Когда мы исследуем объект, приборы, которые мы используем, тоже влияют на результаты наблюдений. Например, развитие астрономии было тесно связано с совершенствованием телескопов, а микробиология — с микроскопами. Оборудование для наблюдений и измерений стало ключевым фактором, открывающим двери в неведомые миры. В этом смысле математика не является исключением: объекты ее исследования нематериальны, но даже они могут изучаться с высокой степенью точности.
Одним из самых мощных математических инструментов, когда-либо изобретенных человеком, являются логарифмы, служившие сначала для упрощения расчетов, но благодаря Карлу Гауссу превратившиеся в устройство для поиска простых чисел.
В некоторых учебниках упоминаются логарифмы Непера, в то время как в других — логарифмы Нэйпера. На самом деле в истории математики это имя появлялось во многих вариантах: Нэйпер, Неппер, Нейпер, Нейпир, Непер… (Napeir, Nepair, Nepeir, Neper, Napare, Naper, Naipper…). Единственное написание, которое создатель логарифмов ни разу в своей жизни не использовал, было Непер (Napier) — и именно оно сейчас считается правильным!
Шотландский математик и богослов Джон Непер вошел в историю благодаря открытому им методу упрощения сложных расчетов.
Джон Непер родился в 1550 г. в замке Мерчистон близ Эдинбурга в Шотландии. Он был сыном аристократа Арчибальда Непера, и жизнь его проходила в очень комфортных условиях. Джон изучал теологию в Сент-Эндрюсском университете. Его интерес к математике проявился во время долгого путешествия по Европе. Известно, что он учился в Парижском университете, а также провел некоторое время в Италии и в Голландии. Возвратившись в Шотландию в 1572 г., он женился на Элизабет Стерлинг. Следующие два года он посвятил строительству замка в Гартнесс. Непер проводил много времени в этом замке, именно в этот период погрузившись в таинственные занятия математикой. Слово «таинственные» использовано неслучайно, потому что когда Непер изредка появлялся на публике, он был одет во все черное и носил на плече черного петуха. Его эксцентричность принесла ему репутацию чародея, которая только подтверждалась демонстрацией его математических навыков.
В дополнение к своей исключительной увлеченности математикой он проводил много времени за изучением Евангелия, особенно Книги Откровения. Непер опубликовал свои размышления в книге «Простое истолкование всего Откровения Иоанна Богослова», переведенной на несколько языков, в которой пытался доказать, что папа является Антихристом.
Одна из первых моделей счета Непера, известных как «костяшки Непера», применявшихся для быстрого умножения и деления.
* * *
СТРАННЫЕ ДЕСЯТИЧНЫЕ ДРОБИ
Сегодня нам кажется совершенно нормальным возможность выразить дробь 19/8 в виде десятичной дроби 2,375 — мы просто делим 19 на 8. Но в XVI в. десятичные дроби были экзотикой. Фламандский инженер Симон Стевин (1548–1620) ввел обозначение десятичных дробей и предложил единицы веса и длины, основанные на десятичной записи, как и в метрической системе, используемой сегодня. Непер поддержал использование десятичных дробей и упрощенные обозначения Стевина, введя запятую (так называемую «десятичную точку») в качестве разделителя целой и дробной частей десятичной дроби. Запятая до сих пор используется во многих европейских странах. Однако в англоговорящих странах в качестве десятичного разделителя используется точка.
* * *
Непер также интересовался нумерологией и астрологией. Второе увлечение привело его к исследованию свойств геометрических фигур на сферической поверхности, и в результате он получил важные соотношения для сферических треугольников. Любой студент, изучавший сферическую тригонометрию, наверняка помнит формулы, носящие имя знаменитого шотландца.
Тем не менее для Непера один вопрос был намного важнее всех остальных. В те дни численные расчеты были очень утомительными. Непер подумал, что он мог бы использовать свое время более эффективно, чем просто заполнять страницу за страницей бесконечными расчетами, которые на самом деле были лишь рутинной работой.
Ему удалось изобрести устройство для быстрого умножения и деления, состоящее из стержней с квадратным сечением и доски для умножения. В 1617 г. Непер издал руководство под названием «Рабдология» (счет с помощью палочек), в котором он объяснил правила работы с этим устройством. Устройство Непера, предшественник логарифмической линейки, использовалось в Шотландии более 100 лет. (Непер позднее усовершенствовал этот инструмент, заменив стержни карточками, которые позволяли умножать большие числа. На самом деле эти карточки были прообразом знаменитых перфокарт, которые появились более чем четыре века спустя вместе с первыми компьютерами IBM.)
Однако важнейшим достижением Непера с точки зрения истории математики являются логарифмы — гениальный способ вычислений, который он опубликовал в 1614 г. под названием Mirifici Logarithmorum Canonis Descriptio («Описание удивительной таблицы логарифмов»). Чтобы оценить важную роль, которую логарифмы играют в теории простых чисел, мы сначала рассмотрим некоторые из их свойств.
Логарифмы основаны на следующей идее. Мы знаем, что число 1000 = 10 х 10 х 10 может быть записано как десять в степени три, 103 Аналогично:
1 000 = 103;
10 0 00 = 104;
1 000 000 = 106.
Предположим, мы хотим перемножить эти числа:
1000 x 10000 x 1000000 = 10000000000000.
Но 10000000000000 = 1013.
Мы могли бы выполнить это умножение, сразу написав 103 + 4 + 6 = 1013. Совершенно очевидно, что проще складывать, чем умножать. Чтобы убедиться в этом, попробуйте умножить 1038 х 1052 = 1090, записав числа в развернутом виде!
Здесь и появляются логарифмы. Глядя на пример 1000 = 103, мы можем задать такой вопрос: «В какую степень надо возвести число 10, чтобы получить 1000?» Ответом будет 3. Запишем это следующим образом: log10 (1000) = 3. Тогда, например:
log10 100 = 2;
log10 1 000 = 3;
log10 1 000 000 = 6.
Главной идеей такого подхода является то, что числа гораздо проще складывать, чем умножать. Например:
log10 (100 x 1000) = log10100 + log101000 = 2 + 3 = 5.
Применяя обратную функцию, антилогарифм, мы получаем конечный результат:
105 = 100000.
Эти операции показаны в следующей в таблице:
Первая строка таблицы начинается с числа 1, и каждое следующее число в 10 раз больше предыдущего. Такой ряд чисел называется геометрической прогрессией со знаменателем 10. С другой стороны, числа в нижней строке таблицы получаются путем добавления единицы к предыдущему числу. Таким образом, верхняя строка содержит операции умножения, а нижняя строка — операции сложения. Как видно из таблицы, операция умножения
1000 x 100000 = 100000000
эквивалентна операции сложения
3 + 5 = 8.
Мы можем составить такую таблицу, используя любую геометрическую прогрессию в верхней строке, например:
Чтобы умножить 4 на 16 (верхняя строка), мы сложим 2 и 4 (нижняя строка), получив число 6, которое соответствует числу 64. Аналогично мы можем выполнить операцию деления, но в этом случае результат получается путем вычитания соответствующих чисел в нижнем ряду. Например, чтобы разделить 256 на 8, мы просто вычтем 3 из 8, то есть 8–3 = 5, что соответствует 32, числу над числом 5.
Такое соотношение между числами в нижней и верхней строках является ключевым для логарифмов.
Теперь мы можем сформулировать строгое определение логарифма. Когда мы говорим о том, что число 32 соответствует числу 5, мы имеем в виду следующее равенство:
25 = 32.
Напомним, что 2 в степени 5 означает, что число 2 умножается само на себя пять раз. Мы можем читать строки второй таблицы следующим образом: «Число 3 является показателем степени, в которую надо возвести число 2, чтобы получить число 8» и «число 7 является показателем степени, в которую надо возвести число 2, чтобы получить число 128», что сокращенно записывается так:
log28 = 3;
log2128 = 7.
Эти выражения читаются соответственно так: «Логарифм числа 8 по основанию 2 равен 3» и «логарифм числа 128 по основанию 2 равен 7». Теперь рассмотрим пример из первой таблицы, 104 = 10000, то есть 4 является показателем степени, в которую надо возвести число 10, чтобы получить число 10000. Запишем это с использованием логарифма: log1010 000 = 4, что читается как «логарифм числа 10000 по основанию 10 равен 4».
Итак, обратимся к общему определению. Логарифмом числа b по основанию а называется показатель степени, в которую надо возвести основание а, чтобы получить число b (ас = Ь), что записывается как
logab = с.
Непер был заинтересован в упрощении вычислений в сферической тригонометрии и впервые применил логарифмы для тригонометрических функций. Его подход не был похож на используемый сегодня, который можно назвать арифметическим.
Его метод был «кинематическим», то есть он рассматривал два отрезка, пробегаемых с разной скоростью. Слово «логарифм», впервые использованное самим Непером, означает «числа отношений» в смысле отношений между различными отрезками. (В нашем случае это отношение между числами из разных строк таблицы.) Непер работал с логарифмами по основанию 107, что было не особенно практично. Кроме того, ему не удалось установить, что логарифм числа 1 равен нулю, что равносильно соотношению 100 = 1. Генри Бригс (1561–1632), заведующий кафедрой геометрии Оксфордского университета, заинтересовался логарифмами Непера, написал ему и предложил встретиться. Летом 1615 г. Бригс приехал к Неперу в замок Мерчистон, где они обсудили возможность использования числа 10 в качестве основания логарифма и соотношение log 1 = 0. Непер, который был болен в то время, отказался составлять новую версию своих логарифмических таблиц. Через два года Непер умер, и Бригс сформулировал определение десятичных логарифмов, так называемых «логарифмов Бригса».
Кроме того, как оказалось, вроде бы случайный подход при составлении логарифмических таблиц стал важной вехой в развитии математики. На задней обложке школьных учебников принято приводить таблицу умножения, аналогично и список простых чисел помещался в конце логарифмических таблиц. Тому была особая причина. Напомним, что любое число можно представить в виде произведения простых множителей, поэтому логично сначала вычислить логарифмы простых чисел, а затем считать логарифмы других чисел путем простого сложения результатов.
Логарифмические таблицы, которые Гаусс использовал в школе, содержали список первой тысячи простых чисел. Перед гением оказались два вроде бы не связанных между собой понятия, но их последующее сочетание привело к одной из самых интересных теорем алгебры.
* * *
ЛОГАРИФМИЧЕСКИЕ ТАБЛИЦЫ
В наше время, чтобы посчитать логарифм, достаточно нажать клавишу карманного калькулятора, но в XVII в. использовались огромные книги, содержащие логарифмы как можно большего количества чисел. В 1617 г. Генри Бригс опубликовал первые таблицы с логарифмами чисел от 1 до 1000 с точностью до четырнадцати десятичных знаков. Семь лет спустя появились новые таблицы, сначала для чисел от 1 до 20 000, а затем от 20 000 до 100 000, также с точностью до четырнадцати десятичных знаков. Издания этих таблиц вскоре были напечатаны и в других странах в связи с огромной практической пользой вычислений с помощью логарифмов. Морская навигация требовала все более точных астрономических карт, и астрономам приходилось тратить много часов, дней и даже лет на сложные тригонометрические расчеты. Как говорил Пьер-Симон Лаплас, Непер своим изобретением «продлил жизнь астрономов».
Первые логарифмические таблицы, опубликованные в Эдинбурге в 1614 г.
Гаусс родился в Брауншвейге, в Германии, 30 апреля 1777 г. Он происходил из бедной семьи и, скорее всего, работал бы на ферме, если бы не вмешательство судьбы: уже в начальной школе в возрасте девяти лет Гаусс был лучшим учеником. В этой общественной школе работал всего один учитель, господин Бюттнер, которому приходилось управляться с сотней учеников. Поэтому он старался занять детей длинными утомительными вычислениями. Однажды он дал им задание сосчитать сумму первых ста натуральных чисел. В тот же момент Гаусс положил свою тетрадь и сказал: «Готово!». Он не только посчитал сумму
1 + 2 + 3 + 4 + … + 100 = (1 + 100) + (2 + 99) + (3 + 98) + … + (50 + 51) = 101 + 101 + … + 101 = 101 х 50 = 5050
за рекордно короткое время, но и решил задачу о нахождении суммы арифметической прогрессии. Бюттнер, увидев исключительную одаренность мальчика, передал его Иоганну Мартину Бартельсу (1769–1836), талантливому преподавателю математики, который был всего лишь на восемь лет старше Гаусса. С Бартельсом, с которым они оставались близкими друзьями до конца жизни, Гаусс сделал первые шаги в мире чисел. Мать Гаусса, Доротея Бенц, понимая, что надо развивать необычные способности сына, но не имея собственных средств, обратилась к герцогу Брауншвейга. Тот стал покровителем мальчика и дал ему стипендию для обучения в гимназии, а затем в Гёттингенском университете. Вот так молодой Гаусс избежал судьбы фермера и стал «принцем математики». Вершиной его профессиональной карьеры стала должность профессора астрономии и директора обсерватории в Гёттингенском университете. Жизнь Гаусса протекала относительно спокойно.
Портрет Гаусса в молодости.
Во время политической нестабильности он остался верен герцогу, своему покровителю. Гаусс был единственным ребенком в семье и женился лишь в возрасте 32 лет на Иоганне Остгоф. У них было трое детей, младший из которых умер через несколько месяцев после смерти Иоганны.
В 1810 г. Гаусс женился во второй раз на Вильгельмине Вальдек, дочери университетского профессора права. Вильгельмина родила ему еще троих детей. Гаусс умер в Гёттингене 23 февраля 1835 г. К тому времени как ученый он был известен во всем мире.
Литография Эдуарда Ритмюллера, изображающая уже знаменитого Гаусса на террасе обсерватории в Гёттингенском университете.
Первая гипотеза
В записной книжке, которая была у Гаусса в возрасте 14 лет, имеется такая запись:
«Простые числа, меньшие
Гаусса заинтересовал длинный список простых чисел, приведенный в конце логарифмических таблиц, мальчик был очаровал их хаотичностью. Однако он уже решил для себя, что не его это дело — искать формулу, предсказывающую появление следующего простого числа. Гаусс чувствовал, что такие попытки, скорее всего, закончатся провалом. Вместо этого он решил посчитать, сколько простых чисел находится между двумя заданными числами или, другими словами, сколько простых чисел встречается среди первых десяти, ста, тысячи и десяти тысяч чисел, что позволило бы ему оценить частоту, с которой простые числа появляются в последовательности натуральных чисел.
Мы уже знаем, что первые десять натуральных чисел содержат только четыре простых числа (2, 3, 5 и 7). От десяти до ста — двадцать одно простое число. Для выражения этого количества Гаусс ввел следующую функцию, которую он обозначил π(x):
π(x): = количество простых чисел, меньших, чем х.
* * *
УЧЕНЫЙ ДО МОЗГА КОСТЕЙ
Гаусс занимался не только математикой. Он получил важные результаты, исследуя магнитное поле Земли, притяжение эллипсоидов, а также сделал интересные открытия в теории электромагнетизма, капиллярности и диоптрики. В области геодезии Гаусс изобрел гелиостат (устройство для посылания сигналов с помощью отраженного света). Любопытный случай произошел в 1833 г., когда Гаусс работал с Вильгельмом Вебером (1804–1891), проводя исследования по электромагнетизму. Ученый создал электрическое устройство, способное передавать сообщения со скоростью света. Он изобрел не что иное, как электрический телеграф.
Памятник Гауссу и Веберу в Гёттингене.
* * *
Таким образом, π(10) = 4. А чтобы вычислить π(15), мы должны посчитать количество простых чисел, которые меньше 15, то есть
2, 3, 5, 7, 11, 13.
Так что π(15) = 6.
Символ π, который используется в этой формуле, более известен как число пи, но в данном контексте он не имеет этого математического смысла. Функция могла быть обозначена и любым другим символом, например, С(х). Действительно, молодой Гаусс сделал не самый лучший выбор. Вполне вероятно, что он просто использовал первый пришедший в голову символ. Большинству людей обозначение π(х) будет автоматически напоминать о связи с длиной окружности, но в данном контексте она не имеет ничего общего с простыми числами. В любом случае, мы будем продолжать использовать это обозначение.
Затем Гаусс построил таблицу с двумя столбцами. В левом он записал степени числа 10, а в правом — значения функции π(x).
В следующей таблице приведены результаты для первых десяти миллиардов.
Конечно, во времена Гаусса результаты были гораздо менее точны, и у него не было такого диапазона значений.
Ясно, что число π(x) будет увеличиваться, но как именно, мы не знаем. Добавим еще один столбец, показывающий долю простых чисел, меньших заданного числа.
Для этого вычислим отношение
π(x)/x
Мы знаем, что имеется 168 простых чисел, меньших 1000. Их доля составит
Это число говорит нам, что 16,8 % чисел между 1 и 1000 являются простыми. Оставшиеся 83,2 % представляют собой составные числа. Добавим этот третий столбик в таблицу:
Мы видим, что доля простых чисел уменьшается. Это важный, хотя и предсказуемый факт. Число является простым, если оно не делится ни на одно из чисел, предшествующих ему. Например, чтобы число 13 было простым, оно не должно делиться ни на 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ни на 12. Чем больше число, тем больше количество возможных делителей, и, следовательно, тем реже будут встречаться простые числа. Но Гаусс, конечно, не думал, что отсюда следует, что простые числа в конце
концов, закончатся, так как он прекрасно знал о существовании основной теоремы арифметики, с помощью которой Евклид доказал, что множество простых чисел бесконечно.
У Гаусса третий столбец таблицы содержал не значения π(x)/x, а обратные им х/π(x).
Из этой таблицы видно, что, например, среди первых ста чисел одно из четырех — простое, а в первой тысяче — одно из шести, и так далее. Это, конечно, приблизительная оценка. Таблица не гарантирует, что среди первых ста чисел каждое четвертое число простое, что можно легко проверить с помощью решета Эратосфена. Таким образом, приведенная выше таблица лишь указывает приблизительное вероятное расстояние между простыми числами.
Гаусс заметил, что в третьем столбце значения растут каждый раз примерно на две единицы. Проявляется следующая закономерность: с каждой строкой диапазон чисел увеличивается в десять раз, а доля простых чисел — на две единицы. Эта связь между произведением и суммой характерна для логарифмов. У Гаусса таблицы логарифмов и список простых чисел были в одной и той же книге. Благодаря этому у него и возникла идея нового инструмента исследований. Логарифмы стали новым объективом на математическом телескопе. Как мы уже видели на примере логарифмов по основанию 10, каждый раз при умножении числа на 10 десятичный логарифм этого числа увеличивается на единицу, что означало, что это основание не совсем вписывалось в схему Гаусса, и поэтому он решил взять логарифм по основанию е, числу, аналогичному числу π. Его примерное значение равно:
е = 2,71882818284590452354…
Это бесконечное десятичное число появляется в математике примерно так же часто, как π. Логарифмы по основанию е называются «натуральными логарифмами».
По вышеприведенному определению, натуральные логарифмы следовало бы обозначать loge, однако на калькуляторах имеются две отдельные клавиши: log — для десятичных логарифмов, а In — для логарифмов по основанию е.
Таким образом, Гаусс сформулировал следующую гипотезу: при больших х значения π(x)/x приближаются к 1/ln x, что можно записать как
π(x)/x примерно = 1/ln x (для больших значений х).
Этот результат является оценкой частоты, с которой простые числа встречаются в последовательности натуральных чисел. Предположим, что Р(N) — число простых чисел, меньших N. Формула утверждает, что с ростом N отношение N/P(N) приближается к натуральному логарифму N.
Это самый простой способ применения формулы Гаусса, если мы хотим оценить, сколько существует простых чисел, меньших, чем заданное число. Например, нам задали следующий вопрос: «Сколько простых чисел в первой тысяче натуральных чисел?»
Возьмем калькулятор и выполним следующие действия:
1) наберем число 1000;
2) нажмем клавишу In;
3) нажмем клавишу 1/х;
4) умножим результат на 1000.
Мы получим число 144,76482730108394255037630630554, что позволит нам дать следующий ответ: «В первой тысяче натуральных чисел встречается примерно 145 простых чисел». Это, конечно, лишь приблизительная оценка, так как на самом деле в первой тысяче 168 простых чисел. Тем не менее, мы должны иметь в виду, что теорема дает все более точный результат при увеличении числа N, и уже с большей уверенностью мы можем сказать, что, например, в первом миллиарде 5,1 % натуральных чисел являются простыми.
Теперь мы можем расшифровать, что именно Гаусс имел в виду, когда оставил заметку в своей записной книжке:
«Простые числа, меньшие
«Простые числа, меньшие а» — то же самое, что и π(a);
«lа» в современных терминах записывается как In a
означает, что равенство наиболее верно для очень больших значений а (когда а стремится к бесконечности).
* * *
КОЛОКОЛООБРАЗНАЯ КРИВАЯ ГАУССА
В возрасте 18 лет Гаусс открыл «метод наименьших квадратов», и это вызвало его особый интерес к теории ошибок. Он разработал метод статистического анализа, в котором нормальное распределение ошибок изображается колоколообразной кривой. Это, без сомнения, самая известная кривая в математике, и ее обычно называют «гауссовой кривой нормального распределения». Этот метод принес значительные доходы и самому Гауссу, когда он начал систематическое изучение тенденций международного фондового рынка. Эти данные печатались в зарубежных газетах, которые постоянно имелись в университетских холлах. Колоколообразная кривая очень пригодилась, и доход, который Гаусс имел от этих исследований, значительно превышал его профессорское жалованье.
МНОГОУГОЛЬНИК ГАУССА
Построение правильных многоугольников с помощью циркуля и линейки было одной из нерешенных задач еще со времен греческих геометров. Можно было построить лишь многоугольники с тремя, четырьмя, пятью и пятнадцатью сторонами, а также с их удвоенными количествами. 30 марта 1796 г. Гаусс нашел способ построения многоугольника с 17 сторонами. Этот день стал знаменательным днем его карьеры. Тогда же он начал вести научный дневник, охватывающий период 1796–1814 гг. Эти записи считаются в математике настоящим бриллиантом, потому что содержат все научные открытия Гаусса.
Однако, возможно, наиболее важным является то, что в тот день Гаусс решил посвятить себя математике, а не изучению языков и филологии, где также проявилась его гениальность.
* * *
В настоящее время этот результат известен как «теорема о распределении простых чисел» и является одним из самых важных в истории математики. Хаотическое множество простых чисел, казалось, удалось приручить. Появилась функция для их изучения, которая со временем привела к еще более точным результатам.
Гаусс не дожил до успеха своей теоремы. И это не связано с секретностью, как часто бывало с другими математиками. Не связано это и с подходом Ферма, который не приводил доказательств, ссылаясь на то, что они слишком длинные. У Гаусса хватило бы бумаги для любых доказательств, какими длинными они бы ни были.
Гаусс не дожил до успеха своей теоремы просто потому, что у него не было возможности ее доказать. Благодаря работам Эйлера математика поднялась на новый уровень, где теории формулировались в логической последовательности, оставив в прошлом неопределенные методы и сомнительные практики. Интуиция, являющаяся ключом к любым открытиям, должна была подкрепляться солидной теоретической основой. Доказательство теоремы стало объективным аргументом, который, благодаря простому языку чисел, приобретал статус истины.
Гипотеза Гаусса стала теоремой лишь век спустя: в 1896 г. Жак Адамар (1865–1963) и Шарль Жан Ла Валле Пуссен (1866–1962) одновременно, но независимо друг от друга доказали ее. Из всех теорем в теории простых чисел гипотеза Гаусса занимает особое место с точки зрения истории математики: не только из-за своей красоты, но и из-за огромного влияния, которое она оказала на методы исследований простых чисел.
Портрет Гаусса изображен на лицевой стороне немецкой банкноты 10 марок на фоне кривой, известной как колоколообразная кривая Гаусса. На обороте банкноты изображен секстант — инструмент, который использовался при создании одной из первых геодезических сетей в мире недалеко от Гамбурга, как показано в нижнем правом углу. Понятие «геодезических», то есть кратчайших линий, соединяющих две точки на поверхности, является ключевым понятием в геометрии и еще одним научным вкладом немецкого гения.