Как оказалось, над ним на небе протаял лёд и образовался купол. При этом главное не то, что бурить меньше, а то, что в куполе скопилась смесь метана с этаном. Они не замерзают даже при той температуре, которая должна быть у наружной поверхности льда. Значит, проблема замерзания скважины снимается. Но задача остается чудовищно сложной.

Председатель предложил поблагодарить докладчика. Раздалось синхронное гуканье, означавшее на языке европиан аплодисменты. Вдруг гуканье резко усилилось, переходя на более высокий тон, что соответствует бурной овации. Докладчик, не понимая в чем дело, обернулся: в свете проектора медленно опускался, открывая глаза и тряся головой Хруам Мзень собственной персоной. Видимо, он пристегнулся мимо штанги. Однако патриарх не растерялся и, окончательно проснувшись, выгнул две пары противоположных конечностей так, что они образовали восьмерку. Это означало выражение бесконечной признательности.

30. Зашифрованная карта

Для существ, живущих в океане Европы, окружающий мир скрыт ледяным панцирем. Однако, они смогли реконструировать ближайшую к ним часть Вселенной с помощью прецизионных измерений, воспользовавшись этим самым панцирем, его небольшими движениями. Для нас Вселенная в своем самом раннем возрасте закрыта непрозрачной плазмой. Но и для нас есть способ проникнуть дальше: воспользоваться прецизионными измерениями температуры этой самой плазмы, ее ничтожными вариациями. И метод проникновения основан на том же самом приеме — гармоническом анализе. И в том, и в другом случае природа, поставив препятствие, оставила для существ, обладающих достаточно высоким интеллектом и владеющих научной методологией, возможность узнать, что находится за ним. В нашем случае природа расщедрилась даже больше: изучая препятствие, мы способны лучше изучить то, что находится перед ним, — современную Вселенную.

Напомним, что дошедшее до нас излучение плазмы ранней Вселенной называется реликтовым. Рассказывая о нем, мы упомянули начало 1990-х годов, когда впервые были обнаружены неоднородности реликтового излучения, и остановились на конце 1990-х, когда эксперимент BOOMERanG

Рис. 30.1. Космический телескоп WMAP (NASA) и другие позволили тщательно изучить мелкомасштабные детали его карты.


Новая эпоха в космологии наступила с запуском космического микроволнового телескопа WMAP (Wilkinson Microwave Anisotropy Probe). Этот аппарат NASA превосходил своего предшественника СОВЕ в 45 раз по чувствительности и в 30 раз по угловому разрешению. При этом затраты на его создание составили смешные 150 млн долларов (столько же стоит километр с небольшим олимпийской дороги Адлер — Красная Поляна). Видимо, это не весь бюджет миссии, но порядок величины понятен. Космический аппарат был выведен в 2001 году на орбиту вокруг Солнца — за Землей в полутора миллионах километров, в лагранжевой точке L2. Изначально планировалось, что WMAP будет вести наблюдения два года, но как это было со многими другими инструментами NASA, он в несколько раз превысил плановый срок жизни, проработав 9 лет.

Рис. 30.2. Карта реликтового излучения, снятая WMAP за 9 лет наблюдений


На рис. 30.2 — карта неба, где цвет отражает неоднородности реликтового излучения. Исходная карта выглядит иначе: на приведенной карте сигнал очищен от галактического фона и фона отдельных внегалактических источников. На карте также вычтена средняя температура и дипольная компонента, поскольку ее происхождение тривиально: это аберрация из-за движения Земли с Солнцем и Галактикой относительно системы отсчета, связанной с реликтовым излучением (она же — усредненная система покоя вещества во Вселенной в данной точке). Напомним, реальный контраст пятнистости на этой карте всего лишь 10-5 или чуть больше, в зависимости от размера пятен.

Карта совершенно хаотична. Кажется, что из нее нельзя извлечь ничего интересного. Более того, есть очень серьезный довод за то, что на этой карте в принципе ничего не может быть «изображено» в прямом смысле слова. Этот довод называется свойством гауссово-сти: карта есть наложение случайных пятен разного размера, ничего не знающих друг о друге.

Впрочем, находятся и те, кто видит на этой карте аномалии или необычные особенности, подтверждающие ту или иную теорию. Например, концентрические кольца: они должны появляться в весьма специфической космологической теории Роджера Пенроуза. Или аномально холодное пятно. Или так называемую «ось зла». При этом приводятся оценки уровня достоверности, например «три девятки». На самом деле эти аномалии не более убедительны, чем профиль человеческого лица в узоре сучков и волокон доски, фигура крокодила в облаках или сфинкса на снимке марсианской поверхности. Всегда в достаточно богатом наборе данных можно обнаружить интересную особенность, подобную перечисленным выше, просто потому, что данные предоставляют обширное поле для поиска чего-либо. И значимость в три девятки не залежится, особенно, если «подкрутить» какие-нибудь пороги обрезания при статистическом анализе -тут и четыре девятки легко добываются на пустом месте. Поиск подобных «интересных эффектов» — профессиональная болезнь многих исследователей, автор и сам попадался в эту ловушку на заре своей научной деятельности. В общем, никаких аномалий, представляющих серьезный повод для разбирательства, на этой карте нет. По этому поводу команда WMAP опубликовала специальную статью.

Однако, остается поле для курьезов и шуток. Например, на карте проступают инициалы Стивена Хокинга, буквы SH. Правда, буквы кривоваты, зато достаточно велики. По поводу концентрических колец. Они были найдены на карте определенным алгоритмом поиска — искали везде, заранее не зная размера. Используя подобный метод поиска «эффектов», в богатом статистическом материале всегда можно найти впечатляющий «сигнал». Проблема в том, что довольно сложно оценить вероятность случайного появления подобного «сигнала» в большом массиве данных. Авторы зачастую игнорируют этот ключевой и сложный этап работы, провозглашая эффект в четыре или пять стандартных отклонений, что впоследствии оборачивается подмоченной репутацией.

К первому апреля 2011 года в архиве электронных препринтов вышла статья «Нестандартные космологические реликтовые паттерны в космическом микроволновом фоне» (arXiv:1103.6262), в которой авторы издеваются над поисками «паттернов» в реликтовом излучении, проверяя карту на корреляции с символами ☺, ☹, ликом Христа на Туринской плащанице и еще парой картинок. И, конечно, они находят значимую корреляцию. Чтобы не мелочиться, они оценивают значимость корреляции в ∞ σ. Этот е-принт мог бы по праву войти в сборник «Физики шутят». Кстати, там четыре автора, фамилии всех начинаются на «Z» (Zuntz, Zibin Zunkel, and Zwart) и все — реальные ученые из сильнейших научных центров! Можно предложить читателю в качестве домашнего задания оценить вероятность случайного возникновения такого авторского коллектива. После этой публикации разговоры о кольцах Пенроуза стихли.

Кстати, это не единственная первоапрельская статья данного авторского коллектива. Подбор авторов становится ясен из их предыдущей первоапрельской статьи. Годом раньше они (за исключением J. Zibin, вместо которого фигурировал Т. Zlosnik) выпустили препринт «Орфографические корреляции в астрофизике» (arXiv:1003.6064v1), где исследуется зависимость числа цитирований от первой буквы фамилии автора. По ходу авторы издеваются над некоторыми методологическими приемами, использовавшимися в статьях, написанных на полном серьезе. Вообще, первоапрельские розыгрыши и прочие шутки, видимо, имеют в науке огромное значение, поскольку положительно коррелируют с научным уровнем сообщества. Автор не проверял эту корреляцию на конкретном статистическом материале, но она видна и невооруженным глазом, ее значимость никак не меньше оценки, приведенной выше, — ∞ σ (см. врезку «Что такое сигма…»).

Однако шутки в сторону! На самом деле карта неоднородностей реликтового излучения — кладезь важнейшей информации. В ней зашифрованы ключевые сведения о Вселенной — карта говорит о ней как о целом больше, чем наблюдения далеких галактик и квазаров. По мнению автора, суммарное научное значение результатов WMAP превосходит значение открытия бозона Хиггса. Просто эти результаты оказались растянутыми во времени. Как же расшифровать карту? Для ответа полезно совершить очередной экскурс в прошлое.

Что такое сигма и статистическая значимость

Наверно каждому, кто хоть сколько-нибудь интересуется наукой, приходится время от времени слышать нечто подобное: «Модель противоречит данным на уровне два сигма», «Открытие бозона Хиггса будет официально признано, когда уровень значимости достигнет пяти сигма», «Заявки на доклады о три-сигма-эффектах не рассматриваются» и т.д.

Вездесущая сигма — всего лишь параметр, задающий ширину распределения Гаусса, традиционно обозначаемый как σ. Это жаргон. Официальный термин -стандартное отклонение, но это тот случай, когда жаргон сильно потеснил изначальный термин не только в устной речи, но и в научных статьях. Собственно, вот так выглядит распределение Гаусса, нормированное на единицу:

f(x) = 1/(σ√2π·е^(x-x0)/2σ2)

«Нормированное на единицу» означает, что при таком коэффициенте перед экспонентой площадь под кривой равна единице. Распределение Гаусса крайне важно в статистике по простой причине: сумма многих случайных величин описывается распределением Гаусса (для простоты пользуемся вульгарным языком, пусть даже рискуя навлечь на себя гнев математиков). Например, распределение числа выпадений орла при 100 бросаниях монеты близко к распределению Гаусса со средним х0 = 50 и σ = √50). На самом деле это будет так называемое биноминальное распределение, но при числе выпадений 50 оно достаточно близко к распределению Гаусса и обычно считается таковым при обработке данных.

Сходимость суммы многих распределений к распределению Гаусса декларируется так называемой центральной предельной теоремой. Именно поэтому распределение Гаусса столь важно в статистике. Настолько важно, что его называют нормальным распределением, а параметр ширины — стандартным отклонением. Если ошибки измерений описываются нормальным распределением, то с данными работать легко — есть простые способы оценок, насколько та или иная гипотеза описывает эти данные, каковы ошибки в параметрах гипотезы, которой мы пытаемся описать данные. Если ошибки не описываются нормальным распределением, то на это часто закрывают глаза, что обычно сходите рук, но не всегда.

Теперь важная таблица, поясняющая смысл употребления жаргона «сигма» в самых разных контекстах. Сверху — отклонение от центра распределения хо в единицах σ, снизу — вероятность того, что случайная величина выйдет за этот предел (в любую сторону).

σ | 1 | 2 | 3 | 4 | 5

- | 0,32 | 0,045 | 0,0027 | 0,63·10-4 | 0.57·10-6

Если какая то экспериментальная точка отклонилась от теоретической кривой, скажем, на 2σ, то нет оснований придавать этому особого значения. Вероятность такого отклонения 1/20, и если точек много, то какая-нибудь с большой вероятностью вылезет за такой предел. Если точка отклонилась на Зσ, здесь уже есть предмет для разбирательства, а если за 4σ и больше -можно сделать вывод, что что-то не так. Может быть, измерение неверное, а может быть теоретическая кривая неверна. И самое интересное: нет ли здесь какого-нибудь дополнительного эффекта, например спектральной линии, если точки описывают спектр. Здесь мы подходим к понятию статистической значимости.

Если мы знаем, что в данном месте спектра, например, квазара может быть рентгеновская линия железа, и видим, что соответствующая точка «отпрыгнула» вверх на 4σ, мы вправе сказать: «Данные подтверждают существование линии излучения… на уровне статистической значимости 4σ». Возможные эквиваленты: «…на уровне статистической значимости 0,6·10-4» или «…на уровне достоверности 0,9999». Если мы заранее знаем, что именно здесь может быть линия излучения железа, и, действительно, видим «отпрыгнувшую» точку, то 4σ — приличный уровень значимости, и можно смело публиковать результат.

Определение статистической значимости может быть и не связано с распределением Гаусса и числом стандартных отклонений. Допустим, мы пытаемся показать, что данные говорят о наличии какого-то эффекта. Как надо поступать в общем случае? Допустим, эффекта нет. Значит, нам надо принять некую нулевую гипотезу, как должны выглядеть данные при отсутствии эффекта. В примере со спектром это некая гладкая функция без линий. Статистическую значимость можно определить как вероятность того, что данные в результате случая отклоняются от нулевой гипотезы так, что имитируют эффект, каким мы его видим в данных. Вероятность зависит от нулевой гипотезы и гипотезы эффекта, поэтому правильное говорить о статистической значимости такого-то эффекта относительно такой-то нулевой гипотезы.

В примере со спектром это просто вероятность того, что точка в том месте, где должна быть линия, случайно «отпрыгнула» вверх не меньше, чем на столько-то сигма. В общем случае любым посильным способом вычисляем вероятность случайной имитации эффекта. Неважно, как вычисляем, допустим, с помощью прямого численного моделирования методом Монте-Карло. Предположим, что эта вероятность получилась около 10-4 . Потом добавляем к гипотезе искомый эффект. Если при этом гипотеза (уже не нулевая) стала описывать данные хорошо, мы вправе сказать, что данные подтверждают эффект на уровне статистической значимости 10-4. Чем меньше вероятность, тем выше статистическая значимость. Как это часто делают, можно перевести вероятность в термины сигма, используя таблицу, приведенную выше.

Допустим, мы обнаружили в данных указание на некий эффект значимостью 4σ. Вероятность случайности, имитирующей этот эффект, очень мала. Следует ли из этого, что надо бить в барабан и немедленно публиковать статью? Это очень сильно зависит от того, что мы искали. Если мы искали известно что, заранее зная, в каком месте, то можно. Именно таков случай обнаружения известной спектральной линии. А если мы искали чего-нибудь, где-нибудь в большом массиве данных и наткнулись на некоторое отклонение значимостью 4σ, то вполне возможно, что мы упорно искали и нашли случайный выброс на 4σ и больше ничего. Таких случаев предостаточно. Даже в Nature иногда публикуют подобные «открытия». Обычно они быстро «рассасываются» и забываются. Но репутации страдают.

Проблема в том, что правильная оценка статистической значимости — не такое простое дело. Если мы нашли нечто значимостью 10-4 в 100 независимых попытках, то настоящая значимость 10-2, а это уже очень слабый результат. В реальной работе с данными этих «независимых попыток» бывает огромное количество, и исследователь часто этого не осознает, а если осознает, то не умеет правильно оценить их число (это число в биологии и гуманитарных науках называется «поправка Бонферони», а в физике «штрафным фактором»). Четких рецептов, как оценивать эту поправку, на все случаи жизни не существует — это скорее кухня, а не наука. Владение этой кухней и есть составляющая профессионализма исследователя.

31. Если бы Сахаров увидел это!

Бывают удивительные истории, когда некий вывод, полученный кабинетным ученым на бумаге вне всякой связи с реальностью, вдруг через много лет обретает плоть и мощь, становясь одной из несущих конструкций науки. Такая история произошла с работой Андрея Дмитриевича Сахарова, сделанной в 1963 году. В этой работе исследована эволюция акустических колебаний вещества в ранней Вселенной и получен очень интересный и красивый результат. По традиции, которая у нас прослеживается в отношении выдающихся работ, исходные положения, принятые Сахаровым, были неверными. Но предсказания из этой работы сыграли большую роль в будущем.

Выше речь шла о том, как начальные неоднородности плотности начинают расти из-за гравитационной неустойчивости. Но это не единственное, что с ними происходит. Неоднородности начинают колебаться без всякой связи с гравитацией — как звуковые волны. «Звуковыми» волны в ранней Вселенной можно назвать лишь весьма условно, уж больно нечеловеческие условия там царили, но их механика точно такая же, как и у звука в атмосфере: движущей силой становится давление среды, зависящее от ее плотности. Сейчас мы знаем, что среда состоит из темной материи и обычного вещества, которые взаимодействуют только через гравитацию и во многих отношениях независимы друг от друга. Акустическим колебаниям подвержено только обычное вещество.

31.1. А. Д. Сахаров


Скорость звука в ранней Вселенной, где среда состоит в основном из ультрарелятивистских частиц, очень велика: c/√3. Напомним, изначально неоднородности Вселенной «заморожены», поскольку их размер превышает размер горизонта, т.е. причинно связанной области пространства. Акустические колебания данной длины волны стартуют, когда входят под горизонт, только не световой, а звуковой горизонт, который в √3 раз меньше. Неоднородность оживает и начинает колебаться и двигаться. Важная вещь: у всех волн данной частоты на старте оказывается одинаковая фаза. Это стоячие волны, подобные волнам на гитарной струне. Их можно наблюдать, например, в порту у бетонной стены причала. Там «стоячесть» обеспечивается интерференцией набегающих и отраженных волн. В результате амплитуда волн синхронно меняется — поверхность то вспучивается высокими буграми, то разглаживается.

Почему «ожившая» неоднородность производит именно стоячую волну? В работе Сахарова это показано математически, попробуем проиллюстрировать эффект «на пальцах». Здесь важную роль играет быстрое расширение. Звуковые колебания в расширяющейся Вселенной описываются уравнением, тождественным уравнению гармонического осциллятора с вязким трением (таким же, как для скалярного поля во Вселенной, таким же, как для шарика на пружинке в вязкой жидкости). Это следует из уравнений Эйнштейна. А роль вязкого трения играет скорость расширения Вселенной -постоянная Хаббла.

Начальные условия, вообще говоря, складываются из случайной суперпозиции неоднородностей разного размера с произвольным распределением производных плотности по времени. Любую начальную конфигурацию можно разложить на не зависящую от времени часть (производная по времени равна нулю) и часть, сильно зависящую от времени. Вблизи момента τ = 0 Вселенная очень быстро расширяется и «вязкое трение» очень велико. Поэтому вторая компонента (быстро меняющаяся) мгновенно затормозится и пропадет. А первая (не зависящая от времени) остается. Далее темп расширения уменьшается, вязкость падает и волны начинают колебаться. Общее решение уравнения колебаний имеет вид С1cos(ωt) + С2sin(ωt), где величины С1 и С2 не зависят от времени (но зависят от точки пространства), ω — частота колебаний. Однако поскольку начальная скорость равна нулю, во вселенной второго слагаемого с синусом нет, и колебания происходят по закону cos (ωt), что соответствует стоячей волне.

Так все выжившие акустические волны оказываются стоячими, причем все волны определенной длины имеют общую фазу. Через четверть периода (ωt = р/2) они проходят через нуль, а через полпериода (ωt = р) вновь достигают максимума (мы слегка огрубляем ситуацию: на самом деле частота волны в процессе расширения вселенной уменьшается, и соотношения не такие простые).

Рис. 31.2. Эффект акустических осцилляций, предсказанный Сахаровым и пересчитанный Сюняевым, Зельдовичем и др. для модели горячей Вселенной. Забегая вперед, приводим спектр мощности угловой анизотропии реликтового излучения, полученный космическим микроволновым телескопом «Планк». Пояснения — в следующей главе


Значит, в любой момент времени волны, у которых набралась фаза π, 2π,…, будут иметь максимальную амплитуду, а 1/2 π, 3/2 π,..— нулевую. Таким образом, благодаря акустическим волнам, в любой заданный момент неоднородности барионной материи на одних размерах будут выделены, на других подавлены. В расширяющейся Вселенной есть момент, когда скорость звука резко падает, потому что падает давление, — это и есть эпоха рекомбинации. В этот момент акустические колебания застывают. Если разложить карту застывших неоднородностей в ряд Фурье, получится осциллирующая кривая, описывающая амплитуду как функцию длины волны. Эффект получил название «сахаровские осцилляции», хотя в настоящее время в научной литературе чаще используется термин «акустические осцилляции».

Сахаров работал в предположении, что Вселенная холодная. Он сделал этот выбор под влиянием Зельдовича, которому в тот момент казалось, что модель холодной Вселенной хорошо объясняет первичный нуклеосинтез. Эта гипотеза была опровергнута в тот же год, когда статья Сахарова вышла из печати. Но само явление осталось применимым и к горячей Вселенной. Причем оно оказалось реально наблюдаемым, чего не мог предвидеть Сахаров.

В принципе, в холодной Вселенной действуют похожие законы: там тоже скорость звука вначале велика, а потом резко падает. Но она падает гораздо раньше, и волны застывают, будучи гораздо меньшего размера. Причем неоднородности от самых крупных волн первого пика, дожив до наших дней, должны соответствовать небольшим звездам, о чем Сахаров написал в своей статье. На самом деле они соответствуют крупномасштабной структуре Вселенной на уровне 150 мегапарсек. Впоследствии Сахаров высказал сожаление, что неправильное исходное предположение сильно снизило ценность его работы. Тем не менее, по мнению автора, А. Д. Сахаров остается главным героем чудесной истории, связанной с акустическими осцилляциями.

То, что сахаровские осцилляции в принципе можно наблюдать, стало ясно после открытия реликтового излучения в 1965 году. Перспективу давало само реликтовое излучение: ведь его карта и есть карта ранней Вселенной, где должны быть запечатлены все неоднородности, не успевшие исказиться из-за гравитационной неустойчивости. Эффект осцилляций был проанализирован для случая горячей Вселенной Р. А. Сюняевым и Я. Б. Зельдовичем, а также независимо Джимом Пиблсом и Юй Цзе-Таем — обе работы опубликованы в 1970 году. Прошло четверть века, и сахаровские осцилляции увидели воочию. Рецепт расшифровки карты реликтового излучения прост: надо разложить ее в ряд Фурье по угловым гармоникам (мультиполям).

Если бы только Андрей Дмитриевич увидел данные, представленные на рис. 31.2, где показан спектр этого самого разложения карты!

В чем ярче всего проявляется мощь науки?

Представьте, сидит человек, пишет формулы, где фигурируют невероятные величины (10-43 с, 1094 г/см2 и т.п.), заведомо недоступные никаким измерениям и экспериментам, что-то пытается вывести. Откуда убеждение, что на таких масштабах вообще работает наша логика, что к ним применимы законы, установленные человеком? С точки зрения человека несведущего, ученый в данном случае занимается полными абстракциями, фантазиями за деньги налогоплательщиков. В результате значительных усилий выводит на бумаге, что распределение по размерам неких флуктуаций плотности во Вселенной должно описываться некой осциллирующей кривой.

Через десятилетия люди запускают космический аппарат с прецизионным приемником микроволнового радиоизлучения, испущенного миллиарды лет назад. И видят из карты этого излучения ту самую осциллирующую кривую!


Сахаров не дожил до этого момента, и Зельдович не дожил. Но Рашид Сюняев и другие, исследовавшие этот эффект в более реалистичной постановке задачи, дожили. Думаю, лучшей награды за теоретическую научную работу не придумать.

32. Что зашифровано на карте

Как увидеть акустические стоячие волны, точнее, осцилляции их амплитуды? Надо подвергнуть их гармоническому анализу, иными словами, разложить на мультиполи и посмотреть, как ведут себя коэффициенты разложения. Что такое мультиполи? Самый малый — это диполь (l = 1). Диполь показывает разницу в более яркой и менее яркой половинах неба. При этом основной вклад в диполь дает движение Солнечной системы вместе с Галактикой относительно усредненной системы покоя Вселенной — эта скорость около 600 км/с. Там, куда мы движемся, реликтовое излучение кажется ярче, а там, откуда движемся — слабее. Отделить диполь, связанный с аберрацией от нашего движения, от истинного диполя реликтового излучения невозможно, поэтому он просто выбрасывается из анализа. Следующий — квадруполь (l = 2), он отражает глобальную сплюснутость (или вытянутость) распределения яркости. И т. д.

Рис. 32.1. Разложение карты реликтового излучения, снятой WMAP за 9 лет наблюдений, по угловым мультиполям (спектр мощности). Традиционно изображают величину l (l+1) Cl. Из статьи G. Hinshaw et al. arXiv:1212.5226


Двумерное разложение сферической карты отличается от одномерного разложения Фурье тем, что каждый мультиполь l представлен суммой 2l + 1 членов со своими коэффициентами. Для того, чтобы увидеть, какие масштабы неоднородностей сильнее выражены, все эти коэффициенты не нужны — достаточно взять среднее от суммы их квадратов (традиционно обозначаемое как Сl). Соответствующее распределение называется спектром мощности, именно оно показано на рис. 32.1.

Высокий пик слева означает, что карта имеет самую контрастную пятнистость при размере пятна около градуса. Он соответствует акустическим волнам, пришедшим к моменту рекомбинации с фазой π. За одно колебание они успели подрасти из-за гравитационного взаимодействия с темной материей, которая за это время «скомковалась» в сто раз сильней барионного вещества. Правее — следующие пики, соответствующие фазам 2π, 3π и т.д. Пики при увеличении номера мультиполя (уменьшении размеров неоднородностей) становятся ниже, потому что оказываются «замытыми» из-за диффузии фотонов, которые успевают частично разбежаться из сгущения вещества за период колебания стоячей волны. Это так называемый эффект Силка. Особенно хорошо этот эффект наблюдается на рис. 32.2, где тот же самый спектр мощности дан в логарифмическом масштабе и к нему добавлены данные наземных установок с меньшим охватом неба, но с лучшим угловым разрешением.

Черные точки с ошибками (те же, что и на рис. 32.1) — результат WMAP. Голубые точки — результат обзора небольшой части неба, сделанного с лучшим угловым разрешением с помощью микроволнового телескопа на Южном полюсе (SPT). Оранжевые точки — данные Космологического телескопа в Атакаме (ACT). Сплошная кривая — результат подгонки теории только к данным WMAP, данные при муль-типольных моментах больше тысячи не использовались!

Точки с наименьшими ошибками получены на микроволновом телескопе, расположенном на Южном полюсе (тарелка диаметром Юм) — там фон от теплового излучения атмосферы меньше, чем в не столь экстремальных местах.

Рис. 32.2. То же самое разложение, что и на рис. 32.1, но в логарифмическом масштабе и с добавлением данных наземных микроволновых телескопов (см.текст). Из статьи G. Hinshaw et al. arXiv:1212.5226


Осциллирующая кривая на рис. 32.2 поразительно информативна. Это примерно тоже самое, как если бы мы увидели на карте ранней Вселенной масштабную линейку с делениями в мегапарсеках, да и не только линейку — целую метеостанцию с различимыми показаниями на циферблатах. Причем эти показания точнее, чем можно извлечь из параметров современной Вселенной. В частности, положение пиков весьма чувствительно к кривизне Вселенной Ωk — этот параметр примерно равен относительному отклонению суммы углов треугольника от 180°, если треугольник имеет размер с видимую часть Вселенной (вспомним надуваемый шарик на лекции С. П. Капицы — кривизна его поверхности дает наглядную аналогию). Оказывается, наша Вселенная с хорошей точностью «плоская» на масштабе горизонта (Ωk = -0,037 ± 0,043, если брать только данные WMAP и Ωk = 0,001 ± 0,012, если привлечь также данные наземных микроволновых телескопов). Высота пиков чувствительна к относительного му вкладу барионов в содержимое Вселенной. Соотношение между вторым и третьим пиками зависит от вклада темной материи. И т. д.

Конечно, эффекты от всех этих и других параметров запутаны, и их извлекают не по отдельности, а все вместе посредством процедуры, называемой «подгонкой методом максимального правдоподобия». Для подгонки кроме данных нужна теоретическая модель, которая должна описать данные. В этом случае она слишком сложна, чтобы ее можно было выразить формулой. Модель включает в себя все процессы, о которых шла речь выше. Прежде всего это генерация начального спектра неоднородностей.

Мы писали о том, что относительная амплитуда начальных неоднородностей должна быть порядка 5·10-5, а их спектр — плоским. На самом деле мы не знаем точно ни того, ни другого. Поэтому амплитуда берется за один из подгоночных параметров. Спектр неоднородностей не обязан быть в точности плоским, даже если мы уверены, что источником неоднородностей является механизм космологической инфляции. Дело в том, что в процессе инфляции величина ответственного за нее поля хоть и медленно, но меняется — это дает спектру небольшой наклон, который тоже входит в число подгоночных (свободных) параметров. Далее концентрация обычного (барионного) вещества влияет на высоту пиков и соотношение между ними. Это третий свободный параметр. Темная материя дает неоднородный гравитационный потенциал, влияющий на акустические волны. Ее концентрация — четвертый свободный параметр. Далее — кривизна Вселенной, пятый параметр. От него будет зависеть угол, под которым мы видим пятно определенного размера и, следовательно, положение всех пиков. Похожий эффект дает темная энергия, от нее зависит время распространения фотонов после рекомбинации и, соответственно, расстояние, которое они пролетели. Так что плотность темной энергии — это еще один параметр. Правда, не все эти параметры независимы: полная плотность энергии во Вселенной в сумме с вкладом кривизны, пропорциональным Ωk, должна давать критическую плотность. Так что пока свободных параметров пять.


И это еще не всё. Оказывается, состояние Вселенной после рекомбинации тоже влияет на карту реликтового излучения. Свободные электроны рассеивают излучение, что слегка замывает картину и требует учета. Электроны связываются в атомы в эпоху рекомбинации, но через сотни миллионов лет межгалактический газ снова меняет свое состояние — под действием ультрафиолетового излучения квазаров и звезд происходит вторичная ионизация. Выше рассказано про эффект Ганна — Петерсона, обнаруженный в спектре квазара с красным смещением 6,28. На самом деле то, что увидели, — это самый конец вторичной ионизации, когда атомов водорода в межгалактическом газе осталось совсем немного. Реально она произошла раньше при большем красном смещении. Когда именно, мы не видим. Поэтому это шестой свободный параметр.

Теперь осталось всё вычислить в зависимости от параметров — как развивались неоднородности темной материи в расширяющейся Вселенной, как колебались волны барионной материи и как они взаимодействовали через гравитацию с темной материей, как проходила рекомбинация вещества, как излучались фотоны реликтового излучения и как они распространялись по дороге. И многое другое. И подобрать такую шестерку параметров, которая наилучшим образом опишет данные, показанные на рис. 32.2.

Вот эти параметры с ошибками

Плотность барионов в единицах критической плотности Ωb = 0,0463 ± 0,0024 Плотность темной материи в тех же единицах Ωc = 0,233 ± 0,023 Плотность темной энергии в тех же единицах ΩΛ = 0,721 ± 0,025 Относительная среднеквадратичная амплитуда первичных неоднородностей D2 = (2,41 ± 0,10)·10-9

Степенной индекс спектра первичных неоднородностей ns (ns = 1 соответствует плоскому спектру) ns = 0,972 ± 0,013 Красное смещение, соответствующее вторичной ионизации zr = 10,6 ± 1,1 Из этих результатов прямо следует: возраст Вселенной — 13,74 ± 0,11 млрд лет — точность лучше процента!

Это результаты всех 9 лет работы WMAP. Дальше начинается дополнительная игра: данные WMAP дополняются информацией, полученной другими методами, в частности, из обзоров неба обычными телескопами. Точность возрастает.

Одна из самых интересных вещей, которые при этом обнаруживаются, — отклонение спектра первичных возмущений от чисто плоского. Если привлечь всю имеющуюся информацию, то имеем результат для степенного индекса: ns = 0,9608 ± 0,0080 (пять стандартных отклонений от единицы, которая соответствует плоскому спектру). Это уже кое-что говорит о самом процессе инфляции. Более того, это было предсказано давным-давно — еще в 1981 году Вячеславом Мухановым и Геннадием Чибисовым: первичный спектр возмущений отличается от плоского именно на такую величину. Если это не триумф науки, то что вообще можно назвать триумфом? Да и вся 9-летняя миссия WMAP, при всей скромности затрат на нее, оказалась фантастически успешной. По мнению автора, по суммарному вкладу в фундаментальную науку она превосходит открытие бозона Хиггса.

33. Вклад реликтового излучения в фундаментальную физику

Космологическая инфляция работает как исполинский конвейер. Все возмущения плотности рождаются с определенным размером: 10-27 см или около того. Потом каждое возмущение растягивается в е раз за каждые 10-37 с, за это время генерируются новые, еще не растянутые. Пока конвейер работает с постоянной скоростью, спектр флуктуаций получается почти плоским. И когда он останавливается, проработав, скажем, 10-34 с, имеем почти плоский спектр, простирающийся от 10-27 см до, например, 10400 см (последняя цифра очень условна). Нас интересуют те возмущения, которые при остановке составляли от долей микрона до долей миллиметра, — именно они растянулись уже после инфляции в те неоднородности, которые видит WMAP. Когда они генерировались, «колесам конвейера» предстояло сделать еще около 50-60 «оборотов», т.е. растяжений в е раз. И из измеренного значения упрямо следует, что «конвейер» к тому моменту уже притормаживал — движущее скалярное поле ослабевало. Скорость торможения (характеризуемая отличием ns от 1), зависит от характеристик этого поля. Так люди дотянулись до физики явлений, на десять с лишним порядков выходящих за пределы возможностей Большого адронного коллайдера.

И это еще не всё! Физики предполагают, что число нейтрино равно трем и нет других частиц со столь же малой массой. Но это только предположение. Объединенные данные WMAP и других инструментов показывают, что число частиц, слабо взаимодействующих с веществом и имеющих малую массу: 3,84 ± 0,40 — т.е. указывают на возможность существования еще одной частицы. Однако эксперимент «Планк» (см. главу 36) скорректировал этот результат в сторону трех.

В эпоху рекомбинации нейтрино имеют кинетическую энергию примерно в 0,2 эВ. Если бы у нейтрино была масса, превышающая эту энергию, то они двигались бы заметно медленнее света, и это опять бы сказалось на карте реликтового излучения. Если брать

194 только данные WMAP, то из них следует ограничение сверху на сумму масс нейтрино 1,3 эВ. Это уже лучше, чем ограничение на массу электронного нейтрино, полученное в лаборатории. А если привлечь все данные, то получается, что сумма масс всех нейтрино меньше 0,44 эВ. Это уже тот уровень, который очень непросто достичь в лабораторных условиях. Впрочем, это отнюдь не означает, что лабораторные эксперименты по измерению массы нейтрино надо прекращать: исследователи по своему призванию обязаны испробовать все возможные способы для определения важной фундаментальной величины.

34. Почему это так хорошо получается

Одно из важнейших свойств человека — способность поражаться происходящему в окружающем мире (в смысле впадать в крайнюю степень удивления). Например, автор, будучи в состоянии далеко не первой молодости, поражается тому, как юная гимнастка взлетает со снаряда, крутится вокруг двух осей, приземляется точно на ноги и при этом не разваливается. В детстве автор поражался тому, как стреляет ружье и ездит машина — как щепотка пороха в патроне и капля бензина в цилиндре развивают такую силу. А вот тому, как работает компьютер, я не поражался никогда, поскольку начинал работать с самыми древними машинами, программируемыми в восьмеричных кодах, где работу можно было проследить пошагово, глядя на панель с лампочками, отражающими текущую команду в двоичном виде. Последующий прогресс плавно проистекал на моих глазах.

Вероятно, и у тех, кто начинал заниматься космологией в 1980-1990-х годах, триумф теории и эксперимента, изображенный на рис. 32.2, никакого удивления не вызывает. Однако, ни автор, ни подавляющее большинство читателей к таковым не относятся, и потому согласие между теоретической кривой с подогнанными шестью параметрами и данными на рис. 32.2 можно назвать поразительным, фантастическим. Шесть параметров для сложной кривой со многими максимумами с неочевидными соотношениями высоты — это очень экономно, примерно, как убить шестью выстрелами тридцать зайцев. Причем полученные значения параметров близки к тем, что были извлечены раньше (хотя и с меньшей точностью) из данных о современной Вселенной.

Как вообще людям удается так хорошо описать то, что происходило в интервале истории Вселенной от долей секунды до сотен миллионов лет? С одной стороны, есть понятное объяснение: все неоднородности плотности относительно малы, поэтому работает теория возмущений в первом порядке. С другой стороны, процессов много и все они не столь просты. Плюс к тем эффектам, которые перечислены выше, есть, например, всякие переходные процессы: когда неоднородность входит под горизонт (от секунд до тысяч лет), когда меняется уравнение состояния Вселенной (80 тыс. лет), они усиливают контраст распределения темной материи. Дальше надо точно знать, как протекала во времени рекомбинация водорода и даже гелия — от этого зависит, насколько замыт контраст неоднородностей малых масштабов. Есть еще целый ряд эффектов, влияющих на картину, — мы опустим их, чтобы не перегружать читателя подробностями.

И это всё тщательно учтено. Конечно, над теорией ранней Вселенной работает много людей, разные независимые группы — всё перепроверено по много раз и достигнут консенсус. И обработкой данных WMAP занимается много народа.

Здесь стоит выразить признательность агентству NASA, которое уже десятилетиями выкладывает все данные разных экспериментов в открытый доступ. Их может скачать любой исследователь вместе со всей сопутствующей информацией, необходимой для обработки. Это полезно сразу в нескольких отношениях.

Во-первых, если в данных есть «косяки», их обязательно обнаружит «народный контроль» из независимых исследователей разных стран. В частности, на раннем этапе накопления данных Павел На-сельский, Олег Верходанов, Андрей Дорошкевич и Игорь Новиков обнаружили, что карта реликтового излучения, представленная командой WMAP как вариант, полностью очищенный от фона, на самом деле коррелирует с фоном по фазам гармоник, т.е. очищена плохо. Это заставило чистить лучше. Вообще, сама возможность контроля со стороны заставляет команду «вылизывать» инструмент и подготовку данных до предела возможного.

Во-вторых, открытость данных мобилизует народ в данную область исследований. И, наконец, команда эксперимента, как правило, «снимает сливки», но не может выкопать из данных всё, что там содержится. Это делают многочисленные волонтеры по собственной инициативе.

Вообще, принцип открытых данных настолько важен, что заслуживает лирического отступления. По убеждению автора, в нем заключается будущее науки, связанной с дорогими экспериментами.

Под открытыми данными следует понимать не обработанную справочную информацию типа каталогов небесных объектов, таблицы сечений ядерных реакций и т.п., а исходные данные: отсчеты частиц в детекторах, «сырые» снимки обзора неба в цифровом виде прямо с электронной ПЗС-матрицы, гамма-кванты, зарегистрированные космическим гамма-телескопом, и многое другое. При современных информационных технологиях нет никаких проблем держать исходные данные в открытом доступе. Данные, о которых идет речь, отличаются от справочной информации тем, что посторонний исследователь самостоятельно может найти в них нечто совершенно новое.

Многие экспериментаторы хотят быть хозяевами своих данных, так что принцип пробивает себе дорогу, преодолевая нешуточное сопротивление. Пожалуй, NASA было первой крупной организацией, сформулировавшей политику открытых данных примерно с таким лозунгом:

Данные оплачены налогоплательщиками и являются общественным достоянием. Следовательно, они должны быть доступны всему научному сообществу, причем, поскольку национальная и мировая наука неразделимы, то и всему мировому сообществу. Авторам эксперимента — все почести и годичная задержка открытия данных миру, чтобы успели «снять сливки» и «вылизать» эксперимент.

Конечно же, далеко не все научные организации ринулись брать пример с NASA. Возражения всякие:

1. Данные будут использоваться неквалифицированными людьми, которые будут на их основе делать неправильные работы, подрывая репутацию эксперимента.

2. Авторы эксперимента теряют мотивацию. Зачем вкладывать душу в сложнейшую установку, работая годами, если потом работать с этими данными, лезть в них своими грязными руками, извлекая из них новую физику, смогут все.

3. Только авторы эксперимента могут правильно обработать данные, учтя всевозможные тонкости, особенности и погрешности.

Пару слов по поводу последнего аргумента. Он справедлив для очень многих экспериментов из-за всяких «соплей» — подвязочек, подпорочек, короче говоря, халтуры, связанной с желанием сделать побыстрей. Это обычно и есть «тонкости и особенности». Открытость данных требует высокого качества эксперимента: стабильной работы установки, точного знания ее свойств и погрешностей, отличной документации. Если эти условия не соблюдены, то дотошные посторонние исследователи выявят все косяки. Получается, что открытость данных чревата дополнительной ответственностью за качество работы.

Вопрос, открывать данные или нет, связан со смыслом самих экспериментов. Вспомним о налогоплательщике. Что надо добропорядочному налогоплательщику, например, от космического гамма-телескопа «Ферми»? Последний, среди прочего, открыл множество новых источников гамма-излучения на небе. Налогоплательщику вряд ли нужны эти источники. Ему нужно, чтобы общество умнело и развивалось, чтобы его дети и внуки становились не оболтусами или религиозными фанатиками, а образованными, самостоятельно мыслящими гражданами. И добропорядочный налогоплательщик понимает, что наука этому способствует — не конкретный результат, а вовлеченность людей в науку. Поэтому для налогоплательщика гораздо важнее не то, чтобы группа исследователей опубликовала хороший каталог новых источников, а чтобы как можно больше людей имело возможность выявлять эти источники и самостоятельно возиться с ними.

Как бы там ни было, принцип открытости данных постепенно побивает себе дорогу. Он давно практикуется в биологии — открыты данные по всевозможным геномам. И не исключено, что он доберется и до физики высоких энергий, которая до сих пор отличалась закрытостью — даже внутри одной коллаборации «выделение» данных на обработку обычно происходит в порядке жесткой субординации. Уже идут разговоры о том, чтобы открыть данные экспериментов ЦЕРНа, пусть не сразу, а с четырехлетней задержкой, но это всё равно стало бы преодолением последнего крепкого рубежа сопротивления.

На одной международной конференции по астрофизике зашла речь о необходимости как-то организовать сотрудничество разных групп, регистрирующих гамма-кванты самых высоких энергий — 100 ГэВ и выше. Это наземные сети телескопов, улавливающих че-ренковский свет от ливней частиц в атмосфере. Проблема в том, что таких установок несколько, каждая держит свои данные при себе, и их очень трудно объединить. Прозвучал вопрос к аудитории: что делать? В ответ прозвучала реплика:

— Зачем выдумывать что-то? Откройте данные, и это решит все проблемы!

В зале наступила слегка затянувшаяся тишина. Наконец, представитель одной из групп разъяснил:

— Это не просто. Дело в том, что эти эксперименты делаются в основном выходцами из физики высоких энергий. А там не принято делиться данными — конкуренция велика, и все боятся упустить приоритет.

На этом дискуссия о способах сотрудничества закончилась. Думаю, если откроют данные Большого адронного коллайдера, держать под замком данные с других больших установок станет совсем неприлично.

Правда, что касается Большого адронного коллайдера — там есть еще одна проблема. Открыть сырые данные физически невозможно из-за их объема. И самостоятельно обработать их практически невозможно. Поэтому речь может идти лишь об открытии данных высокого уровня — адронные струи, мюоны и фотонные ливни.

Однако вернемся к данным WMAP и к их интерпретации. В результате работы многих независимых групп теория с небольшим числом подгоночных параметров великолепно описывает наблюдения. Более того, взгляните снова на рис. 32.2: параметры Вселенной, приведенные выше, найдены только по точкам WMAP, которые идут лишь до мультипольного момента ~1000 (разрешение 0,2°). Однако теоретическая кривая с этими параметрами идет дальше до мультиполей ~2000 и великолепно описывает точки, полученные в других экспериментах, хотя они не учитывались при подгонке! Автор, профессионально занимаясь астрофизикой, впервые сталкивается со случаем, когда сложная кривая, подогнанная по точкам на левой половине рисунка, столь триумфально совпадает с нетривиально расположенными экспериментальными точками на правой половине рисунка.

Успех означает, что космологи действительно хорошо понимают и умеют количественно описывать то, что происходило в ранней Вселенной. На детальном уровне — всё, что происходило после первых долей секунды. На более качественном — ощущают эпоху 10-35 с, когда формировался спектр неоднородностей Вселенной. Мы знаем, какова амплитуда этих неоднородностей, каков наклон спектра, и близки к тому, чтобы сделать выбор в пользу той или иной модели инфляции. Это и есть почва под ногами ученых, которые залезли в такие масштабы мироздания, о возможности исследования которых еще недавно никто не догадывался.

35. Последний штрих

Структуру нынешней Вселенной дали ничтожные квантовые флуктуации метрики, имевшие место на стадии инфляции. Но эти флуктуации образовали не только неоднородности плотности, они же родили реликтовые гравитационные волны, которые тоже растягивались инфляционным «конвейером», тоже имеют изначально плоский спектр и существуют и поныне как реликт ранней Вселенной. В отличие от микроволнового излучения, являющегося реликтом эпохи рекомбинации, имевшей место спустя 380 тыс. лет после Большого взрыва, гравитационные волны — прямой реликт эпохи космологической инфляции, развернувшейся за 10-35 с до Большого взрыва.

Амплитуда этих волн слишком мала, чтобы их можно было зарегистрировать рукотворными детекторами. Но тут на помощь опять приходит тот самый барьер, который закрывает от нас раннюю Вселенную, — плазма эпохи рекомбинации. Она и играет роль детектора, «записывая» результат в том же реликтовом излучении, которое принесло нам остальную информацию. Конкретно, гравитационные волны можно увидеть двумя способами: в поляризации реликтового излучения и в угловом спектре мощности его анизотропии, показанном на рис. 32.1. Первый способ более прямой, с него и начнем.

Поляризация реликтового излучения — довольно тривиальная вещь. Она возникает при последнем комптоновском рассеянии фотонов на электронах: у фотона появляется линейная поляризация, перпендикулярная плоскости рассеяния. Если среда однородна и не движется, никакой поляризации нет — всё замывается, нет выделенного направления. Но среда, как мы видим по карте реликтового излучения, неоднородна и участвует в сложных движениях. И поляризация, как мы видим, тоже есть: WMAP ее прекрасно чувствует. Но причем здесь гравитационные волны?

Оказывается, гравитационные волны дают другую картину поляризации, нежели обыкновенные неоднородности. Их вклад можно отличить и выделить. Грубо говоря, так:

Рис. 35.1. Ограничения, поставленные экспериментом WMAP на амплитуду реликтовых гравитационных волн. По горизонтали — наклон степенного спектра первичных возмущений, который закладывается в теорию. По вертикали — отношение мощности тензорных возмущений (гравитационных волн) к мощности скалярных возмущений, традиционно обозначаемое как r. Красным показана область согласия с экспериментом на уровне 1σ, розовым — 2σ. Точками, соединенными пунктирами, показаны разные модели инфляции. Нижняя (обозначенная как R2) — модель Старобинского. Число N означает число растяжений пространства в е раз от момента, когда данный участок спектра сгенерировался в результате квантовых флуктуаций, до конца инфляции (см. рис. 27.2)


Картинка поляризации на небе выражается полем черточек, имеющих направление и длину. Такое поле может выглядеть как электрическое — может быть представлено как результат статического распределения зарядов. А может выглядеть как магнитное, наведенное статическим распределением токов. Эти поля четко различаются на языке дифференциальной геометрии. Первый тип поля называется Е-модой, второй В-модой. Любое произвольное поле поляризации можно разложить на Е и В составляющие. Оказывается, что В-моду могут дать только гравитационные волны, но никак не неоднородности плазмы и их акустические колебания. Некоторый вклад в В-моду в области высоких мультиполей (малых угловых масштабов) может дать гравитационное линзирование поляризованного реликтового излучения. Пока на карте поляризации существующих экспериментов видна только Е-мода. Лучшее ограничение на В-моду получено с помощью наземного микроволнового телескопа BICEP (на Южном полюсе): предел на отношение спектров мощности гравитационных волн и скалярных неоднородностей плотности r < 0,78 (на уровне достоверность 95%).

Вторую возможность почувствовать первичные гравитационные волны дает так называемый эффект Сакса — Вольфа. Фотон, проходя через возмущения гравитационного поля, меняет частоту, испытывая красное или синее смещение, — это меняет температуру реликтового излучения. Причем эффект сильнее выражен для крупномасштабных возмущений, так как мелкомасштабные гравитационные волны затухают еще до рекомбинации из-за расширения Вселенной. Впервые идею о том, что первичные гравитационные волны могут давать вклад в температурную анизотропию реликтового излучения выдвинули В. Рубаков, М. Сажин и А. Веряскин в 1982 году. Эффект Сакса — Вольфа должен «приподнимать» спектр мощности температурных неоднородностей на малых мультиполях, слева от главного акустического пика (см. рис. 32.1), и затухать к большим мультиполям. Этого не наблюдается в данных WMAP, из чего следует верхний предел r < 0,13 (на уровне достоверности 95%).

Этот предел уже поставил под сомнение некоторые конкретные модели инфляции. Пока наилучшим образом под него укладывается модель Старобинского, правда не она одна.

Следы гравитационных волн в поляризации реликтового излучения надо найти во что бы то ни стало. Если их изначальный спектр такой же, как и у неоднородностей плотности, т.е. очень близок к плоскому, это будет окончательным подтверждением факта космологической инфляции. Больше таким волнам взяться неоткуда.

Насколько сложно обнаружить следы реликтовых гравитационных волн и насколько это реально в обозримом будущем? Вполне реально, хотя есть серьезные проблемы, связанные с фоном. Некоторые надежды связывают с европейским аппаратом «Планк», аналогичным WMAP, но с лучшим угловым разрешением. Из наземных экспериментов большие надежды подает эксперимент SPTpol, недавно стартовавший на Южном полюсе. Выше уже был упомянут микроволновый телескоп SPT с зеркалом диаметром 10 м. Сейчас на нем установлена специальная камера для измерения поляризации реликтового излучения. Есть еще несколько экспериментов, специально посвященных поиску гравитационных волн по поляризации реликтового излучения. Несколько из планируемых экспериментов будут тоже проводиться на Южном полюсе — это лучшее место для наблюдения реликтового излучения с земной поверхности.

35.2. Микроволновые телескопы SPT (слева) и BICEP (справа, внутри конусообразного экрана), расположенные на Южном полюсе


Из проектов будущих космических экспериментов весьма впечатляет недавно заявленный европейский PRISM (Polarized Radiation Imaging and Spectroscopy Mission). Это будет весьма универсальный инструмент, который, по замыслу, сможет очень хорошо отделять реликтовое излучение от всякого рода фонов, и в том числе извлекать чистую карту его поляризации. Заявленный уровень детектирования реликтовых гравитационных волн r ~ 0,5·10-3 (даже если подтвердятся наихудшие ожидания по поводу фона). Если обещанное будет исполнено, то PRISM откроет гравитационные волны даже если реализовался один из «пессимистических», но очень интересных вариантов инфляции, обсуждаемых ниже в интервью с Алексеем Старобинским и Андреем Линде. Эти варианты предсказывают r ~ 3…4·10-3 .

…Время, в которое писалась эта книга, оказалось очень бурным в самых разных отношениях. История разворачивалась на наших глазах. Вместо того, чтобы переписывать главы, приводя их в соответствие с последними фактами, мы даем постскриптумы. Так лучше передается ощущение творящейся истории.

36. P. S. к главам 31-35

После того, как четыре предыдущие главы были написаны, появились публикации космологических результатов миссии «Планк» по данным за первые 500 дней наблюдений. Качество данных лучше, чем у WMAP, ряд космологических параметров существенно уточнен, гравитационные волны пока не найдены, но сделаны измерения галактического фона, в первую очередь пыли, что должно сильно помочь в обнаружении первичных гравитационных волн.

Рис. 36.1. Прогресс в разрешении космических микроволновых телескопов. Один и тот же участок неба, снятый COBE.WMAP и «Планком»


Несколько увеличилась доля темной материи и уменьшилась доля темной энергии, однако разница лишь немного выходит за одно стандартное отклонение. Предел на примесь реликтовых гравитационных волн остался примерно тем же, что и по данным WMAP. Оценка возраста Вселенной чуть увеличилась (до 13,8 млрд лет). Сравнение значений важных космологические параметров по данным WMAP и «Планк» дано на рис. 36.2. Значения с ошибками даны в двух вариантах: если брать только данные миссии и если дополнить их данными других наблюдений, в том числе, касающихся современной Вселенной: они обозначены как WMAP+ и «Планк»+. Существенно для физиков то, что подтверждена оценка эффективного числа типов «нейтрино» — она тяготеет к трем, которые уже известны. Искать четвертую легкую слабо взаимодействующую частицу вроде бы нет резона. Почти вдвое уменьшен верхний предел на сумму масс трех типов нейтрино: если привлечь все силы, то натягивается предел 0,24 эВ. Хорошо и важно, что «Планк» подтверждает результат WMAP по наклону спектра первичных возмущений плотности Вселенной. Показатель наклона спектра n = 0,96 отличается от плоского на 0,04 как по данным WMAP+, так и по результатам «Планк»+, но «Планк» поднял статистическую значимость этого отклонения до 6 сигма. Верхний редел на вклад реликтовых гравитационных волн немного снизился, до r < 0,11. Радикально снижен предел на негауссовость флуктуаций реликтового излучения. Свойство гауссовости означает, что карта излучения является случайной суммой независимых флуктуаций и выражается в том, что фазы угловых мультиполей не коррелируют друг с другом. Возможно, это самый важный результат на настоящий момент. О значении нового предела говорится ниже в интервью с Андреем Линде.

Пока обработаны лишь 2/5 от накопленных данных «Планка». Поэтому есть надежда на дальнейшее уточнение параметров Вселенной, а может быть и на открытие новых эффектов. С особым нетерпением народ ждет публи кации результатов по поляризации реликтового излучения — это внесет ясность в мистерию реликтовых гравитационных волн, освещенную в следующем постскриптуме.

Рис. 36.2. Сравнение результатов «Планка» с результатами WMAP

37. Р. P. S. к главам 31-36: Гравитационные волны обнаружены?

Когда книга близилась к завершению, 17 марта 2014 года мировые масс-медиа обошла сенсация: открыты реликтовые гравитационные волны! Авторы сенсации — коллектив эксперимента BICEP2, продолжающего упомянутый выше BICEP. В их электронном препринте (arXiv.org/1403.3985v2) сообщается об обнаружении В-моды поляризации реликтового излучения, которое интерпретируется как «отпечаток» реликтовых гравитационных волн. BICEP — довольно маленький по размеру микроволновый телескоп, расположенный на Южном полюсе. Угловое разрешение всего полградуса, зато очень низкие шумы и высокая чувствительность. Это, в частности, достигается за счет охлаждения жидким гелием основных элементов телескопа. Измерения, результаты которых опубликованы, проводились три сезона с 2010 по 2012 год.

На рис. 32.1 показаны снятые карты поляризации, разложенные на Е-моду (слева вверху) и В-моду (слева внизу). Длина черточек пропорциональна степени линейной поляризации, направление указывает направление поляризации. Справа — результат численного моделирование Е- и В-моды для случая, когда гравитационные волны отсутствуют (напомним, В-мода в этом случае появляется за счет гравитационного линзирования).

Невооруженным глазом видно, что В-мода заметно превышает фон от гравитационного линзирования. По отношению к скалярным возмущениям результат по гравитационным волнам выражается как r = 0,2+007 _005, что неожиданно много. Научная общественность уже настроилась на то, что уровень, на котором будет обнаружен эффект от первичных гравитационных волн, окажется ниже. В комментариях по поводу открытия преобладает торжествующий тон. Действительно, детектирование реликтовых гравитационных волн — важнейший результат, ставящий точку в космологической революции, связанной с теорией инфляции. С виду результат выглядит надежным. Но в отличие от триумфа теории и эксперимента, состоявшегося в результате экспериментов WMAP и «Планк», в данном случае остаются вопросы. Главный из них: не противоречит ли результат данным вышеупомянутых экспериментов? Иными словами, сигнал от гравитационных волн оказался подозрительно большим.

В принципе, величина r ~ 0,2 вполне вписывается в простейшие варианты теории инфляции. Но она на три стандартных отклонения противоречит верхнему пределу «Планка», поставленному с опорой на эффект Сакса — Вольфа из углового спектра мощности температурных флуктуаций. Вероятность случайного отскока результата на три стандартных отклонения — два шанса из тысячи. Маловато. Правда, ограничение r < 0,11 справедливо только в предположении, что распределение неоднородностей реликтового излучения по угловому размеру (спектр мощности) описывается чисто степенным законом. Если отказаться от этого предположения, можно сильно смягчить противоречие. В препринте BICEP2 приведена картинка из статьи по результатам «Планка» именно в той версии, где предположение о чисто степенном спектре снято. Поэтому возникает впечатление согласия.

Однако для согласия между BICEP2 и «Планком» нужно так изогнуть спектр мощности, что это требует изрядного насилия над теорией. А если этого не делать, то эффект Сакса — Вольфа «задерет» спектр, показанный на рис. 32.1 слева (l < 150) примерно на 10%, что при данной точности будет явно противоречить данным.

Где возможна ошибка эксперимента, завышающая результат? Сразу надо сказать, что В-мода обнаружена достаточно уверенно, сам по себе результат сомнений не вызывает. Сомнения могут быть лишь в том, справедлива ли гравитационно-волновая интерпретация — нет ли других причин, дающих этот тип поляризации. Первое, что приходит в голову, — недооценили эффект гравитационного линзирования, способного имитировать В-моду. Вряд ли: эффект линзирования исследован вдоль и поперек, он дает основной вклад в более мелкие детали, чем те, на которых видят В-моду.

Авторы статьи рассматривают и другой возможный источник фона, имитирующего эффект: поляризованная пыль в Галактике, частицы которой ориентируются в космическом магнитном поле. Рассеяние фотонов на этой пыли дает поляризацию, способную имитировать любую моду. BICEP 2 не может выделить ее вклад, поскольку принимает только одну частоту. Это может сделать «Планк». Авторы е-принта констатируют, что карты распределения пыли для исследованного участка неба нет — она вскоре появится в следующем релизе «Планка». Пока они используют модели распределения пыли и получают успокоительный вывод о том, что этот фон относительно безопасен для главного результата.

Но не будем гадать и забегать вперед — вряд ли вопрос о подозрительно большом вкладе реликтовых гравитационных волн зависнет на долгие годы. Во-первых, вскоре «Планк» должен прояснить ситуацию с фоном поляризованной пыли. Во-вторых, параллельно идут аналогичные эксперименты, в том числе и на Южном полюсе. Будут исследованы другие участки неба, появятся независимые результаты. Наверняка большие силы мобилизуются на изучение всевозможных эффектов, влияющих на результаты измерений. Вряд ли ответы заставят себя долго ждать.

Попробуем подытожить. Сделана серьезная заявка на важнейшее открытие, возможно, ставящее точку в космологической эпопее, начавшейся более 30 лет назад. Уже раздается звон бокалов, но с окончательным празднованием победы очередной революции в космологии, пожалуй, следует немного повременить. Еще не все концы сведены с концами и не все подозрения развеяны. Если результат подтвердится, то некоторые конкретные модели инфляции, обсуждаемые в этой книге как весьма перспективные и красивые будут поставлены под сомнение или отвергнуты. Это модель Старобинского, обсуждаемая в главе 19, и ряд других, затронутых в интервью с Андреем Линде. Но стоит ли спешно переписывать соответствующие главы? Пожалуй, лучше оставить всё как есть: взгляды, мнения и высказывания ключевых участников процесса имеют наибольшую историческую ценность, когда они не переписываются в связи с новыми обстоятельствами. Документы не редактируются!

Кстати, даже если результат не подтвердится, он всё равно явится полезной встряской, мобилизующей людей на прорыв в этой важнейшей задаче. Такое уже случалось в космологии. И привлеченное внимание широкой публики дорогого стоит. В этом смысле сенсацию можно назвать здоровой вне зависимости от того, подтвердится она или нет.

38. Что мы в результате знаем и чего не знаем о нашей Вселенной

Прежде, чем пойти дальше (а дальше очень даже есть куда пойти), полезно остановиться и подвести краткий итог.

Итак, мы хорошо знаем основные числа, характеризующие нашу Вселенную: состав, возраст, геометрию, динамику. Состав по вкладу в полную энергию: 5% — барионы, 26% — темная материя (эти две компоненты имеют практически нулевое давление) и 69% — темная энергия (с отрицательным давлением). Вселенная с хорошей точностью «плоская» (евклидова) и расширяется с ускорением.

Мы неплохо знаем историю Вселенной: как она расширялась в разные эпохи, как развивалась ее структура, чем она была заполнена, по крайней мере, после первых наносекунд — соответствующая физика частиц достаточно исследована на ускорителях.

У нас есть хорошо разработанная концепция механизма, благодаря которому Вселенная скорее всего возникла, механизма, имеющего право называться «первичным толчком», приведшим в действие всё остальное.

Мы достаточно хорошо можем прогнозировать будущее Вселенной на десятки и сотни миллиардов лет вперед, хотя не можем исключить каких-либо неожиданностей, например нового фазового перехода или неожиданного поведения темной энергии.

Однако, выявилось много такого, чего мы не знаем, не понимаем или перестали понимать.

Будем следовать правилу: «Если не можешь придумать новую метафору, используй самую избитую». Таковой в данном случае будет сопоставление научной картины мира со зданием — чего стоит одно слово «мироздание»! Так вот, мы хорошо различаем основные конструкции этого здания и понимаем их роль. Но мы не знаем, из чего сделаны некоторые важнейшие из них. Так, неизвестно, из чего «сделана» темная материя. Но здесь, по крайней мере, существуют более-менее обоснованные гипотезы относительно того, как она связана с обычной материей. Однако нет никаких зацепок, чтобы понять, как связана темная энергия с известным зоопарком полей и частиц. Точно также мы в целом понимаем, как происходила космологическая инфляция, но не знаем, что именно было ее движущей силой — скалярное поле, «ложный вакуум»? Иначе говоря, непонятно, какова физика инфлатона и нужен ли последний вообще — модель Старобинского обходится без него, там дело делают любые, в том числе уже известные поля. В данный момент существуют десятки гипотез на этот счет, вероятно, в ближайшее время их число уменьшится благодаря новым данным «Планка», но не настолько, чтобы получить определенный ответ.

Если заглянуть еще глубже, остается непонятным, откуда вообще взялась спокойная среда, в которой могут существовать какие-то здания: почему энергия вакуума столь близка к нулю? И точно так же мы по-прежнему не понимаем, как устроен мир на планковских масштабах, — не исключено, что две последние загадки как-то связаны. То есть мы не очень понимаем природу фундамента, на котором наше здание стоит.

Как всегда, в ходе новой космологической революции одни загадки нашли объяснение, зато появились новые. И соотношение решенных и возникших загадок выглядит типичным для любых научных прорывов, т. е. концом физики и не пахнет. Правда, создается впечатление, что мы приближаемся к некому методологическому тупику: технические возможности для исследования новых энергетических масштабов в физике частиц и ранней Вселенной подходят к своему пределу.

Однако прямолинейный метод «грубой энергии» далеко не единственен. Есть другой путь в далекие масштабы физики и космологии: точность. Это прекрасно продемонстрировал эксперимент WMAP. Этот путь далек от исчерпания, да и ускорители еще могут наращивать энергию. Весь вопрос в том, готово ли мировое сообщество тратить силы и средства на выяснение фундаментальной картины мира, если эта картина непонятна большинству жителей Земли и с первого взгляда не несет практической пользы.

Кстати, так ли велики средства, требуемые для того, чтобы поднять инструментарий науки на очередную ступень вверх?

С чем сравнить затраты на фундаментальную науку? В былые времена подобные затраты измеряли в авианосцах или в долях авианосца. Иногда в танках (если речь шла о теоретиках и математиках). В настоящее время в данной стране популярным мерилом является Сочинская олимпиада — 50 млрд долларов, сумма, часто обозначаемая как «олимпиард» (после которой останется лишь инфраструктура непонятного качества и неочевидной востребованности). Цена Большого адронного коллайдера около 10 млрд долларов. За один олимпиард сейчас можно было бы построить коллайдер этак на 20 ТэВ, который скорее всего решил бы вопрос с темной материей и с наличием новой физики и новых выводков частиц выше энергии элек-трослабого объединения. Заметим, в первом случае это национальные затраты, во втором — всего развитого мира.

А если пойти с другой стороны и затратить те же деньги на целый спектр космических и наземных телескопов? Телескоп «Хаббл» обошелся в 2,5 млрд, правда, его ремонт, обслуживание на орбите и эксплуатация за 20 с лишним лет увеличили общие затраты до 10 млрд (одна пятая олимпиарда). Телескоп следующего поколения «Джеймс Вебб» оценивается в 6,5 млрд к моменту запуска (он увидит, как формировались первые галактики и отследит процесс рождения звезд неподалеку от нас). Накинем еще 8,5 млрд на эксплуатацию и раздувание бюджета. От фонда олимпиады осталось еще 35 млрд. Миллиардов десять с лихвой хватит на наземные и космические микроволновые телескопы, которые измерили бы вдоль и поперек реликтовое излучение и его поляризацию на новом уровне точности. Тут наверняка проявились бы и реликтовые гравитационные волны, и с моделью инфляции разобрались бы. А на оставшуюся половину олимпиарда можно было бы совершить новый прорыв в изучении экзопланет и посадить зонды на «перспективные» спутники планет-гигантов: Титан, Га-нимед, Энцелад и Европу, между прочим.

Но нужны ли все эти достижения народным массам? Может быть, им та же Сочинская олимпиада нужна больше, чем все научные открытия вместе взятые? Похоже, именно так думают политики и капитаны масс-медиа. Трудно что-либо возразить: действительно, хлеб и зрелища издавна перевешивали в массах тягу к наукам и искусствам, особенно накануне краха империй. Но кто сказал, что выбор пути и лицо цивилизаций определяется арифметическим большинством? И кто сказал, что наука интересна только тем, кто в ней разбирается? Вот несколько зарисовок из жизни.

Конец 1980-х. Автор, еще вполне советский человек с характерными комплексами, возвращается из Копенгагена с большой добычей дешевого ширпотреба. В соседнем кресле одетый с иголочки японец. Разговорились. Он, банковский менеджер, узнав, что его сосед астрофизик и к тому же приезжал в Институт Нильса Бора (это вообще!), пришел в восторг и стал расспрашивать про черные дыры и Большой взрыв. И смотрел снизу вверх на полунищего советского кандидата наук.

Америка первой половины 1990-х. Сравнительно недавно Конгресс США прекратил финансирование ускорителя SSC, превосходившего по проектной энергии Большой адронный коллайдер. Хозяин квартиры, автомеханик, читает газету: «Пишут, что в тоннеле закрытого ускорителя собираются выращивать шампиньоны. Позор! Хотели исследовать тайны Вселенной, а будут выращивать шампиньоны!»

2010 год. Сын автора едет на машине по Тульской области и попадается гаишнику за обгон по встречной в запрещенном месте. Грозит лишение прав на месяцы или огромная взятка. Гаишник интересуется, где работает нарушитель, узнав, что физик, смягчается, а узнав, что он работает на Большом адронном коллайдере, с интересом расспрашивает и отпускает.

Лето 2012 года. Соседи по даче просят толком объяснить, что же там открыли в ЦЕРНе. А по телеканалу «Дождь» в тот же день журналисты и литераторша, не понимающие в физике ни бельмеса, с искренним воодушевлением говорят: наконец люди сделали что-то настоящее, и можно гордиться принадлежностью к человеческому роду. Это про открытие бозона Хиггса.

Эти эпизоды не претендуют на статистическую значимость и репрезентативность, просто немного поднимают настроение.

Миф о примитивности народных масс — не более, чем результат презрения к народу, свойственного политикам и бизнесменам от масс-медиа. Интересно, а если бы в подледном океане Европы жили существа, тождественные нам по разуму, они пробурили бы лёд ценой огромных затрат?

39. Сто пятьдесят миллиардов оксов

Координационный комитет Цивилизации собрался, чтобы рассмотреть вопрос о финансировании проекта скважины через ледяной панцирь. Комитет для того и был создан, чтобы выделять средства Объединенного фонда на глобальные проекты, каковым являлась скважина. Он состоял из делегатов субъектов Цивилизации: республик, империй, монархий, коммун, независимых мегаполисов, территориальных анархий, племен и прочих образований, вкладывавших и не вкладывавших средства в Объединенный фонд.


Зал заседаний был обычным амфитеатром, где у каждого делегата было свое место, оборудованное специальными фиксирующими ремнями. Перед началом заседания каждый делегат был обязан пристегнуться, иначе он считался отсутствующим. Он мог отстегнуться в любой момент, чтобы отлучиться, но для этого требовалось набрать цифровой код — произведение пары двузначных чисел (европиане, естественно, использовали восьмеричную систему), горящих на табло.

Эта система пристегивания была введена решением самого Комитета по следующей причине. Европиане весьма эмоциональны и вспыльчивы. Поэтому на заседаниях, как и в любом парламенте в эпоху становления парламентаризма, случались массовые драки. А трехмерная драка куда серьезнее двумерной, которые бывают в земных парламентах на твердой поверхности. Там дело обычно заканчивается образованием плотной толпы, где невозможно размахнуться и даже дотянуться до ненавистного оппонента. А в объемной драке можно дотянуться и сверху и снизу, да так, что совершенно невозможно понять, кто и откуда тебя схватил за затылочный гребень. В конце концов,образовывался плотный клубок, распутаться которому было не так просто. А если кто-то в панике испускал электрический разряд, то дело кончалось еще хуже. Вот и решили делегаты поставить себя «на предохранитель» — пока перемножаешь числа и набираешь код, успеешь остыть.

На этот раз драки не предвиделось. Сумма на реализацию проекта требовалась беспрецедентная, но она не задевала ничьих амбиций и не имела конкурентоспособных альтернатив. Делегаты могли проголосовать «за» или «против», но без всяких бурных эмоций.

Перед собранием выступил один из лидеров проекта. Его речь была короткой, поэтому приводим ее полностью:

— Уважаемые члены Координационного комитета! Дорогие собратья!

Я сейчас буду просить денег, очень больших денег, для того, чтобы наконец, пробурить ледяной панцирь и увидеть, что снаружи. Все вы знаете, что природа преподнесла нам ценнейший подарок: огромный метановый купол, делающий фантастическую мечту многих поколений вполне реальной. Неужели у нас не хватит духа и сил, чтобы этим подарком воспользоваться?

Мы уже два периода работаем над проектом — считаем и моделируем, проектируем и разрабатываем, учимся взрывать лёд и намораживать воду в углеводородной среде, делаем модели шлюзов и барокамер, экскаваторов и тракторов для внешней поверхности. Мы предусмотрели множество ожидающих нас проблем, даже такую, как обломки льда, которые скопятся в куполе на границе раздела воды и метана. Сейчас можно твердо заявить: мы знаем, как пробурить лёд! Конечно, нас еще будут ждать неожиданности, которые невозможно предугадать, не начав. Мы готовы начать, но для этого должны быть приведены в движение огромные ресурсы, на что нужны деньги, ощутимые даже в глобальном масштабе.

Будем честными. Общественное мнение пока не на нашей стороне. Опросы показывают, что только один из трех жителей Мира готов пожертвовать свою долю в 120 оксов на проект. Двое из трех либо вообще не понимают, зачем это нужно, либо считают, что есть более насущные проблемы. В частности, бытует мнение, что лучше затратить эти деньги на глобальные спортивные состязания. Уважаемые члены Координационного комитета имеют полномочия, достаточные, чтобы принять решение о выделении денег своими голосами. Но я прекрасно понимаю, что двое из каждых трех жителей напряженно смотрят им в затылок. Поэтому, я буду говорить, обращаясь также к собратьям, находящимся за этими стенами, многие из которых слушают сейчас прямую трансляцию.

Итак, зачем нам эта дырка в пустоту? Неужели нам так обязательно надо заглянуть туда?

Это вопрос, на который есть несколько уровней ответа. Начнем с высшего. Кто мы и в чем смысл нашего существования?

Иногда полезно попытаться взглянуть на себя глазами далекого отстраненного наблюдателя. Что он увидит в нас? Давайте попробуем это сделать.

Многие из присутствующих верят в высших существ. Кто-то в нескольких специализированных высших существ, кто-то в одно наивысшее. Как бы вы хотели предстать перед высшими существами? В каком виде они бы нас оценили, эти высшие существа? Умеющими завязываться в узел и вертеться волчком в храме, бормоча славословия в их адрес, в знак величайшей покорности? Или распластывающимися, как кишечнополостные звезды, по мраморному полу собора, чтобы выклянчить благорасположение? Или прилагающими всю силу духа и разума, чтобы преодолеть панцирь, закрывающий от нас Внешнее Пространство? Попытайтесь взглянуть на себя их глазами. Разве им всё равно, что они создали — достойных отпрысков, продолжающих великий замысел, или прожорливых ленивых попрошаек? Может быть этот лёд — экзамен для нас?

Конечно, я, как и многие здесь присутствующие, не верю в высших существ. Но я вместе со многими верю в равных существ. Они могут быть не так уж далеко — они могут жить подтем же Внешним Источником, который освещает снаружи наш ледяной панцирь. Представьте, что они связались с нами -стучат с той стороны льда. Нам что, наплевать, какими мы предстанем перед равными? Кого мы им предъявим как предмет для гордости? Своих мировых знаменитостей — доблестных долболобов, мастеров хедбола? Или тех, кто используя голову по назначению, вычислил орбиты трех миров, не видя их? Даже если мы никогда не встретимся с ними, представьте, какой вопрос первым зададут разумные существа другого мира, узнав о нашем существовании. Первый вопрос будет: «А они пробурили этот лёд?» В этом вопросе всё — и об уровне нашего развития, и о ясности разума, и о силе духа.

Наконец, можно не верить в посторонних равных существ, но у нас будут потомки, глядящие на нас с высоты будущего. Кстати, мы ведь тоже потомки. И кем из наших предков мы гордимся? Теми, кто закатывал роскошные аристократические празднества с гонками на дрессированных кальмарах? Или теми, кто в те же времена на кожаных бурдюках впервые достиг ледяного неба? Что скажут о нас потомки? Хотите ли вы, чтобы их вердикт был в том духе, что они могли, но не сделали этого, пожалев затрат? Предпочли затратить эти средства на глобальные состязания в прочности голов, скорости рывков и гибкости конечностей? А ведь полученный нами подарок судьбы, метановый мешок подо льдом, отнюдь не вечен.

Боюсь, что не все из тех, кто меня слушает, воспринимают этот уровень ответа. Спустимся на одну ступеньку вниз.

Что мы увидим, пробурив лёд? Стоит ли эта картина тех затрат? Что ж, давайте предположим, что мы не увидим там ничего интересного. Но и в этом случае мы избавим себя от вечных терзаний — а что же там?!

Но такого, чтобы мы не увидели там ничего интересного, не может быть. Мы уже знаем, что там есть, по крайней мере, шесть объектов, превосходящих Мир своими размерами, и, учитывая слабость наших методов, можно биться об заклад, что там есть много-много чего еще. Скорее всего, внешнее пространство бесконечно, и в нем бесконечно много миров. Разнообразных миров. Неужели не интересно? А если, кому-то из слушающих меня сейчас это не интересно, то ради всего святого прошу учесть следующее: внешнее пространство и возможность его изучать зажжет искру таланта во множестве юных голов. Мало кто из них станет профессиональным исследователем, зато многие станут хорошими технологами, инженерами и сделают нашу жизнь комфортней и интересней.

Можно спуститься еще на одну ступеньку. Вы хотите иметь возможность, не выплывая из дома, мгновенно связываться с любым обитателем мира, лицезрел его, доставать любую информацию из любого угла Цивилизации? Проекту требуется быстрая связь с помощью света, гибкие длинные световоды — если мы их научимся делать, это будет для всех. Вам не надоело возиться с химической обработкой фотопленок? Проекту нужны светочувствительные электронные матрицы — они сделают фотопленку достоянием истории и привередливых профессионалов. И мало ли что еще из новинок проекта войдет в жизнь!

Ну вот, возможно, я убедил кого-то, и теперь уже не двое из трех а, скажем, двое из пяти жителей смотрят с недобрым напряжением в затылок членам Комитета, а трое смотрят с надеждой.

Итак, мы просим 150 миллиардов оксов.Эта сумма включает проходку двух скважин — основной и коммуникационной, изготовление двух рабочих и двух резервных шлюзов, большие барокамеры-гостиницы на давление 0,6 токсма для рабочих. Без них на такой высоте они будут подобны полудохлым медузам. Эта сумма также включает изготовление десятков рабочих барокамер с манипуляторами — без них работать выше внутренней поверхности льда вообще невозможно, там ко всем прелестям высоты добавляется жуткий холод. Сюда же входят передвижные пилотируемые барокамеры на гусеничном ходу для исследования внешней поверхности, а также дистанционно управляемые зонды. Также две оптические системы с большими параболическими зеркалами для поиска и изучения далеких объектов во внешнем пространстве — они будут установлены на внешней поверхности. Там же будет установлена обитаемая станция комфортного давления в один токсм — там можно жить без инъекций прессонола. Остальные барокамеры для облегчения конструкции рассчитаны на 0,3 токсма, что позволиттренированным операторам работать в них до половины смены. Ну и, конечно, коммуникации — силовые кабели, уже упомянутые световоды для быстрой передачи информации. И всё это предстоит не только сделать, но и разработать. А иначе мы бы и не просили 150 миллиардов оксов.

Насколько рискован проект? В народе ходят ужасные пророчества, что через скважину вытечет наружу вся вода Мира и все погибнут. С этим ничего нельзя поделать — сколько в школе не вдалбливай, что лёд легче воды, фантазия в паре с невежеством непобедимы. Но есть теоретический риск: если вдруг сорвет шлюзы — наружу вылетит вся смесь углеводородов из купола. Снаружи это извержение будет смотреться красиво, но такая авария полностью погубит проект — скважина заполнится водой, которая замерзнет. Для страховки от такого предусмотрены аварийные шлюзы. А чтобы ни один шлюз не сорвало, мы будем намертво вмораживать их рамы в стены скважины. Лёд при температуре, которая там есть, прочен, как базальт.

Итак, перед вами всесторонне проработанный проект прорыва в неведомое внешнее пространство. Плод долгой и упорной работы многих ученых и инженеров, выполненной исключительно за счет участвующих лабораторий. Дальнейшее слово — за членами Комитета, а сейчас я готов ответить на вопросы.

— Кто будет тем счастливчиком, что первым увидит внешнее пространство?

— Вот над этим думали меньше всего. Какой-нибудь оператор экскаватора на последнем участке. А впрочем… Да пусть хоть сам Верховный Духовный! Если пониженное давление выдержит и прессонол переносит. Да хоть выбирайте счастливчика голосованием Координационного комитета. Хоть всеобщим голосованием. Мы, гарантируя полную безопасность, приподнимем его, чтобы увидел, выразил это своими словами — и назад. Дальше всё равно пойдут профессионалы.

— А будет ли с той точки виден Большой Аттрактор?

— Будет — под 40 градусов к горизонту. И в этом нам второй подарок судьбы.

— А как он должен выглядеть?

— Должен выглядеть круглым, поскольку шар — единственная устойчивая форма тел очень большой массы. Про размер и цвет ничего сказать не могу.

— Ане ослепит ли Внешний Источник, того,кто окажется снаружи?

— Хороший вопрос. Мы знаем прозрачность льда лишь приблизительно, поэтому не можем точно сказать, насколько там ярко. Видимо, весьма ярко, настолько, что это может травмировать зрение. Но вряд ли настолько, чтобы вообще ослепить, — тогда бы лёд растаял. Во всяком случае, следует соблюдать осторожность и запланировать первый выход, когда Внешний Источник загорожен Миром. Значит, первый наблюдатель eft) не увидит.

— Народ Желтой Равнины систематически недоедает и не доживает до второй зрелости из-за болезней и нехватки медикаментов. Денег, которые вы просите, хватило бы на то, чтобы вылечить наших больных детей и кормить голодающих в течение десяти периодов. Не считаете ли вы, что это куда более важное назначение для ста пятидесяти миллиардов оксов?

— Я не политик и не дипломат, поэтому скажу то, что думаю. Народ менее плодородной Черной Равнины почему-то не только процветает, но и дает наибольший вклад в фонд Координационного комитета. Что, ваш народ убогий от рождения? Думаю, просто дело в том, что он издавна держится страхе и невежестве, зато ему внушается чувство собственного величия, богоизбранность и злоба к процветающим народам. Похмелье после подобной помощи окончательно превратит ваш народ в кишечнополостных существ. А скважина — такое событие, которое пробьется через любую пропаганду. Глядишь, несколько таких брешей, и ваш народ очнется, задумается, избавится от пастырей и заживет, как весь остальной Мир.

Здесь случился непредусмотренный перерыв. Представитель Желтой Равнины, выкрикнув: «Да как вы смеете подстрекать! Это вмешательство во внутренние…» — забился в истерике, переходящей в приступ паралепсии. Это была симуляция, но настолько искусная, что подоспевшие санитары сходу вкололи ему самый настоящий гракофен и оттранспортировали обмякшее тело в мобильный медпункт. Потеря делегата не повлияла на кворум, и заседание было продолжено.

— Что за оптические системы вы собираетесь установить?

— Как я уже сказал, параболические зеркала со светоприемниками. Мы условно называем эти системы «дальнозорами». Это похоже на акустические тарелки с матричными микрофонами. Только здесь тарелка — полированное зеркало, а приемник — уже упомянутая мной электронная матрица, с которой изображение можно считывать. Если бы не вода, с помощью даль-нозора можно было бы распознать лицо любого члена Комитета с расстояния 5 свистов.

Прения были очень короткими. Прозвучало несколько дежурных выступлений в поддержку. Проголосовали 123 голосами «за» при 10 «против» и 15 воздержавшихся за выделение запрошенной суммы. Зато потом!..

Потом тут же решили рассмотреть вопрос о принципах выбора первого наблюдателя внешнего пространства и о возможных кандидатах. Что тут началось! Вот тут-то и пригодились ремни с кодовыми застежками. Представители Крабовой Кальдеры и Верхних Увалов рванулись объяснить делегату Песчаной Анархии, что такое настоящая демократия, но кто способен в состоянии ярости перемножить два двузначных числа и набрать код?!. Драка не состоялась. Страсти кипели до тех пор, пока уставшие депутаты не принялись ускользать один за другим, и председательствующий не обратил внимание, что кворума больше нет.

40. За 10-35 с до Большого взрыва (интервью с Алексеем Старобинским)

Напомним, Алексей Старобинский опубликовал первую, хорошо проработанную версию теории космологической инфляции. Однако его работа в то время не вызвала должного резонанса. Знаменитой стала работа Алана Гута, опубликованная немного позже и содержавшая серьезную ошибку, касающуюся перехода от стадии инфляции к фридмановской горячей Вселенной. Впрочем, отечественная работа тридцатилетней давности дождалась внимания научного сообщества.


Б. Ш.: Итак, начнем с вопроса, который я уже пообещал задать в начале этой части книги: ты понимал значение своей работы, где предложил первую более-менее полную работающую модель инфляции? В том смысле, что механизм инфляции дает решение основных загадок — плоскостности и однородности Вселенной. Если понимал, то почему не написал об этом в той статье?

40.1. Алексей Старобинский.Фото 2007 года из личного архива автора


А. С.: Да, не написал. Просто считал общим местом — обо всем этом уже говорил Эраст Гли-нер чуть ли не за 10 лет до того. Увы, Глинеру не поверил никто, в том числе такие великие люди, как Зельдович и Сахаров, потому что у него была только гипотеза — ни модели, как такой режим мог реализоваться в ранней Вселенной, ни идеи, как всё это можно проверить и доказать на опыте, не было. Кроме того, ты говоришь о статье 1980 года, а была еще статья 1979 года, в которой как раз и была предложена идея, как это можно доказать: измерив спектр неоднородностей во Вселенной в больших — космологических — масштабах. Уже давно возникла гипотеза, что начальный (возникший до стадии Большого взрыва) спектр возмущений плотности материи должен быть плоским — структура Вселенной успешно моделировалась именно в этом предположении. А сценарии инфляции (тогда слово «инфляция» еще не употреблялось, использовали термин «решение де Ситтера») с очевидностью давали именно плоский спектр. Предсказание спектра возмущений куда сильнее, чем просто объяснение плоскостности и однородности Вселенной. Это объяснение к тому же во многих случаях оказывается иллюзорным, что вскоре выяснилось на примере модели Гута 1981 года.

Б. Ш.: Кстати, когда стало ясно, что космологическая инфляция дает плоский спектр возмущений? Где-то это должно было быть впервые сказано.

А. С.: Как раз в моей работе 1979 года. Правда, на более простом примере первичных гравитационных волн. Было показано, что плоский спектр становится очевидностью, если объединить две ранее высказанные идеи. Первая — о первичной стадии де Ситтера, предшествующей Большому взрыву, вторая — о том, что все наблюдаемые неоднородности в современной Вселенной происходят из квантово-гравитационных вакуумных флуктуаций в далеком прошлом.

Б. Ш.: Собственно, почему генерация гравитационных волн — более простой пример?

А. С.: Как оказалось, потому, что для расчета первичных гравитационных волн не нужно строить конкретной модели инфляционной стадии, по крайней мере, если оставаться в рамках эйнштейновской общей теории относительности — как я это и делал в 1979 году. А вот для количественно правильного расчета возмущений плотности материи уже не обойтись без последовательной и внутренне непротиворечивой модели, в которой есть не только инфляционная стадия, но и благополучный выход из нее на последующую стадию горячего Большого взрыва. Слово «благополучный» означает в данном случае, что переход между стадиями происходит без генерации больших неоднородностей.

Б. Ш.: Ты считал уже в 1980 году, что однородная плоская Вселенная как результат инфляции — общее место. Для тебя и твоего круга, может, это и было общим местом, но научная общественность о том не знала. Тогда в лучшем случае считали инфляцию чем-то экзотическим и заумным, а чаще просто не знали про нее. Все-таки Алан Гут сделал важнейшую часть задачи — занялся популяризацией и пропагандой этого механизма. Видимо, именно поэтому он считается отцом новой парадигмы.

40.2. Участники конференции в Кембридже 1982 года, посвященной теории инфляции. Алексей Старобинский — по центру над Хокингом. Слева от него — М.А. Марков. Второй справа в нижнем ряду — Алан Гут. Андрей Линде, также бывший на конференции, на фото отсутствует. Фото из личного архива Алексея Старобинского


А. С.: Конечно, пропаганда тоже необходима. Удача Гута во многом была связана с тем, что он нашел правильный язык для физиков частиц, которые составляли большую часть его аудитории. Скалярное поле, великое объединение, фазовый переход — это именно их бизнес. Но модель у него неверная — там не получается благополучный выход из инфляции. Знаешь об этом?

Б. Ш.: Да, я об этом уже написал выше, не будем повторять. Но зато всё понятно и впечатляюще. А у тебя в статье, небось, техника в основном…

А. С.: На самом деле статья достаточно простая. И короткая, всего четыре страницы. А у Гута — страниц 20.

Б. Ш.: Зато у него, вероятно, большую часть составляет легко читаемая дискуссия. Кстати, а в твоей модели как обстоит дело с выходом из инфляции?

А. С.: Выход благополучный и вполне элегантный. Тот же самый механизм квантовых флуктуаций, который дает спектр возмущений, он же обеспечивает и «выгорание» вакуума с большой плотностью энергии — его переход в частицы. Не нужно искать специального механизма, он уже есть. Это, кстати, было одной из целей — я искал не только сценарий с решением де Ситтера, но и как из него элегантней выйти в фазу Большого взрыва — горячей фридмановской Вселенной.

Б. Ш.: Ты всё говоришь про спектры возмущений и что они были главной твоей целью. Но как основополагающая работа по этой части известна статья Вячеслава Муханова и Геннадия Чибисова 1981 года — вроде бы они посчитали спектр…

А. С.: Да, а чью модель они использовали? Я уже сказал, что без последовательной модели спектр возмущений материи правильно посчитать нельзя.

Б. Ш.: Ну, твою. Правильно ли я понимаю, что плоский спектр скалярных возмущений далеко не так очевиден, как для гравитационных? И что главное достижение Муханова с Чибисовым, в том что они доказали, что и тут спектр близок к плоскому?

А. С.: Они еще описали отклонение спектра от плоского — именно то, что сейчас видят WMAP и «Планк». Тот самый параметр ns, который, по новым данным, чуть отличается от единицы, как они и предсказали. Точнее, они получили зависимость наклона спектра N от числа раздуваний в e раз, произошедших от рождения неоднородностей до конца инфляции. Для интересующих нас возмущений, которые дали крупномасштабную структуру, N где-то в районе 50-60. То есть они родились с размерами всего на несколько порядков больше планковского и должны были увеличиться за время инфляции в е60 раз, чтобы к настоящему времени стать размером в мегапарсеки. Чтобы посчитать точный спектр, требуется довольно много технической работы, и они сделали ее быстрей меня.

Кстати, они упростили себе работу, не рассматривая, что происходит с возмущениями после конца инфляционной стадии и до выхода на стадию доминирования излучения, и считая их постоянными. Эта гипотеза естественна, но верна не всегда (опять-таки, модель Гута 1981 года — это пример, когда это не так). Для того, чтобы доказать эту гипотезу, нужно сначала строго вывести уравнения для возмущений в моей модели во всех ее режимах, а не только в инфляционном. Это было сделано только в моей работе 1981 года уже после выхода статьи Муханова и Чибисова. Тем самым задним числом гипотеза, на которой основана их статья, была доказана — черновая, но необходимая работа. Кроме того, они посчитали только скалярные моды (возмущения плотности энергии) — гравитационные волны позже посчитал я, обобщив свою статью 1979 года на случай неэйнштейновской теории гравитации, к которой относится моя модель. Это оказалось очень важным сейчас, когда из данных WMAP и «Планк» извлекли верхний предел на амплитуду первичных гравитационных волн. Он исключает некоторые другие модели, имеющие такую же величину ns, в том числе самую простую инфляционную модель со скалярным полем — просто со свободным массивным полем, но оставляет допустимой мою модель.

Б. Ш.: Ты говоришь, подход Гута понятней для физиков частиц. Я по своему воспитанию и ментальности тоже, скорее, физик частиц, и рассуждения в терминах инфляции за счет скалярного поля мне ближе по духу, чем твоя модификация уравнений Эйнштейна с добавлением члена, пропорционального R2 . Твоя модель, как выяснилось, эквивалентна варианту со скалярным полем в режиме «медленного скатывания», который придумали позже. У меня такой вопрос: какой именно потенциал скалярного поля надо взять, чтобы получить полную тождественность с твоей моделью?

А. С.: Примерно как квадрат гиперболического тангенса. Это при положительных значениях эффективного поля, а при отрицательных потенциал растет экспоненциально. Вблизи нуля это будет квадратичная зависимость, а потом она выполаживается в сторону положительных значений, что очень благоприятствует медленному скатыванию.

Рис. 40.3. Потенциал поля инфлатона, дающего эффект, эквивалентный модели Старобинского


Такой потенциал сильно облегчает старт инфляции — к начальной конфигурации поля предъявляется меньше требований. Ты начал со слов: «Инфляция объясняет то и се». На самом деле я не совсем согласен с такой формулировкой. Правильнее сказать: «Инфляция в рамках адекватных моделей объясняет то и се». Основные же достоинства инфляционного сценария в целом — эстетическое изящество и полная предсказуемость всей дальнейшей эволюции Вселенной, которая может согласовываться, а может и не согласовываться с наблюдательными данными.

Что же касается медленного скатывания, то оно в действительности появилось не после, а до всех работ по инфляции, -еще в моей статье 1978 года, где я рассматривал сценарий «отскока»: замкнутая вселенная сжимается, включается решение де Ситтера, сжатие переходит в расширение, минуя сингулярность. Андрей Линде в своей работе 1983 года, где он предложил хаотическую инфляцию, сделал важный шаг: отбросил стадию сжатия, с которой были связаны некоторые проблемы, и предложил идею произвольных начальных условий (однако при достаточно большом значении скалярного поля — больше планковского) — где-нибудь они окажутся подходящими для старта инфляции. А сами уравнения, в том числе и эффект медленного скатывания, уже существовали.

Б. Ш.: Ну да, собственно, хорошие простые уравнения, типа гармонического осциллятора с трением, везде всплывают. Как понимаю, в случае хаотической инфляции было важно показать, что это работает и там. В твоей работе меня больше впечатлило другое: я написал, что твой механизм инфляции похож на эффект Казимира. Там металлические пластины влияют на плотность энергии вакуума, а у тебя — кривизна пространства дает тот же эффект. Ты одобряешь эту метафору?

А. С.: Одобряю, только надо добавить, что это динамический эффект Казимира. Кривизну дает ускоренное расширение. Кстати динамический эффект Казимира сейчас пытаются зарегистрировать экспериментально — с помощью движущихся пластин.

Б. Ш.: Насколько, по-твоему, теория инфляции доказана? По мнению Валерия Рубакова, для того, чтобы она была окончательно принята и за нее можно было бы давать Нобелевскую премию, нужно обнаружить предсказываемые ею гравитационные волны, которые могут быть выявлены по карте поляризации реликтового излучения.

А. С.: Я согласен с ним лишь частично. Действительно, гравитационные волны надо зарегистрировать, и это стало бы окончательным подтверждением. Но есть и другие способы проверки, пока не будем о них рассказывать.

Б. Ш.: А ты уверен, что гравитационные волны когда-нибудь будут зарегистрированы? Ведь уже видно по данным WMAM и «Планка», что «оптимистические» модели, предсказывающие большую амплитуду реликтовых гравитационных волн, не проходят.

А. С.: Мое предсказание: отношение амплитуды гравитационных волн к амплитуде возмущений плотности — примерно полпроцента. Сейчас верхнее ограничение на эту величину, обычно обозначаемую как r, составляет около 10% Дело в том, что в большинстве популярных моделей r обратно пропорционально числу N (числу раздуваний в е раз, о котором сказано выше), причем с коэффициентом в числителе порядка десяти (точное значение зависит от модели). Поскольку N ~ 50…60, то отношение должно быть 15-20%. Это уже противоречит данным. Модели инфляции с потенциалом скалярного поля V ~ ф4 уже надежно отвергнуты. Самая простая и популярная модель с V ~ ф2 поставлена под сомнение — она противоречит данным на уровне 2σ. А в моей модели в знаменателе стоит N2 и отношение r должно быть на уровне полпроцента. Верхнему пределу еще далеко до этой величины.

Б. Ш.: Ты думаешь, при отношении пол процента гравитационные волны в принципе обнаружимы?

А. С.: Экспериментаторы обещают достичь уровня 10-4 .

Б. Ш.: Это на каком угловом масштабе неоднородностей? Следующие измерения, специально ориентированные на поляризацию реликта, собираются проводить с земли — в Антарктиде. С земли вроде бы легче наблюдать мелкомасштабные неоднородности. По крайней мере, до сих пор было «разделение труда»: космические станции снимали широкомасштабную карту и строили график разложения по мультиполям примерно до тысячи, а наземные телескопы измеряли мелкую пятнистость и дополняли общий график до мультиполей несколько тысяч.

А. С.: Нет, следы гравитационных волн лучше искать на довольно малых мультиполях — от 10 до 50 (угловой масштаб от 2 до 10°) — там соотношение амплитуд больше. Авторы эксперимента утверждают, что могут строить и достаточно широкоугольные карты поляризации реликта.

Б. Ш.: Андрей Линде, в отличие от Рубакова, считает, что инфляцию уже можно считать несомненным фактом, поскольку есть масса подтверждающих свидетельств с разных сторон.

А. С.: В какой-то степени я с ним согласен, потому что нет достойной альтернативы. Конечно, есть и другие сценарии возникновения Вселенной, но они все втискиваются в общую картину с явным напряжением и не дают никаких новых предсказаний. Сценарий инфляции превосходит их именно тем, что объясняет все непринужденно и содержит предсказания, которые уже подтвердились, и такие, которые еще предстоит проверить. Одно из интересных предсказаний теории инфляции: вселенные появляются в бесконечном количестве, причем возникают «выводки» похожих вселенных. Вместе с нашей появилось множество других вселенных, где тоже горят звезды, где законы физики и физические константы тождественны нашим.

Б. Ш.: Ты имеешь в виду вечную инфляцию? Что область с одним и тем же вакуумом успевает расшириться и дает много одинаковых вселенных?

А. С.: Да, можно нарисовать это вот таким образом:

Рис. 40.4


Здесь светлый фон — раздувающееся пространство с одним и тем же вакуумом, каким он был в самом начале. Серые «заливы» — новые вселенные, образовавшиеся в одинаковых условиях.

Б. Ш.: Но ведь возможны еще фазовые переходы после окончания инфляции. Например, если был фазовый переход, связанный с великим объединением, и если в нем задействовано несколько скалярных полей, то результат такого фазового перехода может случайным образом влиять на физику.

А. С.: В принципе это может быть и так. Вопрос о возникновении разных вариантов физики при фазовых переходах надо задавать физикам частиц, и ответить на него они пока не могут. Может быть так, а может быть, и нет. Но в любом случае есть бесконечное число вселенных, в которых физика в момент окончания инфляции одинакова. Всё, что касается компактификации дополнительных измерений или образования бран, уже произошло раньше, до горлышка, из которого разворачивается этот куст вселенных.

Б. Ш.: Да, очень интересно! Действительно, вечная инфляция дает пучки родственных вселенных. В голову не приходило, а ведь очевидно! Но вернемся к истории. В восьмидесятых наблюдения давали слишком однородную карту реликта — сначала думали, что неоднородности должны быть на уровне 10-3, их не оказалось. Потом изобрели темную материю, позволившую обойтись неоднородностями контраста 10-5, но наблюдения Парийского на РАТАН-600 прошли и этот уровень, ничего не обнаружив. Это обеспокоило очень многих. В частности, помню доклад Андрея Линде 1986 года — он говорил, что ситуация с однородностью реликта уже тревожная, и если верхний предел опустится еще чуть-чуть, то будет совсем плохо. Плохо в том смысле, что невозможно объяснить образование галактик — космологию ждет тупик. Как ты тогда воспринимал эту проблему, она тебя тоже напрягала?

А. С.: Пожалуй, нет. Я просто не верил в результат Парийского. Видимо, у меня есть чутье, каким данным стоит верить, каким — нет, и оно мне подсказывало, что результат неверен.

Потом мы вместе с Парийским в 1992 году взяли его данные и нашли-таки в них флуктуации на нужном уровне — авторы эксперимента сначала просто не смогли извлечь эти неоднородности из данных.

Б. Ш.: А как ты воспринял открытие темной энергии в 1998 году? Твое чутье что-нибудь подсказывало по этому поводу? Тебя это порадовало?

А. С.: Порадовало, но не удивило. Тут дело даже не в чутье, а в косвенных свидетельствах, которые были и раньше. Если современная постоянная Хаббла H0, больше 60 км/с/мегапарсек, то космологическая постоянная просто необходима, чтобы свести концы с концами. Иначе Вселенная оказывается моложе некоторых звезд. По поводу постоянной Хаббла долгое время шли споры. Аллан Сэндэйдж и Густав Тамманн твердо стояли на том, что значение Н0 находится в районе 50 км/с/мегапарсек — при таком значении не возникает никаких противоречий. Но со временем всё больше данных указывало на то, что Н0 около 70-75 км/с/мегапарсек. И когда по сверхновым увидели, что Вселенная расширяется с ускорением, и одновременно измерили, что Н0 действительно находится в этом диапазоне, все восприняли это как должное. Всё встало на свои места.

Б. Ш.: А как ты отнесся к открытию акустического пика, а потом и нескольких пиков? Я в то время, в 1990-х — начале 2000-х, был вне этой темы, но задним числом акустические пики поразили меня до глубины души.

А. С.: Меня это тоже порадовало, но я ждал, что теория подтвердится и здесь. Так что особого удивления не было.

Б. Ш.: Есть ли сейчас люди (я имею в виду серьезных исследователей), которые настроены против теории инфляции?

А. С.: Есть. Например, Пол Стейнхардт. Он привык мыслить в терминах скалярного поля, где потенциал выражается степенью: V ~ фα. Новые данные, а именно наклон спектра и верхний предел на гравитационные волны, ставят под сомнение такую возможность.

Четвертая степень отброшена с гарантией, вторая степень противоречит данным на уровне 2,5 сигма — т. е. поставлена под сомнение. Остается линейная зависимость, но она не очень естественна. Другая трудность теории инфляции, про которую часто говорят, — начальные условия. Чтобы запустить процесс, требуется большое и более-менее однородное поле в области размером нескольких горизонтов. Но это не очень большая трудность.

Б. Ш.: Видимо, вероятность реализации таких начальных условий мала, но не исчезающе мала? И «попыток» реализации разных начальных условий наверно происходит немало? И коль уж процесс пошел, то его ничто не остановит?

А. С.: Примерно так. Проблема действительно не принципиальна. В отличие от альтернативных сценариев, где есть принципиальные проблемы. Либо нет проверяемых предсказаний.

Б. Ш.: Когда Яков Борисович, наконец, признал теорию инфляции? Как выше по тексту уже сказал Володя Лукаш, Зельдович устроил разнос Глинеру, когда тот рассказывал про сценарий отскока с «физическим» космологическим членом, что было неким прототипом инфляции. А спустя десять с чем-то лет не признавать ее было уже трудно.

А. С.: Пожалуй, это произошло в районе 1980 года — кажется, мне удалось его убедить. Вариант с модифицированной общей теорией относительности ему оказался ближе, чем сценарий с отскоком в чисто гидродинамической модели Глинера с заданным руками уравнением состояния или в моей модели 1978 года с массивным скалярным полем (меня он тогда покритиковал тоже, и не только он).

Б. Ш.: Ну и в заключение. Пример с твоей моделью и сценарием Гута показывает, насколько в науке важна пропаганда…

А. С.: Конечно, в науке пропаганда необходима, но кто-то должен делать правильные работы, чтобы у пропагандистов был адекватный предмет для пропаганды.

41. Четыре железобетонных следствия и еще одно (интервью с Вячеславом Мухановым)

Это интервью было взято позже всех остальных, уже после объявления о детектировании реликтовых гравитационных волн в эксперименте BICEP2.

Борис Штерн: Когда ты понял, что инфляция — это именно то, что надо для светлого будущего?

Вячеслав Муханов: В 1980 году, еще до соответствующей работы Ста-робинского и тем более до работы Гуса. В 1979 году Гена Чибисов предложил заняться квантовыми флуктуациями в ранней Вселенной: нельзя ли получить из них галактики? Когда-то, еще в 1960-х, подобной задачей занимался Сахаров, но у него ничего не получилось — возмущения в галактических масштабах оказались слишком маленькими. А больше никто этого не пробовал.

Уйма времени у меня ушла на технические вещи — как проквантовать скалярные возмущения.

Б. Ш.: Вроде Володя Лукаш делал то же самое?

В. М.: Да, мы с ним в какой-то момент пересеклись по этому поводу. Я тогда был аспирантом, а он уже ученым с репутацией. При этом формальная часть теории квантовых скалярных возмущений оказалась почти той же самой. Даже встал вопрос о том, чтобы опубликовать совместную работу на эту тему — это было предложение Зельдовича. Но было неясно, как в этой теории получить возмущения, достаточные для образования галактик и вообще всей структуры во Вселенной. В результате Лукаш быстро опубликовал формальную теорию, а мы с Чибисовым попытались найти какую-либо модель ранней Вселенной, где эта теория могла бы объяснить, как образовались галактики. Долгое время не получалось ничего. Я испробовал разные модели с нормальным веществом, и во всех этих моделях возмущения были слишком маленькими. Наконец, возникла идея: а что, если попробовать решение де Ситтера — скалярное поле и немного радиации? И всё получилось! Оказалось, что квантовые флуктуации нужным образом усиливаются и растягиваются. Всё встало на свои места.

41.1. Вячеслав Муханов (фото из «Википедии»)


Б. Ш.: Получается, вы подобрались к инфляции совсем с другой стороны. Другие хотели от нее плоской однородной Вселенной, вы — затравочных неоднородностей для галактик.

В. М.: Так это не менее, а в каком то смысле даже более важно: мы вполне могли бы существовать и во вселенной с геометрией Лобачевского, а без галактик — никак. Этот результат про возмущения в мире де Ситтера был опубликован в середине 1980 года в виде препринта ФИАН (на английском). А журнальная публикация появилась только через два года в Monthly Notices (MNRAS). Рецензент (Бернард Карр) полностью переписал наш английский, потом надо было всё перепечатать, ну и почта в Англию и обратно шла месяцами.

Хоть в этой первой работе мы и полностью осознали, что без де-ситтеровской (инфляционной) стадии не можем никак обойтись, если хотим образовать галактики из квантовых возмущений, детальную структуру возмущений в нашей модели было всё же невозможно рассчитать, поскольку первоначальная модель была слишком упрошенной. В декабре 1980 года я решил посмотреть, что происходит с квантовыми флуктуациями в модели, которую предложил Старобинский, с тем, чтобы решить проблему начальной сингулярности. В этой модели предполагалось, что вселенная бесконечно долго находилась в де-ситтеровском состоянии, а уже потом образовалась наша Вселенная. В результате наших расчетов оказалось, что квантовые флуктуации разрушают де-ситтеровскую вселенную за довольно короткое время, и таким образом проблему сингулярности оказалось решить нельзя. Так что если иметь в виду первоначальную цель этой модели, то мы ее закрыли. С другой стороны, мы нашли, что если всё же предположить, что по каким-либо причинам вселенная всё же прошла в течении короткого времени через такую стадию, то проблема образования галактик решена. Квантовые флуктуации действительно усиливаются и ведут в дальнейшем к галактикам и в конечном итоге к жизни. На этот раз я не рискнул послать статью за границу, и она была опубликована в «Письмах в ЖЭТФ» в мае 1981 года.

В этой статье нам удалось полностью предсказать спектр возмущений, который удалось померить только спустя 30 лет в экспериментах WMAP и «Планк». Наблюдения блестяще подтвердили наши с Чибисовым предсказания тридцатилетней давности.

Б. Ш.: Этот спектр — специфическая характеристика модели Старобинского? Что если взять другую модель инфляции?

В. М.: Как оказалось, конкретная модель здесь играет очень незначительную роль. Впоследствии мне удалось показать, что независимо от модели инфляции возмущения, образовавшиеся после инфляции, всегда слегка растут с ростом масштаба. И в какой-то момент я четко осознал, что если подтвердить этот рост возмущений с масштабом экспериментально, то это будет однозначным доказательством того, что мы все произошли из квантовых флуктуаций. Кроме того, наша теория также предсказывала, что возмущения должны быть адиабатическими и гауссовыми. В начале 1980-х было невозможно даже представить, что наш спектр когда-либо удастся измерить с необходимой точностью. Более того, адиабатические, гауссовы возмущения противоречили астрономическим наблюдениям. Тем не менее, это не помешало мне защитить кандидатскую диссертацию в 1982 году.

Б. Ш.: Ну вот, не прошло и тридцати пяти лет…

В. М.: Не прошло… И все предсказания нашей теории были блестяще подтверждены экспериментально.

Б. Ш.: Да, я выше уже это охарактеризовал как триумф науки.

В. М.: Что касается инфляции и квантового происхождения галактик, то это в высшей степени удивительно, что единственное предположение о том, что наша Вселенная прошла в прошлом через стадию темной энергии, которая усилила квантовые возмущения, ведет к пяти четким предсказаниям:


1. Вселенная с высокой точностью «плоская» (см. главу 32).

2. Возмущения плотности — чисто адиабатические (см. врезку).

3. Они же — гауссовы (см. P. S. к главам 31-35).

4. Начальный спектр возмущений слегка (логарифмически) растет с масштабом.

5. Существуют первичные гравитационные волны.


Первые четыре предсказания в настоящее время подтверждены экспериментально с огромной степенью точности. Что касается пятого предсказания — амплитуда гравитационных волн может оказаться ниже экспериментально достижимого уровня. В принципе, это не катастрофа, поскольку остальные — highly robust…

Б. Ш.: Железобетонные…

В. М.: Да, железобетонные. Они были подтверждены, и я думаю, никаких сомнений здесь быть не может; абсолютно ясно, что все мы произошли из квантовых флуктуаций. Если бы хоть одно из этих предсказаний было опровергнуто, большинство физиков усомнилось бы в том, что мы действительно знаем что-то о ранней Вселенной. Меня, например, неоднократно спрашивали на докладах: если ns, характеризующий наклон спектра, окажется 0,99 ± 0,01, согласишься ли ты с тем, что теория не работает? Я отвечал: соглашусь! Правда, Андрей Линде говорил: ну, можно придумать такую модель, которая даст почти точно единицу. Но, по-моему, это уже не настоящая физика. Изобретательство всяческих лазеек — совсем другой бизнес.

Б. Ш.: Ну, Андрей ниже, в интервью с ним, говорит как раз то же самое про гауссовость, как народ делал бизнес на моделях инфляции, нарушающих гауссовость.

В. М.: Вот! Перед публикацией результатов «Планка» был пущен слух, что «Планк» нашел негауссовость, и даже было организовано несколько конференций в предвкушении этой сенсации. К счастью, «Планк» всё расставил по своим местам.

Б. Ш.: Андрей уже весьма красочно рассказал про это.

В. М.: Или взять недавний результат по гравитационным волнам. Он довольно серьезно противоречит результатам «Планка». Тем не менее многие тут же стали подстраиваться так, чтобы, как говорится, «угодить и нашим, и вашим», ввели переменный спектральный индекс и т. д., короче, полный бред… И всё это вместо того, чтобы просто подождать, пока экспериментаторы выяснят, кто же из них прав.

Б. Ш.: Я уже писал об этом (P.P.S. к главам 31-36), что это насилие над теорией. И Рубаков то же самое думает.

В. М.: Я вообще сильно не удивлюсь, если история с результатом BICEP2 окажется аналогичной истории со сверхсветовыми нейтрино (в 2011 году было объявлено об экспериментальном измерении скорости нейтрино, оказавшейся чуть выше скорости света, что вызвало вал теоретических работ, но оказалось тривиальной технической ошибкой. — Б. Ш.). При всем том, что результаты BICEP2 не подтверждены и есть куча вопросов, посмотри, какая поднялась шумиха в самых разных газетах, журналах, по телевидению. Когда были опубликованы куда более мощные результаты WMAP и «Планка», кто об этом написал в России? Боря Штерн в «Троицком варианте» да еще раз-два и обчелся. А тут — девятый вал.

Б. Ш.: Может быть, это и не так плохо. Сколько народа узнало, что существуют гравитационные волны, что есть такая теория инфляции, что есть такая наука — космология…

В. М.: Тут такая проблема. После сенсации со сверхсветовыми нейтрино, закончившейся скандалом, простая публика наверное даже усомнилась в открытии бозона Хиггса: может, опять разъем перепутали… Такие истории дискредитируют науку.

Б. Ш.: С одной стороны — да. Каждая лопнувшая сенсация подобна ложному крику «волки»! Но все-таки нет худа без добра — народ видит, что в науке что-то происходит. Кстати, результат BICEP2 вряд ли лопнет с таким треском — неправильный учет фона — это все-таки не разъем неправильно воткнуть. И все-таки есть шанс, что результат подтвердится. Конечно, им надо было чуть-чуть подождать — «Планк» уже скоро должен выдать данные по фону. Но, видимо, хотелось быть впереди всех.

В. М.: Вообще, уровень журналистики, когда речь заходит о науке, ужасен. По телевизору иногда слушаешь и в ужас приходишь! Я, кстати, подписался на российское телевидение. Извини, но всё, кроме «Дождя» такое…

На этом разговор перешел на политику и назад уже не вернулся. Он происходил в самом начале апреля 2014 года.

Адиабатические возмущения

Когда среда сжимается или расширяется, она соответственно нагревается или охлаждается. Если процесс проходит без передачи тепла от одних областей другим, то он называется адиабатическим. При этом энтропия в сопутствующем объеме (сжимающемся или расширяющемся вместе с веществом) не меняется. Неоднородности с постоянной удельной энтропией (энтропией, деленной на сопутствующий объем) называются адиабатическими возмущениями. В космологии удельную энтропию удобно измерять как отношение числа фотонов к числу барионов.

Альтернатива адиабатическим возмущениям — энтропийные возмущения, где число фотонов на барион меняется. Если адиабатические возмущения плотности космической среды каким-то образом заморозить, то из-за диффузии фотонов они превратятся в энтропийные: температура выровняется, а плотность останется переменной. Однако в ранней Вселенной диффузия фотонов для достаточно больших возмущений была незначительной^ возмущения, родившиеся как адиабатические, таковыми и оставались. Возмущения, родившиеся в ходе инфляции, автоматически становились адиабатическими при «выгорании» инфлатона. То, что возмущения изначально были адиабатическими, видно по положению пиков на рис. 32.1. Если бы они были энтропийными, акустические колебания среды в ранней Вселенной вели бы себя по-другому, и пики оказались бы в других местах.

Загрузка...