Прежде чем приступить к изучению электроники, двое друзей вспоминают историю ее развития, начиная от создания электромагнитных волн; они говорят о рождении телеграфии без проводов, начале радиовещания и т. д. Эта история делится на три эпохи, названия которых и служат заглавием настоящей беседы.
Незнайкин. — Вчера вечером я с большим интересом смотрел цветные изображения, передаваемые по телевидению автоматической тележкой с планеты Марс. Меня охватило волнение при мысли, что все это мы видим, как в ходе репортажа со стадиона, т. е. в тот самый момент, когда эти изображения воспринимаются телевизионной камерой планетохода.
Любознайкин. — В этом случае, дорогой друг, прямая передача не означает, что изображения принимаются в момент их передачи. Не забывай, что электромагнитные волны, переносящие радио- и телевизионные сигналы, распространяются со скоростью света, т. е. 300000 км/с. Однако Марс находится от нашей Земли на расстоянии 225·106 км в среднем. Я предоставляю тебе возможность разделить это расстояние на скорость распространения волн, чтобы узнать, какое время они затратят на прохождение этой чудовищной дистанции.
Н. — Я получил 750 с, что составляет 12,5 мин… Ты прав, Любознайкин: это далеко не одновременно. Но это ничуть не уменьшает впечатления. Благодаря телевидению мы переносимся на различные небесные тела солнечной системы. И я твердо убежден, что в ближайшее время телевидение даст нам возможность увидеть и другие звезды с их системами планет.
Л. — Вне всякого сомнения. Но тогда с учетом скорости распространения волн передача изображений займет многие годы. Ведь даже на путь от самых близких звезд электромагнитные волны должны затратить около четырех с половиной лет.
Н. — Мы вооружимся терпением, необходимым для этого изумительного покорения Вселенной. Развитие электроники устранило препятствия пространства. Звук и изображение несутся с внушительной скоростью, и мы, не выходя из своего дома, слышим и видим то, что происходит на всех пяти континентах и даже в космосе.
Л. — Кроме трех измерений пространства, электроника также покорила и так называемое «четвертое измерение» — время. Ведь теперь можно записать, а потом воспроизвести как звук, так и изображение. Вот, мой дорогой друг, магнитофон, который записал всю нашу беседу с самого начала.
Н. — Как он работает?
Л. — Чтобы это понять, нужно изучить работу микрофона, усилителя и т. д. Мы сделаем это постепенно.
Н. — Я очень бы этого хотел, так как на меня большое впечатление произвело всемогущество электроники, которая вторгается во все сферы человеческой деятельности. В промышленности все делается автоматически благодаря электронным управляющим устройствам. В научных исследованиях широко применяются электронные средства! Врачи обращаются к электронике за помощью как для установления диагноза, так и для лечения некоторых заболеваний.
Л. — Ты забыл упомянуть электронную вычислительную машину. Точно так же, как два века тому назад паровая машина освободила от утомительной работы наши мышцы, ЭВМ благодаря своим вычислительным и логическим возможностям, а также памяти разгрузила человеческий мозг.
Н. — Но я думаю, что рождение ЭВМ ближе к нашим дням, чем рождение паровой машины.
Л. — И насколько! Первая электронная вычислительная машина появилась в 1943 г. Но прогресс идет все более стремительно, и эволюция ЭВМ может служить тому одним из самых впечатляющих примеров.
Н. — Но как началось развитие всей этой славной техники, какой является электроника?
Л. — Это началось с телеграфии без проводов.
Н. — Какой же гениальный человек ее изобрел?
Л. — Это коллективное изобретение, и я бы даже назвал его прекрасным образцом международного сотрудничества. Начало положил великий английский физик-самоучка Майкл Фарадей, интуитивно сформулировавший в 1831 г. теорию электрических и магнитных полей. Затем другой выдающийся английский ученый Джемс Клерк Максвелл развил идеи Фарадея и показал, что электромагнитное поле распространяется в пространстве в форме волн. Математические формулы, известные под названием уравнении Максвелла, позволяют рассчитать скорость распространения этих волн в зависимости от среды, в которой они распространяются. Максвелл доказал, что в природе света лежат электромагнитные волны. И он, как подтвердили проведенные позже измерения, правильно рассчитал их скорость.
Н. — Потрясающе! Здесь математики предвосхитили эксперимент.
Л. — Совершенно верно. Первым, кому удалось создать электромагнитные волны, был немецкий профессор физики Генрих Герц. В 1887 г. в своей лаборатории он с помощью высокого напряжения, получаемого от катушки Румкорфа, создавал электромагнитные волны и детектировал их с помощью «резонатора» — своеобразной металлической петли, между близко расположенными концами которой под воздействием электромагнитных волн проскакивала искра.
Н. — Я полагаю, что слово «детектировать», которое ты только что произнес, означает «обнаружить». Именно это делают детективы в полицейских романах, которые я читаю с увлечением… Но позволяет ли резонатор Герца детектировать волны, излучаемые на большом расстоянии?
Л. — Никоим образом, резонатор обладает очень малой чувствительностью. Этот недостаток восполнил французский физик Эдуард Бранли. Проводя исследования, в 1890 г. он установил, что электрическое сопротивление металлических порошков резко снижается под воздействием электромагнитных волн. Таким образом создали «когерер» — тот самый чувствительный детектор волн, который позволил великому русскому ученому А. С. Попову осуществить передачу телеграмм без проводов.
Свой первый радиоприемник — грозоотметчик он продемонстрировал 7 мая 1895 г. на заседании физического отделения Русского физико-химического общества. Этот день является датой изобретения радио.
Н. — Ты был воистину прав, Любознайкин, когда говорил о международном сотрудничестве. Для рождения телеграфии без проводов потребовалось, чтобы исследования проводили два англичанина, один немец, один француз и один русский.
Л. — Этим не ограничивается этот прекрасный пример общей работы, не знающей государственных границ. Связь на большие расстояния была впервые осуществлена молодым итальянцем Гульельмо Маркони. В 1901 г. ему удалось установить радиосвязь через Атлантический океан. В последующем самое главное изобретение в интересующей нас области сделано в 1907 г. американцем Ли Де Форестом.
Н. — Что же он изобрел?
Л. — Первую «радиолампу», как говорили в то время; в наши дни ее называют «электронной лампой».
Н. — Если я правильно понял, термин «электронный» появился относительно недавно?
Л. — Совершенно верно. Я бы даже сказал, что историю нашей техники можно разделить на три эпохи: Телеграфия без проводов, затем Радио и, наконец, Электроника.
Н. — А с какого момента начинается эпоха Радио?
Л. — Она начинается с появления радиовещания. Изобретение электронной лампы позволило использовать электромагнитные волны для передачи звука. Таким образом родилась радиотелефония. А в начале 20-х годов во многих странах приступили к радиовещанию. Во Франции передатчик на Эйфелевой башне начал работать в 1921 г.
Н. — А как в то время принимали передачи?
Л. — До 1930 г. радиовещательные приемники собирали на лампах, требовавших питания постоянным током. Поэтому для этой цели пользовались батареями или аккумуляторами. Нужна была батарея напряжением 4 В для накала и батарея напряжением 80 В для питания анодных цепей; обе батареи размещались вне радиоприемника.
Н. — Теперь я уже не понимаю. Что такое «накальное» и «анодное» напряжение?
Л. — Это я объясню тебе позже. А пока продолжим беглый экскурс в историю нашей техники. Итак, вернемся к радиоприемникам 20-х годов. Из-за низкой чувствительности они часто требовали установки внешней антенны. Громкоговорители устанавливали вне приемника. Можешь себе представить, каким насмешкам подвергались эти радиоприемники, так как многочисленные провода внешних соединений казались противоречащими самой идее «беспроводности».
Н. — И как же все это изменилось?
Л. — Начиная с 1930 г. удалось питать приемники от осветительной сети. В большинстве этих аппаратов использовали принцип преобразования частоты. Это позволило достичь высокой чувствительности, благодаря чему роль антенны смогла выполнять внутренняя рамка. Громкоговоритель также поместили в футляре аппарата.
Н. — Таким образом осуществлялась передача звука. А передача изображения?
Л. — Телевидение, эксперименты с которым проводились с середины 20-х годов, в 30-х годах перешло к регулярным передачам. Но вторая мировая война прервала эти начинания.
Н. — Разумеется, война останавливает прогресс техники.
Л. — Ты ошибаешься, Незнайкин. В интересах войны ученые быстро развили некоторые направления той техники, которая стала называться электроникой. Так, например, возник радиолокатор, использовавшийся для защиты городов от самолетов противника.
Н. — Ты прав. Как говорят, нет худа без добра… Я подозреваю, что после окончания военных действий наша техника пережила новый подъем.
Л. — Да, мой друг. Именно в это время она начала проникать во все сферы человеческой деятельности. А небывалому ускорению прогресса способствовало изобретение в 1948 г. транзистора. Родившаяся вместе с транзистором новая техника полупроводников привела к микроминиатюризации и колоссально расширила возможности практического применения электроники.
Н. — Спасибо, дорогой Любознайкин, за твой рассказ об истории телеграфии без проводов, которая, пройдя этап радио, превратилась в электронику. Твое повествование вызывает у меня большое желание заняться изучением электроники. Не сможешь ли ты изложить мне основные понятия и описать основные области применения электроники, какими являются радио и телевидение?
Л. — С удовольствием сделаю это. Но сначала я попрошу у моего дядюшки профессора Радиоля совета, в какой последовательности обучать тебя этой технике.
Н. — Я полагаю, что он не захотел бы видеть меня слишком несведущим в самых элементарных основах физики и особенно электричества.
Л. — Именно в такое положение попал я, когда мой дядюшка обучал меня основам электроники. Ну ладно, я передам ему магнитную ленту, на которой записан весь наш разговор. Таким образом, он будет точно знать, что нам потребуется. В этом случае электроника еще раз принесет нам пользу.