Будь вы предпринимателем-бизнесменом, работником государственного сектора, политиком или просто частным лицом, вам должно быть интересно знать, как защитить себя от утечки конфиденциальной информации, какими средствами для этого нужно пользоваться, как выявить каналы утечки этой информации. Ответ на эти и другие вопросы по защите информации вы получите в данной главе, которая имеет четыре раздела.
В первом разделе даны описания, принципы работы и настройка детекторов радиоизлучений, с помощью которых можно обнаруживать активизированные каналы утечки информации.
Второй раздел посвящен защите телефонных линий связи и непосредственно телефонных аппаратов. Телефон — неотъемлемая часть нашей жизни, по телефонным каналам идут потоки разнообразной информации, и именно поэтому важно защищать их от использования вам во вред.
Третий раздел посвящен специальным защитным устройствам. Снижающим эффективность систем получения информации по оптическим каналам.
Четвертый раздел посвящен описанию устройств, также имеющих отношение к защите информации. Это сетевые фильтры для защиты от наводок и генераторы акустического шума для контроля акустических свойств помещений.
Для разработки и осуществления мероприятий по защите вашей интеллектуальной собственности от утечки информации по техническим каналам лучше всего воспользоваться услугами квалифицированных специалистов, хорошо подготовленных в рамках данного вопроса.
Простейший детектор радиоволн
Даже если вам нечего опасаться, но вы хотели бы выяснить, не шпионит ли кто-нибудь за вами с помощью подслушивающей аппаратуры, соберите схему, показанную на рис. 3.1. Устройство представляет собой простейший детектор радиоволн со звуковой индикацией. С его помощью можно отыскать в помещении работающий микропередатчик. Детектор радиоволн чувствителен к частотам вплоть до 500 МГц. Настраивать детектор при поиске работающих передатчиков можно путем изменения длины телескопической приемной антенны.
Рис. 3.1. Простейший детектор поля
Телескопическая приемная антенна воспринимает высокочастотные электромагнитные колебания в диапазоне до 500 МГц, которые затем детектируются диодом VD1 типа Д9Б. Высокочастотная составляющая сигнала отфильтровывается дросселем L1 и конденсатором С1.
Низкочастотный сигнал поступает через резистор R1 на базу транзистора VT1 типа КТ315, что приводит к открыванию последнего и, как следствие, к открыванию транзистора VT2 типа КТ361. При этом на резисторе R4 появляется положительное напряжение, близкое к напряжению питания, которое воспринимается логическим элементом DD1.1 микросхемы DD1 типа К561ЛА7 как уровень логической единицы. При этом включается генератор импульсов на элементах DD1.1, DDI.2, R5 и СЗ. С его выхода импульсы с частотой 2 кГц поступают на вход буферного каскада на элементах DD1.3, DD1.4. Нагрузкой этого каскада служит звуковой пьезокерамический преобразователь ZQ1 типа ЗП-1, который преобразует электрические колебания частотой 2 кГц в акустические. С целью увеличения громкости звучания преобразователь ZQ1 включен между входом и выходом элемента DD1.4 микросхемы DD1. Питается, детектор от источника тока напряжением 9 В через параметрический стабилизатор на элементах VD2, R6.
В детекторе используются резисторы типа МЛТ-0,125. Диод VD1 можно заменить на ГД507 или любой германиевый высокочастотный.
Транзисторы VT1 и VT2 могут быть заменены на КТ3102 и КТ3107 соответственно. Стабилитрон VD2 может быть любым с напряжением стабилизации 4,7–7,0 В. Пьезокерамический преобразователь ZQ1 можно заменить на ЗП-22.
Настраивать детектор лучше всего с использованием высокочастотного генератора. Подключите к выходу генератора изолированный провод — антенну, и параллельно ему расположите антенну детектора.
Таким образом вы слабо свяжете детектор с генератором. Исследуйте весь радиодиапазон, начиная с частоты 500 кГц и до точки, где детектор перестанет воспринимать радиоволны. Заметьте, как с изменением частоты изменяется чувствительность детектора.
Детектор поля со звуковой сигнализацией и регулировкой чувствительности
От предыдущего данное устройство отличается более высокой чувствительностью и возможностью регулировки чувствительности. Это устройство одновременно и сложнее вышеописанного. Принципиальная схема детектора приведена на рис. 3.2.
Рис. 3.2. Детектор поля со звуковой сигнализацией
Сигнал, принимаемый антенной, усиливается широкополосным трехкаскадным апериодическим усилителем высокой частоты на транзисторах VT1-VT3 типа KT3101. Усиленный сигнал с нагрузки транзистора VT3, резистора R10, через конденсатор С9 поступает на детектор, собранный по схеме удвоения напряжения на диодах VDI, VD2.
Положительное напряжение с регулятора чувствительности резистора R11 поступает на диоды VD1 и VD2 типа Д9Б. Протекание небольшого начального тока через эти диоды приводит к увеличению чувствительности детектора. Одновременно это напряжение поступает на базу транзистора VT4 типа КТ315 через диод VD3 типа Д9Б и резистор R14. Базовый ток приводит к открыванию транзистора VT4. На его коллекторе устанавливается потенциал логической единицы. При увеличении уровня сигнала на входе устройства постоянное напряжение на конденсаторе С10 уменьшается. Это ведет к закрыванию транзистора VT4. Уровень логической единицы, появляющийся на коллекторе транзистора VT4, разрешает работу генератора прямоугольных импульсов на элементах DD1.1, DD1.2, R17 и С11. Положительные импульсы частотой около 2 Гц разрешают работу генератора прямоугольных импульсов на элементах DD1.3, DD1.4, R18 к С12. С выхода этого генератора прямоугольные импульсы с частотой следования 1.5–2 кГц, промоделированные частотой 2 Гц, поступают на пьезокерамический преобразователь ZQ1 типа ЗП-1. Питание устройства осуществляется от параметрического стабилизатора на стабилитроне VD1 типа КС156 и резисторе R16.
В устройстве использованы резисторы типа МЛТ-0.125. Транзисторы VT1-VT3 можно заменить на КТ3120, KT3124 или КТ368. В последнем случае уменьшается диапазон регистрируемых сигналов. Диоды VD1-VD3 могут быть любые германиевые высокочастотные. Стабилитрон VD4 может быть любым с напряжением стабилизации 5.6–7,0 В.
Настройку детектора производят по вышеприведенной методике.
Верхний предел частоты регистрируемых сигналов у этого детектора может достигать 900-1000 МГц. Регулировка прибора заключается в установлении такого уровня чувствительности детектора резистором R11, при котором компенсируется фоновый уровень радиоизлучения в данном помещении. При этом звуковой сигнализатор не должен работать. При приближении детектора к источнику излучения (микропередатчику) уровень напряженности поля начинает превышать фоновый и звуковая сигнализация срабатывает.
Простой малогабаритный детектор поля с индикацией на двух светодиодах.
От описанных выше конструкций данная отличается малыми габаритами, малым количеством используемых деталей и, вместе с тем, достаточно высокой чувствительностью. В этом детекторе поля использовано новое схемное решение. Хорошо известно, что измерение ВЧ напряжении, меньших 0,5 В, затруднено тем, что уже при переменном напряжении менее 0,2–0,3 В все полупроводниковые диоды становятся неэффективными. Существует, однако, способ измерения малых переменных напряжений с использованием сбалансированного диодно-резистивного моста, позволяющий измерять напряжение менее 20 мВ при равномерной АХЧ до 900 МГц. Принципиальная схема устройства, использующего данный способ, приведена на рис. 3.3.
Рис. 3.3. Простой детектор поля с индикацией на двух светодиодах
Основу данного устройства составляет микросхема DA1 типа КР1112ПП2. Эта микросхема включает в себя устройство определения баланса электрического моста с индикацией. Микросхема имеет встроенный источник опорного напряжения.
Сигнал, наводимый в антенне, усиливается широкополосным апериодическим усилителем высокой частоты на транзисторе VT1 типа KT3101. Усиленное переменное напряжение высокой частоты через конденсатор СЗ поступает в диодно-резистивный мост на диодах VD1-VD4 типа ГД507 и резисторах R3-R5. От источника опорного напряжения (вывод 3 микросхемы DA1) через резисторы R3-R5 и диоды VD1-VD4 протекает небольшой (примерно несколько микроампер) прямой ток, который улучшает условия детектирования и увеличивает чувствительность детектора. В выпрямлении измеряемого переменного напряжения участвуют только диоды VD1 и VD2, а два других — VD3, VD4 — образуют соседнее плечо моста, на котором создается начальное напряжение, балансирующее мост, и одновременно служат для его термокомпенсации. Все диоды подобраны с возможно более близкими вольт-амперными характеристиками. Конденсатор С4 отфильтровывает переменную составляющую выпрямленного напряжения. Резистор R4 служит для точной балансировки моста. При хорошей балансировке устройство будет реагировать только на напряжение, являющееся результатом выпрямления измеряемого сигнала. Выпрямленное напряжение и напряжение, балансирующее мост, через резисторы R7 и R8 поступают на входы усилителя постоянного тока, расположенного в микросхеме DA1. В зависимости от состояния баланса моста сигнал индикации поступает на один из светодиодов VD5 или VD6 — типа АЛ307. Таким образом, при балансе моста (отсутствие сигнала) включен светодиод VD5, а при наличии сигнала (нарушение баланса моста) — светодиод VD6. В качестве диодов VD1-VD4 можно использовать любые высокочастотные диоды. Светодиоды могут быть любого типа. В качестве источника питания используется источник постоянного тока напряжением 2,5–5 В.
Детектор поля с линейной шкалой из восьми светодиодов, регулировкой чувствительности и звуковой индикацией
Данное устройство имеет некоторое сходство с описанным выше. Так, имеется усилитель ВЧ и детектор на сбалансированном резистивно-диодном мосте. Отличительной особенностью данного детектора поля является фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство несомненно более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на рис. 3.4.
Рис. 3.4. Детектор с линейной шкалой из 8 светодиодов
Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С2, L1, СЗ, L2, необходимый для подавления сигналов частотой менее 20 МГц. Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоизлучение. С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа KT3101. С нагрузки усилителя резистора R2 — напряжение высокой частоты через конденсатор С5 поступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста. Для балансировки моста используется резистор R4. Работа моста уже была подробно описана выше.
Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1. С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DA1.3, которое, в свою очередь, зависит от уровня входного сигнала. Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты. С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 тина ЗП-1.
Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14-R21. Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5-VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено. Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2. При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5-VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут.
При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным свойствам человеческого глаза мигание светодиодов становится незаметным. Индикатор разряда батареи выполнен на элементе DA1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатывания устанавливается подстроечным резистором R33 при настройке. Все устройство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.
В устройстве использованы резисторы тина МЛТ-0,125. Светодиоды VD5-VD14 могут быть любыми. Диоды VD1-VD4 — любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 8 витков, катушка L2 — 6 витков. Резистор R4 — любой переменный резистор с линейной характеристикой. Транзисторы VT2-VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170.
Пьезокерамическпй преобразователь ZQ1 — любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор R36 при этом можно из схемы исключить.
Настройка схемы особенностей не имеет.
Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1–2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.
Детектор поля с логарифмической шкалой на 12 светодиодах и звуковой индикацией
В состав детектора поля входят ФВЧ, усилитель ВЧ, диодный детектор, усилитель постоянного тока с логарифмической зависимостью коэффициента усиления, звуковой генератор с изменяющейся частотой и светодиодная шкала из 12 светодиодов. Детектор способен регистрировать работающие радиомикрофоны в диапазоне частот 20-600 МГц. Принципиальная схема прибора приведена на рис. 3.5.
Рис. 3.5. Детектор с логарифмической шкалой на 12 светодиодах
Сигнал, наводимый в антенне, фильтруется ФВЧ на элементах С2, L1, СЗ, L2 и поступает на широкополосный апериодический усилитель. Последний выполнен на высокочастотном транзисторе VT1 тина КТЗ101. Нагрузкой усилителя служит эмиттерный повторитель на транзисторе VT2 типа КТ3101. Сигнал, снимаемый с регулятора чувствительности — резистора R4, поступает через конденсатор С6 на диодный детектор, собранный на диоде VD1 типа Д9Б. Высокочастотные составляющие фильтруются RC-фильтрами R5, С7 и R6, С8.
Низкочастотный сигнал поступает на усилитель на микросхеме DA1 типа КР140УД1208. Коэффициент усиления этого усилителя определяется значением резистора R9. При малом уровне входного сигнала усилитель на DA1 имеет большое усиление. По мере увеличения сигнала происходит открывание диода VD2 типа КД522, сопротивление которого изменяется по логарифмическому закону. Это приводит к изменению сопротивления обратной связи также по логарифмическому закону. С выхода усилителя на микросхеме DA1 сигнал поступает на светодиодный индикатор и звуковой генератор.
Звуковой генератор выполнен на транзисторе VT3 типа КТ315 и микросхеме DD1 типа К561ЛА7. Конденсатор С9 заряжается через резистор R11 до напряжения открывания транзистора VT3. Это приводит к смене уровня логической единицы на уровень логического нуля на коллекторе транзистора VT3. При этом катод диода VD3 типа КД522 оказывается подключенным через резистор R18 к минусу источника питания. Конденсатор С9 быстро разряжается через цепь VD3, R18, что ведет за собой закрывание транзистора VT3. Конденсатор С9 снова начинает заряжаться и весь процесс повторяется. Прямоугольные импульсы преобразуются пьезокерамическим преобразователем ZQ1 типа 3П-22 в звуковые. При увеличении напряжения на выходе усилителя DA1 уменьшается время заряда конденсатора С9 до напряжения открывания транзистора VT3, а это, в свою очередь, приводит к увеличению частоты следования импульсов генератора. Таким образом, при увеличении уровня входного сигнала происходит повышение тональности звукового сигнала.
Основой светодиодного индикатора является микросхема DA2 типа КМ1003ПП2. Микросхема КМ1003ПП2 является специализированной и выполняет функцию управления светодиодной шкалой, обеспечивая высвечивание столбика на шкале из 12 светодиодов, которые загораются поочередно при изменении входного напряжения от минимального до максимального значения. Яркость свечения светодиодов поддерживается постоянной. Входной сигнал, через делитель напряжения на резисторах R13, R16, поступает на вход микросхемы DA2 (вывод 17).
На выводы 16 и 3 микросхемы DA2 подаются уровни опорного напряжения, определяющие, соответственно, минимальное (светодиоды не горят) и максимальное (горят все светодиоды) значения входного сигнала. Питается устройство от источника питания напряжением 5,6 В.
Светодиод VD4 типа АЛ307 служит для индикации включения прибора.
Все используемые детали малогабаритные. Детали ФВЧ описаны выше. Микросхема DA1 может быть заменена на КР1407УД2 или любой другой операционный усилитель со своими цепями коррекции. Вместо микросхемы DD1 можно применить К561ЛЕ5. При замене диода VD1 на ГД507 диапазон прибора может быть увеличен до 900.
Микросхема DA2 может быть заменена на A277D.
Работа с прибором аналогична вышеприведенному устройству, чувствительность прибора регулируется резистором R4.
Одним ил каналов утечки информации, и пожалуй, основным каналом, является телефонный аппарат и линия связи, соединяющая его с АТС.
Для любого специалиста, работающего в области промышленного шпионажа с применением технических средств контроля, представляют наибольший интерес так называемые "беззаходовые" системы, т. е. комплексы средств, позволяющие получать информацию из интересующих помещений без необходимости физического присутствия в них.
Телефонный аппарат представляет в этом плане множество возможностей. Рассмотрим три случая решения задачи по получению необходимой информации:
1. Телефонный аппарат содержит систему передачи информации, т. е. в его конструкцию целенаправленно внесены изменения или установлена спецаппаратура. Существуют, например, телефонные аппараты с электронными номеронабирателями, которые, по своим конструктивным особенностям, уже имеют канал утечки информации в виде паразитного высокочастотного излучения в широкой полосе частот, промоделированного звуковым сигналом.
2. Используются определенные недостатки конструкций телефонных аппаратов для получения информации.
3. Производится внешнее воздействие на телефонный аппарат, при котором возникает канал утечки.
Первый случай описан подробно в гл. 1. Ниже приводятся схемы защиты телефонных аппаратов и линий связи.
Защита звонковой цепи
Причиной появления канала утечки информации являются электроакустические преобразования. При разговоре в помещении акустические колебания воздействуют на маятник тонка, соединенного с якорем электромагнитного реле. Под воздействием звуковых сигналов якорь совершает микроколебания, что, в свою очередь, вызывает колебания якорных пластин в электромагнитном ноле катушек, следствием чего становится появление микротоков, промодулированных звуком. Амплитуда ЭДС, наводимой в линии, для некоторых типов телефонных аппаратов может достигать нескольких милливольт. Для приема используется низкочастотный усилитель с частотным диапазоном 300-3500 Гц, который подключается к абонентской линии.
Для защиты от такого канала утечки информации используется схема, представленная на рис. 3.6.
Рис 3.6. Защита звонковой цепи
Два кремниевых диода VD1 и VD2 включены встречно-параллельно в цепь звонка телефонного аппарата В1. Они образуют зону нечувствительности для микро-ЭДС. Это объясняется тем, что в интервале 0–0,65 В диод обладает большим внутренним сопротивлением (вольт-амперная характеристика диодов представлена на рис. 3.7).
Рис. 3.7. Вольт-амперная характеристика диодов
Поэтому низкочастотные токи, наводимые в схеме аппарата, не пройдут в линию. В то же время звуковой сигнал абонента и напряжение вызова свободно "проходят" через диоды, так как их амплитуда превышает порог открывания диодов VD1, VD2. Резистор R1 является дополнительным шумящим элементом.
Подобная схема, включенная последовательно в линию связи, подавляет микро-ЭДС катушки на 40–50 дБ.
Вместо указанных на схеме диодов можно использовать диоды Д226, КД105, КД102.
Защита микрофонной цепи
Этот вариант получения информации связан с явлением так называемого высокочастотного навязывания. При этом относительно общего корпуса на один провод подается высокочастотное колебание (частотой более 150 кГц). Через элементы схемы телефонного аппарата, даже если трубка не снята, высокочастотные колебания поступают на микрофон, где и модулируются звуковыми колебаниями. Прием информации производится относительно общего корпуса через второй провод линии.
Амплитудный детектор позволяет выделить низкочастотную огибающую для дальнейшего усиления и записи. Схема защиты телефонного аппарата от этого метода съема информации представлена на рис. 3.8.
Рис. 3.8. Защита микрофона
Так как модулирующим элементом является микрофон M1 телефонного аппарата, то для его защиты достаточно подключить параллельно микрофону M1 конденсатор C1 емкостью 0,01-0,05 мкФ. При этом конденсатор С1 шунтирует по высокой частоте микрофонный капсюль M1. Глубина модуляции высокочастотных колебаний уменьшается более чем в 10000 раз, что делает практически невозможной дальнейшую демодуляцию.
Комплексная схема защиты
Эта схема представляет собой сочетание приведенных ранее двух схем. Кроме конденсаторов и резисторов схема, представленная на рис. 3.9, содержит катушки индуктивности.
Рис. 3.9. Комплексная схема зашиты
Диоды VD1-VD4, включенные встречно-параллельно, защищают звонковую цепь телефона. Конденсаторы и катушки образуют фильтры C1, L1 и С2, L2 для подавления напряжений высокой частоты.
Детали монтируются в отдельном корпусе навесным монтажом.
Устройство не нуждается в настройке. Однако оно не защищает пользователя от непосредственного подслушивания путем прямого подключения в линию.
Кроме рассмотренной схемы существует и ряд других, которые по своим характеристикам близки к ранее описанным устройствам. Ниже приведены схемы (рис. 3.10), предназначенные для комплексной защиты телефонных аппаратов и линий связи и часто используемые в практической деятельности.
Рис. 3.10. Схемы комплексной защиты
Световой анализатор телефонной линии
Данное устройство является простейшим индикатором наличия подслушивающих устройств Оно устанавливается на предварительно проверенной телефонной линии. Питание осуществляется от телефонной линии. При наличии любых несанкционированных подключений различных устройств, питающихся от телефонной линии, выдается сигнал тревоги (включается красный светодиод). Схема такого устройства приведена на рис. 3.11.
Рис. 3.11. Анализатор телефонное линии
Устройство состоит из анализатора линии, собранного на стабилитроне VD2 типа КС530 и транзисторе VT1 типа КТ503, и усилителя тока, собранного на транзисторах VT2 и VT3 типа КТ503 и КТ502, соответственно. К выходу усилителя через ограничительный резистор R4 подключен светодиод VD3 типа АЛ307. Выпрямительный мост VD1 типа KЦ407 обеспечивает требуемую полярность питания устройства независимо от подключения его к телефонной сети.
При свободной линии постоянное напряжение в ней около 60 В. Стабилитрон VD2 "пробивается" (открывается), и в базу транзистора VT1 подается через ограничительный резистор R1 управляющий ток.
Открытый и насыщенный транзистор VT1 шунтирует вход каскада на транзисторе VT2, поэтому усилитель тока закрыт и светодиод VD3 погашен.
При подключении в линию посторонних устройств напряжение в линии падает и ток, протекающий через стабилитрон VD2, уменьшается (вплоть до закрытия последнего).
Транзистор VT1 закрывается, а в базу транзистора VT2 через резистор R2 подается управляющий ток. Усилитель открывается и светодиод VD3 включается.
Индикатор линии на микросхеме
Индикатор устанавливается в корпус телефонного аппарата и питается от телефонной линии. Он индицирует несанкционированное подключение к линии в момент ведения разговора, т. е. когда трубка снята с рычага телефона. Принципиальная схема индикатора приведена на рис. 3.12.
Рис. 3.12. Индикатор линии на микросхеме
Основу схемы составляет операционный усилитель DA1 типа КР1407УД2, включенный по схеме компаратора напряжений. При снятии телефонной трубки напряжение с линии подается на рассматриваемое устройство через диод VDA типа КД522, образующий со стабилитроном VD5 типа КС156 параметрический стабилизатор напряжения. Одновременно напряжение поступает через резистор R1 на неинвертирующий вход компаратора DА1. На инвертирующий вход последнего подается опорное напряжение, снимаемое с движка подстроенного резистора R3 При снижении входного напряжения до уровня, меньшего чем опорное напряжение, на выходе компаратора DA1 появляется уровень логического нуля, что вызывает включение светодиода VD3 типа АЛ307.
Диоды VD1 и VD2 совместно с резистором R1 ограничивают напряжение на неинвертирующем входе DA1 на уровнях, выходящих за пределы питающих напряжений не более, чем на 0,7 В (на величину прямого падения напряжения на диодах VD1, VD2). Конденсатор С1 защищает схему от высокочастотных наводок в линии. Резистор R5 устанавливает режим работы микросхемы DA1. В устройстве использованы резисторы типа МЛТ-0.125. Диоды VD1, VD2, VD4 — любые кремниевые. Стабилитрон VD5 — любой на напряжение стабилизации 4,7–7,0 В. Микросхему DA1 можно заменить на КР140УД1208, а также на любой операционный усилитель с током потребления не более 5 мА.
Устройство настраивают по методике, приведенной ниже. Сняв трубку телефонного аппарата и установив разговорное соединение (позвонив, например, знакомым), подстройкой резистора R3 добиваются погашения светодиода VD3. Медленно, изменяя сопротивление резистора R3, находят положение движка последнего, при котором устройство срабатывает. Затем немного поворачивают движок резистора R3 в обратную сторону. Светодиод снова гаснет, прибор настроен. Он будет реагировать как на параллельное подключение к линии, так и на последовательное подключение.
Необходимо соблюдать полярность включения прибора!
Активный индикатор состояния линии
В отличие от вышеприведенных устройств, данное устройство не только выявляет подключение дополнительной нагрузки, но и, при срабатывании системы сигнализации, переводит устройство в активный режим работы. Этот режим позволяет блокировать многие радиоретрансляционные устройства и приборы, предназначенные для автоматической записи телефонных переговоров. Принципиальная схема такого устройства представлена на рис. 3.13.
Рис. 3.13. Активный индикатор линии
Устройство собрано на 4-х микросхемах и 4-х транзисторах. Работа прибора описана ниже. Исходное состояние: трубка телефонного аппарата опущена. Питание устройства осуществляется от телефонной линии через ограничительный резистор R5. Конденсатор С2 заряжается через резистор R5 до напряжения стабилизации стабилитрона, выполненного па транзисторе VT2. С конденсатора С2 напряжение величиной 7–8 В поступает на устройство для питания микросхем (точка "а"). От источника питания через резистор R6 заряжается конденсатор СЗ. Резисторы R6, R7, конденсатор СЗ, светодиод VD3 и транзистор VT3 образуют схему индикации устройства. Напряжение линии через диод VD1 типа КД102 поступает на делитель напряжения, образованный резисторами R1 и R2. Напряжение на резисторе R2 ограничивается транзистором VT1, включенным по схеме стабилитрона, до напряжения питания, что необходимо для защиты входов микросхем от высокого напряжения. С движка подстроечного резистора R2 напряжение высокого уровня поступает на вход элемента DD1.1 микросхемы К561ЛЕ5, запрещая проход импульсов с генератора, выполненного на элементе DD2.1 микросхемы К561ТЛ1. Этот генератор выполнен на основе триггера Шмидта. При заряде и разряде конденсатора С1 на выходе генератора появляются прямоугольные импульсы. Поскольку заряд конденсатора С1 происходит через диод VD2 типа КД522, а разряд через резистор R3, то на выходе элемента DD2.1 имеют место короткие положительные импульсы с частотой следования 1–0,5 Гц. Первый же импульс, пройдя через дифференцирующую цепочку С4, R4 и элемент DD2.2, устанавливает триггер, собранный на элементах DD1.2, DD1.3, в положение, когда на входе элемента DD2.3 низкий уровень напряжения. Генератор, собранный на DD2.3, выключен и на выводах 1, 8 микросхемы DA1 типа КР1014КТ1 присутствует высокий уровень. Одновременно импульсы с DD2.1 поступают на элементы DD1.1 и DD1.4. Через DD1.1 импульсы не проходят, т. к. с резистора R2 поступает высокий уровень. Нулевой уровень, снимаемый с резистора R9 подается на входы элементов DD3.1 и DD3.3 микросхемы К561ЛА7. Поэтому импульсы, проходящие через DD1.4. не проходят на DD3.4. Следовательно, на выходе DD2.4 присутствует логический ноль, и транзистор VT3 закрыт. С движка резистора R2 снимается напряжение логической единицы, достаточное для переключения элемента DD1.1, выполняющего функцию управляемого компаратора с чувствительностью в десятки милливольт.
Если к линии подключается дополнительная нагрузка сопротивлением менее 100 кОм, то напряжение в линии уменьшится на некоторую величину. Одновременно уменьшается и напряжение на движке резистора R2. Это приводит к появлению на входе DD1.1 напряжения, воспринимаемого микросхемой как уровень логического нуля. Этот уровень разрешает прохождение импульсов от DD2.1 через DD1.1.
Поскольку на выходе DD3.1 высокой уровень, то импульсы проходят через ключ DDЗ.2. При этом на выходе DD3.3 тоже высокий уровень и эти импульсы проходят и через ключ DD3.4. Продифференцированные цепочкой С6, R12 импульсы через элемент DD2.4 поступают на базу транзистора VT3. Транзистор открывается, и конденсатор СЗ быстро разряжается через открытый транзистор VT3 и светодиод VD3, который ярко вспыхивает с частотой 0,5–1 Гц. В перерывах между импульсами конденсатор СЗ подзаряжается через резистор R6. Так как оценка состояния линии происходит под управлением импульсов с генератора DD2.1, то некоторое изменение напряжения в линии в момент заряда конденсатора СЗ на работе устройства не сказывается.
Рассмотрим случай, когда телефонная трубка снята. При этом сопротивление телефонного аппарата включается между плюсовым проводом линии и резисторами R11 и R13. Напряжение в линии уменьшается до 5-25 В, т. к. нагрузкой линии будут телефонный аппарат, резистор R13 и резистор R14, зашунтированный малым (около 10 Ом) сопротивлением микросхемы DA1. Напряжение, снимаемое с резистора R13, обеспечивает питание устройства через диод VD4 тина КД522.
При зтом напряжение высокого уровня с точки соединения резисторов R8, R9 поступает на элементы DD3.3 и DD3.1. Низким уровнем закрывается ключ DD3.2. С движка резистора R9 снимается напряжение логической единицы, близкое к напряжению переключения компаратора DD1.4. Допустим, что к линии подключается (или была подключена) дополнительная параллельная или последовательная нагрузка, которая приводит к уменьшению напряжения в линии. При этом напряжение на движке резистора R9 принимает уровень, расцениваемый микросхемой, как уровень логического нуля. При этом импульсы с DD2.1 проходят через DD1.4, DD3.3 и DD3.4. После дифференцирующей цепочки С6, R12 и элемента DD2.4 они поступают на базу транзистора VT3, включая световую индикацию. Одновременно, первый же импульс переводит триггер на DD1.2 и DD1.3 в состояние, разрешающее работу генератора на элементе DD2.3. С выхода генератора короткие импульсы частотой 12–20 кГц поступают на ключ, выполненный на микросхеме DA1. Ключ начинает закрываться и открываться с частотой генератора. При этом сигнал в линии модулируется этой частотой. Это вызывает расширение спектра сигнала, излучаемого радиоретранслятором, подключенным в линию. Одновременно напряжение в линии увеличивается до 35–45 В. Это связано с тем, что последовательно с резистором R13 включается резистор R14, ранее шунтированный ключом DA1. Повышение напряжения в линии до такого уровня позволяет нейтрализовать автоматические записывающие устройства, срабатывающие по уровню напряжения в линии.
Для того, чтобы работа этого генератора не мешала анализу состояния линии, он периодически отключается путем переключения триггера DD1.2, DD1.3 на момент оценки состояния линии. Если в процессе оценки состояния линии принимается решение о том, что линия свободна от посторонних подключений, то схема автоматически устанавливается в исходное состояние и переходит в ждущий режим с периодической проверкой состояния линии.
Резисторы используются типа МЛТ-0,125. Диод VD1 можно заменить на КД105, Д226. Транзисторы можно заменить на КТ3102, КТ503.
Микросхемы можно использовать из серий 564 и 1561. Конденсаторы C1, С2 и СЗ должны быть с минимальным током утечки.
При настройке устройства устанавливается частота генераторов 0,5–1 Гц и 12–20 кГц резисторами R3 и R10, соответственно. При включенном генераторе DD2.3 резистором R14 устанавливается уровень напряжения в линии, равный 35–45 В, при котором еще не происходит рассоединение линии. Исходные уровни срабатывания рассматриваемого устройства устанавливаются резисторами R2 и R9.
Прибор необходимо подключать к линии с соблюдением полярности!
Блокиратор параллельного телефона
Во многих офисах и квартирах телефонные аппараты подключают параллельно к одной линии. Поэтому разговор между двумя абонентами легко может прослушать и третий. Чтобы исключить такую возможность, используют устройство, обычно именуемое блокиратором.
Схема блокиратора приведена на рис. 3.14.
Рис. 3.14. Блокиратор на динисторах
Принцип действия схемы, представленной на рис. 3.14, предельно прост. Допустим, что снята трубка с телефонного аппарата ТА2. В цепи задействованного аппарата ТА2 напряжение линии 60 В пробивает динистор VS2 типа КН102А и оно падает до 5-15 В. Этого напряжения недостаточно для пробоя динисторов VS1, VS3 или VS4 в цепях параллельных аппаратов. Последние оказываются практически отключенными от линии очень большим сопротивлением закрытых динисторов. Это будет продолжаться до тех пор, пока первый из снявших трубку (в нашем случае ТА2) не положит ее на рычаги. Эта же схема позволит избавиться и от такого недостатка, связанного с параллельным включением аппаратов, как "подзванивание" их при наборе номера.
Устройство не нуждается в настройке. При подключении необходимо соблюдать полярность напряжения питания.
Аналогичное по принципу действия устройство можно собрать на другой элементной базе по схеме, приведенной на рис. 3.15.
Рис. 3.15. Блокиратор на аналоге динистора
Устройство содержит два аналога динисторов. Диоды и тиристоры могут быть любыми с допустимым напряжением не менее 100 В и рассчитанными на ток до 0,1 А. Стабилитроны VD1 и VD3 могут быть на напряжение стабилизации от 5,6 до 20 В.
Кардинальной мерой предотвращения прослушивания телефонных разговоров является использование криптографических методов защиты информации. В настоящее время для защиты телефонных сообщений применяют два метода: преобразование аналоговых параметров речи и цифровое шифрование. Устройства, использующие эти методы, называются скремблерами.
При аналоговом скремблировании производится изменение характеристики исходного звукового сигнала таким образом, что результирующий сигнал становится неразборчивым, но занимает ту же частотную полосу. Это дает возможность без проблем передавать его по обычным телефонным каналам связи. При этом методе сигнал может подвергаться следующим преобразованиям:
— частотная инверсия;
— частотная перестановка;
— временная перестановка.
При цифровом способе закрытия передаваемого сообщения непрерывный аналоговый сигнал предварительно преобразуется в цифровой вид. После чего шифрование сигнала происходит обычно с помощью сложной аппаратуры, зачастую с применением компьютеров.
Ниже приводится описание скремблера, использующего метод частотной инверсии. Этот метод давно и успешно применяется американскими полицейскими службами и обеспечивает эффективную защиту радио- и телефонных переговоров от постороннего прослушивания.
Частотно-инвертированный сигнал выделяется из нижней боковой полосы спектра балансного преобразования звукового сигнала с надзвуковой несущей. Две последовательные инверсии восстанавливают исходный сигнал. Устройство работает как кодер и декодер одновременно. Синхронизации двух скремблеров не требуется. Принципиальная схема такого скремблера приведена на рис. 3.16.
Рис. 3.16. Шифратор звуковых сообщений
Это устройство состоит из тактового генератора на микросхеме DD2 типа К561ЛА7, вырабатывающего сигнал частотой 7 кГц, делителя-формирователя несущей 3,5 кГц на микросхеме DD3.1 типа К561ТМ2, аналогового коммутатора балансного модулятора на микросхеме DD4 типа К561КТЗ, входного полосового фильтра с полосой пропускания 300-3000 Гц на микросхеме DA1.1 типа К574УД2 и сумматора балансного модулятора с фильтром низкой частоты на микросхеме DA1.2 Подстройка частоты тактовых импульсов, а следовательно частоты несущей, производится многооборотным резистором R3.
На рис 3.17 представлены спектры входного (а) и преобразованного (б) сигналов.
Рис. 3.17. Спектры сигналов
В пределах полосы частот 300-3000 Гц разборчивость речи после двух преобразований составляет не менее 65 %.
Для скрытности проведения перехвата речевых сообщении из помещений могут быть использованы устройства, в которых передача информации осуществляется в оптическом диапазоне. Чаще всего используется невидимый для простого глаза инфракрасный диапазон излучения.
Наиболее сложными и дорогостоящими средствами дистанционного перехвата речи из помещений являются лазерные устройства. Принцип их действия заключается в посылке зондирующего луча в направлении источника звука и приеме этого луча после отражения от каких-либо предметов, например, оконных стекол, зеркал и т. д. Эти предметы вибрируют под действием окружающих звуков и модулируют своими колебаниями лазерный луч. Приняв отраженный от них луч, можно восстановить модулирующие колебания.
Исходя из этого, рассмотрим один из достаточно простых, но очень эффективных способов защиты от лазерных устройств. Он заключается в том, чтобы с помощью специальных устройств сделать амплитуду вибрации стекла много большей, чем вызванную голосом человека.
При этом на приемной стороне возникают трудности в детектировании речевого сигнала. Ниже приведены схемы и описания некоторых подобных устройств.
Простейший модулятор оконного стекла
Этот модулятор прост в изготовлении, содержит минимальное количество деталей и не требует налаживания. Он позволяет передавать стеклу колебания частотой 50 Гц. И в этом заключается его недостаток, так как с помощью современных средств обработки сигналов возможно вырезать эту частоту из спектра речевого сигнала. Принципиальная схема устройства приведена на рис. 3.18.
Рис. 3.18. Простейший модулятор с трансформаторным питанием
В качестве модулятора с частотой 50 Гц используется обычное малогабаритное реле постоянного тока Р1. Питается реле Р1 от сети переменного тока частотой 50 Гц и напряжением 220 В через понижающий трансформатор Т1. На выводы обмотки реле Р1 подается напряжение со вторичной обмотки трансформатора Т1, немного ниже порога срабатывания. В качестве трансформатора используется любой, желательно малогабаритный, понижающий трансформатор. Напряжение на обмотке II выбирается в зависимости от используемого реле. Реле Р1 может быть типа РЭС22, РЭС9 и им подобные. Корпус реле приклеивается к стеклу клеем "Момент" или аналогичным (рис. 3.19).
Рис 3.19. Способ крепления устройства к стеклу.
Если подходящего трансформатора подобрать не удалось, то можно воспользоваться бестрансформаторной схемой устройства приведенной на рис. 3.20.
Рис. 3.20. Бестрансформаторная схема модулятора
Конденсатор С1 гасит излишек напряжения, он подбирается под определенную нагрузку. Его можно разместить прямо в штепсельной вилке. При монтаже необходимо помнить, что устройство не имеет гальванической развязки с питающей сетью.
Другой модулятор позволяет получать сигналы, которые имеют хаотический характер, т. к. частота следования импульсов не стабильна.
Устройство представляет собой два генератора импульсов, частоты которых не стабилизированы и отличаются друг от друга. Оба генератора работают на общую нагрузку. Принципиальная схема модулятора приведена на рис. 3.21.
Рис. 3.21. Модулятор с питанием or сети 220 В
Питание устройства осуществляется от сети переменного тока напряжением 220 В. Напряжение питания снимается с делителя напряжения на резисторах R1-R3 и выпрямляется диодом VD1 типа КД102А. Выпрямленное напряжение сглаживается конденсатором С1. Так как конденсатор С1 имеет небольшую емкость, то напряжение питания имеет большие пульсации. Оба генератора импульсов собраны на транзисторной сборке VT1 типа К101КТ1Г, содержащей два идентичных транзистора VT1.1 и VT1.2. Микросборка представляет собой транзисторные прерыватели для коммутации слабых сигналов переменного и постоянного токов. Транзисторы микросборки имеют общий коллектор. Работают генераторы следующим образом. Через резисторы R5 и R6 происходит заряд конденсаторов С2 и СЗ, соответственно, от источника питания. При достижении на конденсаторах С2 и СЗ напряжения пробоя транзисторов VT1.1 и VT1.2 последние открываются и происходит разряд конденсаторов через базовый переход транзистора VT2 типа КТ301. Это приводит к открыванию транзистора VT2 и короткие импульсы (щелчки, следующие с частотой в сотни герц) поступают на пьезокерамические излучатели ZQ1 и ZQ2. Период времени между импульсами постоянно изменяется, в связи с чем считывание информации со стекол в условиях апериодических акустических полей даже с использованием специальных фильтров сильно затруднено. Громкость звукового сигнала можно плавно регулировать резистором R4.
Транзистор VT2 можно заменить на КТ3102, КТ315. Пьезокерамические преобразователи могут быть любыми, их число может быть от одного до четырех. Диод VD1 можно заменить на КД105. Пьезоизлучатели наклеиваются в центре стекла внутренних рам и соединяются с генератором тонким проводом.
Модулятор на одной микросхеме
Этот модулятор тоже питается от сети переменного тока напряжением 220 В. Принципиальная схема модулятора приведена на рис. 3.22.
Рис. 3.22. Модулятор не одной микросхеме
Напряжение сети гасится резисторами R1 и R2 и выпрямляется диодом VD1 типа КД102А. Конденсатор С1 уменьшает пульсации выпрямленного напряжения. Модулятор выполнен на одной микросхеме К561ЛЕ5. По своему схемному построению он напоминает генератор качающей частоты иди частотный модулятор. На элементах DD1.3 и DD1.4 собран управляющий генератор низкой частоты. С его выхода прямоугольные импульсы поступают на интегрирующую цепочку R5, С4. При этом конденсатор С4 то заряжается через резистор R5, то разряжается через него. Поэтому на конденсаторе С4 получается напряжение треугольной формы, которое используется для управления генератором на элементах DD1.1, DD1.2. Этот генератор собран по схеме симметричного мультивибратора. Конденсаторы С2 и СЗ поочередно заряжаются через резисторы R3 и R4 от источника треугольного напряжения. Поэтому на выходе генератора будет иметь место сигнал, частота которого "плавает" в области звуковых частот речевого диапазона. Поскольку питание генератора не стабилизировано, то это приводит к усложнению характера генерируемых сигналов. Нагрузкой генератора служат пьезокерамические излучатели ZQ1 и ZQ2 типа ЗП-1.
Микросхему DD1 можно заменить на К561ЛА7 и даже на К561ЛН1, К561ЛН2, либо на микросхемы серий 564, 1561.
Излучатели ZQ1 и ZQ2 могут быть любыми, их количество может быть от одного до четырех. Они могут быть соединены последовательно или параллельно-последовательно.
Устройство модуляции стекла на цифровых микросхемах
Данное устройство вызывает вибрацию стекла с различной частотой, тем самым устраняя основной недостаток простейшего модулятора. Оно выполнено на двух цифровых схемах 561 серии. В качестве вибропреобразователя используется пьезокерамический преобразователь. Принципиальная схема устройства приведена на рис. 3.23.
Рис. 3.23. Модулятор на цифровых микросхемах
Модулятор собран на микросхемах К561ЛН2 и К561ИЕ8. Генератор тактовых импульсов собран на элементах DD1.1, DD1.2, резисторе R1 и конденсаторе C1 по схеме несимметричного мультивибратора.
С выхода генератора тактовые импульсы поступают на вход счетчика DD2 типа К561ИЕ8. Эта микросхема имеет встроенный дешифратор, поэтому напряжение высокого уровня поочередно появляется на выходах счетчика в соответствии с количеством пришедших импульсов.
Допустим, что после прихода очередного тактового импульса уровень логической единицы появился на выходе 2 микросхемы DD2 (выв. 4).
На остальных выходах присутствует уровень логического нуля. Положительное напряжение начинает заряжать конденсатор С2 по цепи VD3, R4, R12. При достижении на конденсаторе С2 напряжения, достаточного для открывания транзистора VT1 типа КТ315, последний открывается, и на выходе элемента DD1.4 появляется уровень логического нуля. Конденсатор С2 быстро разряжается через диод VD11 типа КД522. Транзистор VT1 закрывается, и процесс заряда конденсатора С2 возобновляется но той же зарядной цепи. С приходом очередного тактового импульса уровень положительного напряжения появляется только на выходе 3 (выв. 7). Теперь конденсатор С2 заряжается по цепи VD4, R5, R12. Так как суммарное сопротивление этой цепи меньше, чем сопротивление цепи VD3, R4, R12, то заряд конденсатора С2 до напряжения открывания происходит быстрее. Частота импульсов на выходе этого управляемого генератора увеличивается. Прямоугольные импульсы поступают на вибропреобразователь ZQ1, выполненный на основе пьезокерампческого преобразователя.
Микросхемы DD1 и DD2 можно заменить на аналогичные — серий 176,564,1561. Резисторы — типа МЛТ-0,125. Сопротивлелнлиля резисторов R2-R11 могут быть любыми из интервала 10 кОм — 1 МОм. Резисторы одинакового номинала лучше не использовать. Диоды VD1-VD11 могут быть любыми, например, КД521, Д9, Д18, КД510 и др.
Транзистор VT1 можно заменить на КТ3102. Пьезокерамический преобразователь ZQ1 может быть любой, от игрушек или телефонных аппаратов. Питание устройства осуществляется от батарейки типа "Крона". Вибродатчик ZQ1 приклеивается на стекло клеем "Момент". Сигнал к нему подводится по проводам от элемента DD1.6.
Настройка заключается в установке частоты тактового генератора подбором конденсатора С1 или резистора R1. Частота тактовых импульсов выбирается около 2–3 Гц.
Количество генерируемых частот можно увеличить, если вместо микросхемы DD2 К561ИЕ8 использовать широко распространенную микросхему К561ИЕ10. Эта микросхема (рис. 3.24) содержит два двоичных четырехразрядных счетчика.
Рис. 3.24. Использование микросхемы К561ИЕ10
К выходам счетчиков подключаются резисторы R2-R9, их сопротивления могут быть также от 10 кОм до 1 МОм. Диоды VD1-VD10 из схемы исключаются. При подаче тактовых импульсов на вход CP микросхемы DD2.1 в точке соединения резисторов R2-R12 появляется, изменяющееся ступенчато, напряжение. Число градаций напряжения, а, следовательно, и число частот, можно варьировать путем использования определенного количества разрядов счетчика DD2.
Кроме вышеописанных устройств в системах защиты информации используются и многие другие устройства и приборы. К ним относятся такие устройства, как сетевые фильтры, исключающие возможность утечки информации по цепям источников питания; приборы, обеспечивающие автоматическую запись телефонных разговоров; акустические генераторы шума, маскирующие звуковой сигнал и многие другие, используемые, как правило, специалистами в этой области.
Сетевой фильтр
Сетевые фильтры обеспечивают защищенность электронного устройства не только от внешних помех, но и от разного рода сигналов, генерируемых устройствами, которые могут служить источником утечки информации.
К числу защищаемых устройств относят самую разнообразную аппаратуру: компьютеры, приемники диапазона длинных и средних волн, радиотрансляционные приемники и др. Сетевой фильтр включают между энергетической сетью и устройством потребителя.
На рис. 3.25 представлена принципиальная схема сетевого фильтра, рассчитанного на мощность нагрузки 100 Вт. Он обеспечивает питание одновременно двух потребителей.
Рис. 3.25. Сетевой фильтр на два потребителя
В данном фильтре использованы два способа подавления помех: фильтрация режекторным дросселем Др1, Др2 и экранирование сетевой обмотки трансформатора Т1 и выходной обмотки трансформатора Т2. Электростатическим экраном сетевой обмотки трансформатора Т1 и выходной обмотки трансформатора Т2 служат магнитопроводы и низковольтные обмотки трансформаторов, расположенные поверх высоковольтных и соединенные с общим проводом фильтра и устройств-потребителей. Так как направление намотки обмоток и индуктивность дросселей Др1 и Др2 одинаковы, а токи через обмотки Др1 и Др2 противофазны, то сумма магнитных полей этих обмоток равна нулю и результирующее сопротивление дросселей переменному току промышленной частоты равно активному сопротивлению обмоток. Следовательно, падение напряжение на дросселях Др1, Др2 практически равно нулю.
В устройстве использованы два готовых трансформатора Т1 и Т2 типа ТПП296-127/220-50. Режекторный дроссель Др1, Др2 выполнен на ферритовом кольцевом магнитопроводе марки М4000 размером К65х32х8. Две обмотки наматываются в два провода, одновременно, проводом МГШВ-0,5 и содержат но 20 витков каждая. Намотка должна быть в один слой. Марка феррита и размер сердечника могут быть другими, но индуктивность дросселей должна быть около 1,5 мГн.
Конденсаторы С1 и С2 должны быть рассчитаны на напряжение более 400 В.
Телефонный адаптер
Для анализа утечки информации по открытым каналам телефонной связи необходимо иметь записи телефонных разговоров всех сотрудников фирмы. Прослушивание записей позволяет установить характер и источник утечки информации и сделать соответствующие выводы.
Для записи телефонных разговоров используются устройства, автоматически подключающие записывающие устройства при снятии трубки телефонного аппарата. Принципиальная схема такого телефонного адаптера представлена на рис. 3.26.
Рис. 3.26. Телефонный адаптер
Когда телефонная трубка не поднята, в телефонной линии присутствует напряжение около 60 В. Через делитель, собранный на резисторах R1-R3, оно поступает на затвор полевого транзистора VT1 типа KП103M и запирает его. Это приводит к закрытию транзистора VT2 типа КТ315 и транзистора VT3 типа КТ814. Реле К1 типа РЭС22 обесточено и его контакты К1.1-К1.4 разомкнуты.
При поднятии телефонной трубки в линии устанавливается напряжение 5-15 В, что ведет к открыванию транзистора VT1 и, следовательно, транзисторов VT2 и VT3. Срабатывает реле К1, которое контактами К1.3 и К1.4 подает питание 220 В на магнитофон, предварительно включенный на запись, и одновременно контактами K1.1 и К1.2 подключает телефонную линию через конденсаторы С1 и С2 ко входу магнитофона. Начинается запись разговора на магнитофон. Запись прекращается после опускания телефонной трубки на рычаг телефонного аппарата. Конденсатор СЗ сглаживает пульсации и шумы, наводимые в линии, которые могут вызвать ложные срабатывания устройства.
При подключении устройства к линии необходимо соблюдать полярность питания. В устройстве можно использовать любой силовой трансформатор, понижающий напряжение до 12 В и рассчитанный на ток нагрузки более 0,1 А или готовый сетевой адаптер с теми же параметрами. Реле РЭС22 можно заменить на два реле типа РЭС9.
Адаптер для диктофона
В настоящее время для записи звуковой информации широкое распространение получили импортные диктофоны со встроенной системой VOX, т. е. с системой управления голосом. Это позволяет более экономно расходовать пленку, т. к. при отсутствии сигнала двигатель диктофона выключен и потребление тока устройством минимально. Ниже приведены две схемы адаптеров для работы с диктофонами.
Первая схема приведена на рис. 3.27.
Рис. 3.27. Адаптер с трансформатором
Эта схема предельно проста, т. к. содержит всего одну деталь — трансформатор Т1, включаемый в разрыв линии. Трансформатор Т1 самодельный. Для его изготовления используется обмотка реле РЭС15 или РЭС49.
Штатная обмотка реле выполняет роль II — обмотки трансформатора. Поверх неё намотана I обмотка, которая содержит 400–500 витков провода ПЭВ 0,1. Нитки обмотки скреплены клеем "Момент".
Адаптер подключается в разрыв любого из проводов линии без соблюдения полярности.
Вторая схема (рис. 3.28), в отличие от первой, не имеет трансформатора, что облегчает её изготовление.
Рис. 3.28. Бестрансформаторный адаптер
Ток, протекающий в линии при разговоре, проходит через резистор R1, вызывая на нем падение напряжения. Напряжение звуковой частоты проходит через конденсатор C1 и поступает на вход VOX диктофона. Для уменьшения высокочастотных наводок линии можно подключить конденсатор С2, обозначенный на схеме пунктирной линией.
Акустические генераторы шума используются для зашумления акустического диапазона в помещениях и в линиях связи, а также для оценки акустических свойств помещений.
Под "шумом" в узком смысле этого слова часто понимают так называемый белый шум, характеризующийся тем, что его амплитудный спектр распределен по нормальному закону, а спектральная плотность мощности постоянна для всех частот.
В более широком смысле под шумом, по ассоциации с акустикой, понимают помехи, представляющие собой смесь случайных и кратковременных периодических процессов. Кроме белого шума выделяют такие разновидности шума, как фликкер-шум и импульсный шум. В генераторах шума используется белый шум, так как даже современными способами обработки сигналов этот шум плохо отфильтровывается. Ниже приводятся несколько схем различных генераторов шума.
Генератор белого шума
Самым простым методом получения белого шума является использование шумящих электронных элементов (ламп, транзисторов, различных диодов) с усилением напряжения шума. Принципиальная схема несложного генератора шума приведена на рис. 3.29.
Рис. 3.29. Генератор шума
Источником шума является полупроводниковый диод — стабилитрон VD1 типа КС168, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 и через конденсатор C1 поступает на инвертирующий вход операционного усилителя DA1 типа КРМ0УД1208. На неинвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения, выполненного на резисторах R2 и R3. Режим работы микросхемы определяется резистором R5, а коэффициент усиления — резистором R4. С нагрузки усилителя, переменного резистора R6, усиленное напряжение шума поступает на усилитель мощности, выполненный на микросхеме DA2 типа К174ХА10. Работа этого усилителя подробно описана в главе 2. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1. Уровень шума регулируется резистором R6.
Стабилитрон VD1 генерирует шум в широком диапазоне частот от единиц герц до десятков мегагерц. Однако на практике он ограничен АЧХ усилителя и громкоговорителя. Стабилитрон VD1 подбирается по максимальному уровню шума, так как стабилитроны представляют собой некалиброванный источник шума. Он может быть любым с напряжением стабилизации менее напряжения питания.
Микросхему DA1 можно заменить на КР1407УД2 или любой операционный усилитель с высокой граничной частотой коэффициента единичного усиления. Вместо усилителя на DА2 можно использовать любой У3Ч.
Для получения калиброванного по уровню шума генератора используют специальные шумящие вакуумные диоды. Спектральная плотность мощности генерируемого шума пропорциональна анодному току диода.
Широкое распространение получили шумовые диоды двух типов 2ДЗБ и 2Д2С. Первый генерирует шум в полосе до 30 МГц, а второй — до 600 МГц. Принципиальная схема генератора шума на шумящих вакуумных диодах приведена на рис. 3.30.
Рис. 3.30. Генератор шума на вакуумной лампе
Резистор R1 типа МЛТ-0,25. Резистор R2 — проволочный, он используется совместно с диодом 2ДЗБ. Питание генератора осуществляется от специального блока, схема которого приведена на рис. 3.31.
Рис. 3.31. Блок питания для генератора шума
Цифровой генератор шума
Цифровой шум представляет собой временной случайный процесс, близкий по своим свойствам к процессу физических шумов и называется поэтому псевдослучайным процессом. Цифровая последовательность двоичных символов в цифровых генераторах шума называется псевдослучайной последовательностью, представляющей собой последовательность прямоугольных импульсов псевдослучайной длительности с псевдослучайными интервалами между ними. Период повторения всей последовательности значительно превышает наибольший интервал между импульсами. Наиболее часто применяются последовательности максимальной длины М-последовательности, которые формируются при помощи регистров сдвига и сумматоров по модулю 2, использующихся для получения сигнала обратной связи.
Принципиальная схема генератора шума с равномерной спектральной плотностью в рабочем диапазоне частот приведена на рис. 3.32.
Рис. 3.32. Цифровой генератор шума
Этот генератор шума содержит последовательный восьмиразрядный регистр сдвига, выполненный на микросхеме К561ИР2, сумматор по модулю 2 (DD2.1), тактовый генератор (DD2.3. DD2.4) и цепь запуска (DD2.2), выполненные на микросхеме К561ЛП2.
Тактовый генератор выполнен на элементах DD2.3 и DD2.4 по схеме мультивибратора. С выхода генератора последовательность прямоугольных импульсов с частотой следования около 100 кГц поступает на входы "С" регистров сдвига DD1.1 и DD1.2, образующих 8-разрядный регистр сдвига. Запись информации в регистр происходит по входам "D". На вход "D" регистра DD1.1 сигнал поступает с элемента обратной связи сумматора по модулю 2 — DD2.1 При включении питания возможно состояние регистров, когда на всех выходах присутствуют низкие уровни. Так как в регистрах М-последовательности запрещено появление нулевой комбинации, то в схему введена цепь запуска генератора, выполненная на элементе DD2.2 При включении питания последний формирует на своем выходе уровень логической единицы, который выводит регистр из нулевого состояния. На дальнейшую работу генератора цепь запуска не оказывает никакого влияния. Сформированный псевдослучайный сигнал снимается с 8-го разряда регистра сдвига и поступает для дальнейшего усиления и излучения. Напряжение источника питания может быть от 3 до 15 В.
В устройстве использованы КМОП микросхемы серии 561, их можно заменить на микросхемы серий К564, К1561 или К176. В последнем случае напряжение питания должно быть 9 В.
Правильно собранный генератор в налаживании не нуждается. Изменением тактовой частоты можно регулировать диапазон частот шума и интервал между спектральными составляющими для заданной неравномерности спектра.