Дмитрий Николаевич Трифонов
Путешествие в страну РАИ

Маршрут первый

Каждые пять минут мы подбрасываем дрова в маленькую железную печурку. Кажется, она должна раскалиться добела, но резкий ветер нахально проникает во все щели, которых так много в старой охотничьей избушке. Если бы не солидный запас дров под дощатыми нарами, нам пришлось бы плохо.

Непогода — холодный ветер с метелью, застала нас перед самым перевалом. Февральская пурга — дело затяжное, и если она продлится хотя бы еще три дня, придется возвращаться обратно. И наша давнишняя мечта — зимой пройти через суровый Аламинский перевал — отложится на год.

Вторые сутки мы сидим в избушке, наполовину утонувшей в снегу. Олег и Алеша уже дважды отгребали снег от маленького окошка; благодаря этому днем в избушке относительно светло. Но свет какой-то мутный, он навевает грусть. Сперва мы не замечали ее, разгоряченные страстными спорами о «высоких материях», — дело привычное в нашей туристской группе. Потом грусть подползла еще ближе, мы попытались прогнать ее песнями, но они почему-то не пелись в этой заброшенной на край света избушке.

Тогда наступила тишина. Она нарушалась лишь потрескиванием поленьев и яростными порывами ветра за ненадежными стенками нашего случайного убежища. Как только становилось совсем темно, мы зажигали свечку. Ее робкий огонек колебался, и фантастические тени метались по стенам, словно призраки бескрайной тайги.

— Дело ясное, придется идти назад, — проговорил Сергей. — Даже если пурга кончится завтра… Не топать же по грудь в снегу!

Ему никто не ответил. Всем было немножечко не по себе не потому, что мы растерялись, а из-за проклятого вынужденного безделья, хуже которого нет ничего на свете.

— А хорошо бы сейчас… на минутку оказаться в Москве! — мечтательно произнесла Майка. — Только на минутку — и обратно!

— Обратно бы ты не вернулась! — зло сказал Илья.

И разговор оборвался. Снова воцарилось молчание. Для меня — начальника группы — оно было особенно тягостным: распустил народ, не сумел поднять настроение… Но что я мог придумать, когда у самого на душе скребли кошки.

— Эх вы, так и будем молчать? — заворочалась на нарах Наташа. У нее был удивительно мелодичный голос, и сейчас он прозвучал в диссонанс с мрачным полумраком избушки. — Рассказали бы что-нибудь интересное.

«Рассказали бы» относилось прежде всего к нам с Ильей. Это мы с ним — представители точных специальностей — всегда заводили споры на научные темы. А наши спутники, хотя и были филологами и историками, с охотой и интересом прислушивались, каждый из них вдруг вспоминал прочитанное в каком-нибудь популярном журнале, выдвигал «свою» гипотезу, и в итоге спор превращался в невообразимую мешанину из строгих научных доказательств, непостижимых вопросов, популярных объяснений и дилетантских высказываний. Это и увлекало и приносило определенную пользу.

Но Илья посапывал в своем углу или делал вид, что спит, а я не знал, как ответить Наташе. Я встал, чтобы подкинуть в печку дров. Языки пламени вырвались наружу, на мгновение озарив комнату. На пол посыпались угли, я затоптал их и залил водой из кружки, чтобы не оставалось тлеющих.

И вдруг по странной ассоциации мне вспомнился эпизод из школьных времен. Большая река тускло блестит под осенним солнцем, словно старое серебряное зеркало. Наш туристский отряд покидает бивак на берегу, мы весело затаптываем костер, а наш учитель химии (он-то и привил мне страсть к химии и туризму) говорит: «Через много веков люди найдут эти уголья и определят, в каком году мы ставили здесь бивак…» И рассказал нам, как такое определение делается. Наверное, это было первым толчком к выбору специальности…

— Ты о чем задумался? — неожиданно прозвучал голос Наташи.

Вид у меня действительно странный: смотрю куда-то в пространство и верчу в руках обыкновенный уголек.

— Хочешь, я расскажу тебе про этот уголек? — говорю я Наташе. И подсаживаюсь около на нары. В ней порой бывает много детского, и хочется взъерошить ее прическу, взять за руку, как берут маленького ребенка, или, присев рядом, медленно рассказывать старинную сказку…

— С помощью такого уголька можно выяснить много важных для науки вещей. Например, с большой точностью узнать время существования какого-нибудь первобытного поселения, обнаруженного при археологических раскопках. Уголек — это самый обычный углерод. Углерод — химический элемент и состоит в основном из двух изотопов, двух различных сортов атомов, отличающихся атомными весами. Их обычно записывают, как «це двенадцать» и «це тринадцать». Их химические символы C12 и C13, — я написал их угольком на куске фанеры. — Но есть, оказывается, и третий изотоп — C14, который является радиоактивным, то есть неустойчивым. Он непрерывно образуется в атмосфере. Его вызывают к жизни космические лучи, поток атомных ядер и элементарных частиц, постоянно падающих на Землю из глубин мирового пространства. В их состав входят и нейтроны, элементарные частицы, не имеющие заряда. Они-то и вступают в ядерную реакцию с ядрами атомов азота атмосферы.

В результате из атома азота образуется атом радиоактивного углерода C14. Это происходит непрерывно и с постоянной скоростью. Ученые установили, что в течение по крайней мере последних 20 000 лет интенсивность потока космических лучей на Землю оставалась неизменной.

Но что происходит далее с появившимся на свет C14? В момент ядерной реакции образовавшийся радиоуглерод приобретает большую энергию и переходит в особое «возбужденное» состояние. В этот момент он обладает повышенной химической активностью и немедленно соединяется с кислородом. Так возникает углекислый газ, содержащий радиоактивный углерод, — C14O2.

Растения улавливают углекислый газ, в том числе и C14O2, приобретая тем самым радиоактивность. Животные питаются растениями, и радиоуглерод оказывается в их организмах. Нетрудно измерить радиоактивность животных и растений, обусловленную присутствием C14. Нужно также учесть, что C14 имеет период полураспада около 6000 лет, то есть за это время распадается половина всех атомов, содержащихся, например, в 1 грамме его.

Ученые подсчитали, что каждый грамм углерода животных и растительных организмов имеет постоянную радиоактивность, поскольку между распадом содержащихся в организме атомов C14 и поглощением новых существует динамическое равновесие. На 1 грамм углерода организма приходится примерно 15 распадов в минуту. Радиоактивность образца, содержащего C14, и количество распадов в минуту определяется с помощью специального счетчика.

Когда организм погибает, равновесие нарушается: мертвое растение не способно усваивать углекислоту. Следовательно, содержание C14 в нем начинает уменьшаться.

Раз период полураспада радиоактивного углерода составляет около 6000 лет, то по истечении этого срока 1 грамм углерода погибшего растения будет давать лишь 7 распадов в минуту, спустя еще 6000 лет — половину и так далее.

Американский ученый Либби и предложил использовать это явление в качестве своеобразных «радиоактивных часов».

Если определить количество импульсов, которое дает в минуту 1 грамм углерода изучаемого образца древнего растения (угля, куска дерева), можно высчитать возраст этого образца.

Метод определения возраста по C14 весьма прост. Однако у него есть свои ограничения и недостатки. Прежде всего короткий период полураспада C14. Если возраст образца равен нескольким периодам полураспада, радиоактивность его настолько слаба, что не поддается измерению. Значит, мы имеем возможность заглянуть лишь в сравнительно недалекое прошлое (30 000–40 000 лет). Кроме того, метод очень чувствителен. Поэтому при определении активности нужно устранить все мешающие факторы.

Хорошие результаты получены для образцов, возраст которых не превышает 7000–10 000 лет.

В начале XX века на стенах пещеры в Ласка (Франция) были обнаружены рисунки животных, сделанные доисторическим человеком. «Бизоны из Ласка» явились предметом спора многих ученых. Что касалось времени выполнения рисунков, то предлагались самые различные даты. Ясность внесло определение C14. Возраст рисунков оказался равным 15 516 ± 900 лет.

Историки оценивали возраст погребальной ладьи из гробницы египетского фараона Сазостриса III в 3750 лет. Применение радиоуглерода подтвердило их данные.

Ученые долго затруднялись в точном определении времени смерти великого греческого астронома и географа Клавдия Птолемея. Анализ древесины, взятой из стенки гроба мыслителя древности, позволил сделать вывод, что Птолемей скончался около 200 года до нашей эры.

Наконец, возраст остатков тканей, в которые были обернуты кожаные рукописи, найденные в пещере в Палестине, оказался равным 1917 ± 200 лет, что также совпало с мнением историков.

…Когда я кончил свой рассказ, оказалось, что слушала его не только Наташа, но и остальные. Алеша поспешил тут же скептически заметить:

— Метод все-таки очень приблизительный… Плюс-минус сто восемьдесят лет, плюс-минус двести лет… Не мала ли такая точность для истории?

Илья, который, видимо, вовсе не спал, подал голос из своего угла:

— Ишь ты, какой скорый! Точность, конечно, не абсолютная! Но метод-то ведь еще очень молод! Со временем механизм «радиоактивных часов» отрегулируют и усовершенствуют. И не придется историкам гадать на кофейной гуще о возрасте того или иного объекта. Между прочим, методы, основанные на подобных применениях радиоактивных изотопов, — это не что иное, как одно из мирных использований атомной энергии.

— Какая же тут связь? — хмыкнула Майка. — Насколько я знаю, атомная энергия — это деление атомного ядра урана. Ну, я понимаю, атомные электростанции, атомный ледокол… А причем тут радиоактивный углерод?

— Вот! Налицо слабость связи школы с практикой. Что атомную энергию получают в ядерных реакторах — все знают. Что при делении урана выделяется громадная энергия — всем известно. Но ведь это же только одна сторона. А есть две другие — и о них наша популярная литература мало заботится. Какие? Пожалуйста! Применение радиоактивных изотопов — раз. Действие радиоактивных излучений на вещества — два. Ведь, друзья мои, радиоактивность есть результат процессов, которые совершаются в атомном ядре. Всякий радиоактивный распад сопровождается выделением энергии, и эта энергия тоже в конечном счете атомная.

Илья не любил спорить по пустякам. Но если его задевали за живое, он начинал произносить страстные монологи. В университете товарищи звали его за глаза «энциклопедистом»: физик по специальности, он неплохо разбирался в химии, и в геологии, и в медицине.

Алеша тоже был своеобразным «энциклопедистом», но только в области литературы. По-моему, никто на свете не знал на память столько стихов, сколько он. Но что касалось наук точных, в них Алеша ориентировался, мягко говоря, слабо и порой попадал впросак.

— Наверное, не так уж велико применение радиоактивных изотопов? — огорошил он Илью новым вопросом.

Тут уж Илья совсем вскипел:

— Вот что, братцы гуманитарии, скажите мне, какие вы применения знаете?

— Что-то слышали! — пробурчал Олег неопределенно. — В геологии, например, в медицине…

— А поконкретнее?

— Вспомнила! — обрадованно крикнула Майка. — Они помогают выяснить распределение питательных веществ удобрений в томатах…

— Вспомнила! — передразнил Илья. — Чудесный примерчик из школьных учебников, который повторяется уже который год! Как будто нет других применений! Их десятки, к вашему сведению! Например, Либби считает, что каждые пять минут можно выдумывать по крайней мере два новых использования… Так-то, товарищи гуманитарии!

— Было бы очень хорошо, — ядовито сказала Наташа, — если бы придумали какое-нибудь применение радиоизотопов, которое научило бы тебя вежливости! Ты, Илья, не забывайся. В филологии ты ведь тоже профан…

— Я профан? — завопил Илья, но рука Сергея легла ему на плечо:

— Погодите, бросьте ругаться! Мы, кажется, начали говорить о занятных вещах… Давайте продолжать! Про эти самые десятки применений… Вы с начальником — физик и химик, вам и карты в руки. Да и веселее будет зимовать!

— Я что? Я пожалуйста! — миролюбиво сказал Илья. — Значит, изотопы. Что такое изотопы? Атомное ядро состоит из протонов, положительно заряженных частиц, и нейтронов, которые не имеют заряда. Например, в ядре углерода шесть протонов, а нейтронов шесть — тогда имеем изотоп C12, или семь C13, или восемь C14. Это основа! А дальше, может быть, ты продолжишь? — обратился Илья ко мне. — Ведь изотопы — твоя специальность…

Мне всегда доставляет удовольствие рассказывать о своей работе. Сейчас это было вдвойне приятно, потому что тоска рассеивалась и не таким тягостным начинало казаться вынужденное пребывание в избушке.

— Хорошо! Значит, подробнее об изотопах.


Подробнее об изотопах

Не так уж много лет назад даже крупнейшие ученые заходили в тупик, пытаясь объяснить один, казалось бы, весьма простой факт.

В своей периодической системе Д. И. Менделеев расположил химические элементы в порядке увеличения их атомных весов. У каждого последующего элемента атомный вес должен быть больше, чем у предыдущего: у азота больше, чем у углерода, у марганца больше, чем у хрома и т. д. Это последовательное увеличение атомных весов выдерживалось почти на протяжении всей таблицы и прекрасно согласовывалось с ходом периодического изменения свойств элементов.

Но в этом «почти» и таилась загвоздка.

Было в периодической системе три точки, где нарушался ход последовательного увеличения атомных весов. Это пары элементов: аргон — калий, кобальт — никель, теллур — йод.

Сравним атомные веса элементов этих пар:

Ar K Co Ni Те J

39,944 39,100 58,94 58,69 127,61 126,91.

— Как ты помнишь все эти цифры? — удивилась Майка.

— Не мешай! — Илья недовольно поморщился. — Химик их должен знать. В них — кусочек истории таблицы элементов. Продолжай, Толя.

— Нетрудно убедиться, что атомный вес последующего элемента меньше, чем у предыдущего.

Кажется, что же тут такого? Взять да переставить элементы.

С известной натяжкой это можно сделать для кобальта и никеля — близких по свойствам элементов VIII группы.

Поменяйте местами аргон и калий, теллур и йод. Получается нелепость: аргон окажется в группе щелочных металлов, а калий — среди инертных газов. Теллур попадет к галогенам, не имея с ними ничего общего. Периодическая система элементов подрывается в самой основе.

Одни ученые предсказывали крах периодической системы. Другие оставались спокойными: «Все дело в более точном определении атомных весов!» — заявляли они.

И ставили эксперименты с весьма чистыми препаратами, совершенствовали методы определения атомных весов.

Рассчитывали — и недоуменно пожимали плечами: все оставалось по-прежнему: аргон был тяжелее калия, кобальт «забегал» вперед никеля; более легкий йод следовал за теллуром.

Найти объяснение этим загадочным случаям или отказаться от таблицы элементов?

Такова была дилемма.

Отказаться всегда просто. Те, кто верил в периодический закон, стали искать объяснения.

Среди них был великий русский химик Александр Михайлович Бутлеров. Он широко известен как создатель теории строения органических соединений.

— Все ли атомы данного элемента одинаковы? — спрашивал Бутлеров. — Известно, что атомы одного и того же элемента могут иметь разную кинетическую энергию. Нельзя ли допустить, что они обладают и различными атомными весами?

И отвечал: «Каждый элемент может иметь несколько разновидностей. Все эти разновидности имеют совершенно одинаковые свойства и отличаются только по атомному весу. Кроме того, атомный вес каждой разновидности выражается целым числом».

Если продолжить мысль Бутлерова, можно предположить: отдельные разновидности содержатся в элементе в разных количествах.

Вероятно, у аргона преобладает наиболее тяжелая разновидность элемента, а у калия — наиболее легкая. Тогда атомный вес калия может оказаться в целом меньше, чем у аргона.

Бутлерову не удалось прийти к такому выводу: смерть прервала его работы. Но никто другой ни в одной стране не был в те времена — в восьмидесятых годах прошлого столетия, за тридцать лет до открытия явления изотопии — так близок к отысканию истины, как русский ученый!

Но работы Бутлерова никем не были продолжены. Все оставалось как раньше.

Нет, даже не как раньше! С открытием радиоактивности, с изучением продуктов радиоактивного распада урана, тория и актиния положение ухудшилось.

Среди продуктов радиоактивного распада тория нашли пять элементов, которые были похожи как две капли воды друг на друга и на элемент торий. Эти элементы получили названия «уран икс один», «ионий», «радиоторий», «уран игрек» и «радиоактиний». Единственное их отличие заключалось в радиоактивных свойствах.

Для них не нашлось мест в таблице элементов. Периодическая система оказалась перед новым испытанием.

Но в 1910 году английский ученый Содди предложил выход из создавшегося положения.

Он ввел понятие «изотопы». «Изотопы» — слово греческое, и по-русски означает «занимающие одно и то же место», «одинаковоместные».

Под изотопами Содди подразумевал разновидности химических элементов, которые имеют разные атомные веса и радиоактивные свойства, но обладают одинаковыми химическими и физическими характеристиками.

Стало быть, химический элемент торий имеет шесть изотопов.

Так было открыто явление изотопии. Оказалось, что радиоактивные элементы конца периодической системы состоят из нескольких изотопов.

Хорошо, но уран, торий, актиний и другие «замыкающие» таблицы Менделеева составляют лишь очень небольшую часть от всех известных химических элементов! Что же, явление изотопии характерно лишь для немногих «избранных» или же для всех элементов периодической системы?

Ученые занялись исследованием этого вопроса.

В 1913 году английский физик Мозели показал, что заряд ядра элемента, а не атомный вес должен быть положен в основу периодического закона. Места аргона (заряд ядра 18) и калия (19), кобальта (27) и никеля (28), теллура (52) и йода (53) оказались правильными. Теперь уже никто не сомневался, что объяснение неправильностей в атомных весах этих элементов следует искать в явлении изотопии.

Но как его обнаружить у других элементов? Здесь появились трудности.

У элементов конца периодической системы тот или иной изотоп можно определить по характеру радиоактивного излучения.

Большинство элементов не обладают свойством радиоактивности. Значит, надо искать другой путь определения.

Иначе говоря, нужно было найти способ, с помощью которого удалось бы различить химически одинаковые, но разные по массе атомы одного элемента.

Это сделал физик Томсон.

Сконструировав остроумную экспериментальную установку, он провел на ней исследования с инертным газом неоном.

Результаты подтвердили высказанные ранее предположения. Выяснилось, что у неона существуют две разновидности атомов: Ne20 и Ne22, то есть изотопы неона с атомными весами 20 и 22 соответственно.

Оказалось, что почти все известные нам элементы представляют собой смесь изотопов.

Объяснить, почему, например, атомный вес калия меньше атомного веса аргона, теперь не составило труда.

В самом деле, напишем изотопный состав K и Ar и процентное содержание отдельных изотопов в них:

Аргон Калий

Ar36 Ar38 Ar40 K39 K40 K41

0,337 0,063 99,600 % 93,259 0,012 6,729 %.

Майка все-таки с недоверием смотрела, как я выписываю на фанерке длинный ряд цифр.

— Вы видите, что у аргона преобладает самый тяжелый изотоп (Ar40), а у калия — самый легкий (K39). В итоге и получается (можно убедиться в этом, проделав простой арифметический расчет), что атомный вес у Ar больше, чем у K. То же самое мы получим для Co с Ni и Te с J.

Илья уже сказал, что ядро состоит из протонов и нейтронов. Число протонов выражает собой положительный заряд ядра и равно, следовательно, порядковому номеру элемента. Однако число нейтронов, связанных с протонами, может быть различным. Так, в атоме калия протонов всегда 19, а нейтронов может быть 20, 21 и 22. Эти три случая отвечают изотопам калия K39, K40 и K41 соответственно. Итак, ядра изотопов одного и того же химического элемента отличаются лишь числом нейтронов. Сумма нейтронов и протонов в ядре данного изотопа определяет его атомный вес.

Все изотопы можно разделить на две группы — устойчивые (или стабильные) и радиоактивные.

Стабильные изотопы не обладают радиоактивностью. Их число в настоящее время приблизилось к 280. Различные элементы состоят из разного количества стабильных изотопов. «Рекордсменом» в этом отношении является олово, у которого насчитывается десять изотопов.

Мнение, что радиоактивность присуща лишь элементам конца периодической системы, просуществовало недолго. Оказалось, что водород, углерод, калий, рубидий, индий, теллур, лантан, неодим, самарий, лютеций, тантал, рений также имеют радиоактивные изотопы. Их называют, как и продукты распада урана и тория, естественно радиоактивными изотопами. Их шестьдесят.

Радиоактивные изотопы характеризуются периодом полураспада и энергией распада, той энергией, которой обладает вылетающая частица.

Периодом полураспада называется количество времени, в течение которого данный радиоактивный изотоп распадается наполовину, то есть половина его количества превращается в изотоп другого элемента. Величины периодов полураспада (они обозначаются буквой T) у разных изотопов различные: от долей секунды до миллиардов лет. В зависимости от величины T различают изотопы короткоживущие, имеющие среднюю продолжительность жизни, и долгоживущие.

Сейчас известно почти 1500 стабильных и радиоактивных изотопов химических элементов, и большая часть из них получена искусственно.

— Подумать только — полторы тысячи изотопов! — удивилась Майка. — И что, все они применяются?

— Нет, конечно, не все, — улыбнулся я. — Многие вообще нельзя применять, потому что у них очень маленький период полураспада. Но если подсчитать количество изотопов, которые в наше время можно использовать, то сотня смело наберется…

— Кстати говоря, — вмешался Илья, — если внедрение радиоизотопов пойдет и дальше такими же быстрыми темпами, как и сейчас, то в человеческой жизни произойдет целая революция!

— Такой же переворот, какой произвело электричество? — улыбнулся Сергей.

— А ты не смейся! Я говорю серьезно… Внимательнее читайте газеты! В них то и дело встречаются сообщения о том, как все в новые и новые отрасли хозяйства внедряются радиоизотопы. Они и ускоряют производственные процессы, и помогают их автоматизировать, и во много раз повышают их эффективность… Они несут миллиарды рублей экономии. Подумайте только: в Москве, на Юго-Западе, есть специальный магазин «Изотопы»! Единственный в мире! А ты еще сомневаешься! — Илья вызывающе взглянул на Сергея.

— Ну, а где же конкретные применения? — спросила Наташа. — Мы ждем да ждем, а вы все вокруг да около. Ну расскажите, например, как радиоактивные изотопы используют в медицине… Я слышала, с их помощью лечат рак…

— Давайте договоримся! — сказал Илья. — Пусть в этих рассказах будет какая-то система. Больше всего меня убивает в наших спорах полнейшая бессистемность! Анатолий рассказал про определение возраста органических остатков. Но ведь с помощью радиоактивных изотопов определяют возраст и других объектов… Например, Земли. Да, кстати, сколько, по-вашему, лет камню, который лежит около печки?

— Странный вопрос! — удивился Алеша. — Столько же, сколько и Земле!

— Отнюдь нет! Образование различных горных пород и минералов происходило не одновременно. Есть минералы очень древние, есть сравнительно молодые. Так утверждает геология. Как образовывались различные минералы — вопрос сложный. Об этом можно узнать из геологической литературы. Я хочу подчеркнуть, что возраст Земли и разных минералов — величины не всегда одни и те же.

Итак, сколько лет Земле?

Люди пытались ответить на этот вопрос в глубокой древности, задолго до накопления того комплекса знаний об окружающем мире, который позволил подойти к делу научно.

Церковники считали, что образование Земли (сиречь сотворение мира) произошло сравнительно недавно. Согласно библейскому «летосчислению» в этом году исполняется 5716 годовщина сотворения Земли «всемогущим».

Но в различных религиозных догматах не было единства взглядов. Так, вавилонские летописи определяли, что «сотворение мира» произошло несколько сот тысяч лет назад. Японские предания гласили, что Земля была создана за несколько миллионов лет до заселения Японских островов. Китайские источники устанавливают срок в 3,5 миллиона лет.

Когда же в дело вмешалась наука, все эти представления были отвергнуты.

Ученые по-разному пытались определить возраст Земли. Они использовали астрономические данные, исходили из скорости образования осадочных пород в морях, пытались рассчитать, сколько лет потребовалось для охлаждения планеты до современного состояния. Однако все эти методы были грубо приближенными. Они давали самые различные величины от 20 до 5000 миллионов лет.

В наши дни ученые заявляют: Земля образовалась около 5 миллиардов лет назад. Можно вполне доверять этой цифре. Разумеется, она не является абсолютно точной, но, во всяком случае, достаточно близка к истинной.

Эта цифра была определена с помощью радиоактивных изотопов.

Большинство элементов состоит из нескольких изотопов. Обычно преобладает какой-нибудь один или два; процентное содержание остальных значительно меньше. Изотопный состав элемента сравнительно просто определить с помощью специальных устройств.

Проведем следующий эксперимент. Возьмем несколько образцов минералов, в состав которых входит интересующий нас элемент. Установим в каждом отдельном случае его изотопный состав. Мы придем к интересному выводу: изотопный состав нашего элемента почти одинаков независимо от соединения, в котором он содержится. Добавим еще: и от происхождения этого соединения. Так, сходство изотопного состава земных минералов и метеоритов доказано для 12 элементов.

Но можем ли мы утверждать, что изотопный состав любого элемента есть нечто неизменное, раз навсегда установившееся не только со времени образования Земли, но и происхождения химических элементов вообще? Оказывается, нет.

Какие же процессы могут привести к нарушению этого постоянства? Прежде всего естественная радиоактивность.

Например, два классических радиоактивных элемента уран и торий после длинной цепочки распадов превращаются в стабильные изотопы свинца. Так, уран 238 имеет конечным продуктом радиоактивных превращений свинец 206, уран 235 — свинец 207, торий 232 — свинец 208. Будем называть свинец, образовавшийся в результате распада урана и тория, радиогенным. Он всегда есть в свинцовых минералах, одновременно содержащих эти радиоактивные элементы. И если обыкновенный природный свинец состоит из 53,02 процента Pb208, 23,33 процента Pb207, 22,07 процента Pb206 и 1,58 процента Pb204, то изотопный состав свинца минералов, в состав которых входят также уран и торий, существенно отличается. Радиогенный свинец сильно изменяет общий изотопный состав свинца.

Давайте рассуждать дальше. Мы можем определить величины отклонения изотопного состава свинца в радиоактивном ураноториевом минерале от обычного и отсюда рассчитать, сколько добавилось радиогенного свинца. По цепочкам превращений урана и тория просто найти количество этих элементов, распавшихся за время существования минерала. Теперь подвергнем минерал обычному химическому анализу. Он покажет, сколько урана и тория содержится в настоящее время в нашем минерале. Следовательно, получим очень важные цифры, которые показывают, какая часть урана и тория успела превратиться в свинец. Зная же периоды полураспада этих элементов, можем легко найти возраст минерала.

Этот метод является наиболее точным из всех, которыми располагает наука для определения возраста Земли и горных пород. Правда, предполагается, что возраст Земли и древних пород, содержащих уран и торий, — величины примерно одинаковые.

А как же быть с нашим булыжником? Ведь он не содержит ни урана, ни тория… Но все же можно определить и его возраст.

Есть один весьма распространенный химический элемент, который входит в большинство горных пород и минералов. Это калий. Среди его природных изотопов — два стабильных (K39 и K41) и один естественно радиоактивный (K40) с периодом полураспада около десяти миллиардов лет.

Калий 40 используется для определения возраста многих минералов. Он претерпевает своеобразный радиоактивный распад, который в ядерной физике носит название К-захвата и заключается в поглощении ядром калия 40 электрона с близлежащей электронной оболочки. При этом заряд атома понижается на единицу и образуется изотоп инертного газа аргона Ar40. В аргоне атмосферного воздуха наряду с изотопами Ar36 и Ar38 содержится Ar40, который, по-видимому, весь или почти весь произошел вследствие распада калия 40.

А теперь о возрасте нашего камня. Он осколок горной породы, содержащей калий. Условимся, что весь аргон, получившийся в результате распада калия 40, остается внутри образца, а не улетучивается Кроме того, мы вводим поправку на возможное содержание в образце атмосферного аргона.

Анализируем наш камень на содержание K и Ar. Учтя введенную поправку, определяем содержание радиогенного аргона. Отсюда находим количество калия, которое успело распасться со времени образования горной породы. Зная, сколько калия содержится в образце, рассчитываем, какая часть этого элемента распалась. Теперь, использовав величину полураспада K40, определяем возраст.

— Эх, Илья, а зря ты не литератор, — вздохнул Алеша. — У тебя не рассказ получился, а законченная новелла!

— А может, и незаконченная! — сказала Майка. — Илья, а вот если у тебя порода, в которой нет ни урана, ни тория, ни калия, как ты определишь ее возраст?

— Сейчас разрабатываются и другие методы. Применяют так называемый стронциевый метод. Он состоит в определении количества стронция, который образуется из радиоактивного изотопа рубидия 87. Есть попытки установить абсолютный возраст минералов по парам изотопов так называемых редкоземельных элементов: самарий 147 — неодим 143; лантан 138 — церий 138, лютеций 176 — иттербий 176. И, несомненно, число таких способов будет расти с каждым годом…

Загрузка...