Пороховые ракетные двигатели исторически появились значительно раньше, чем какие бы то ни было другие реактивные двигатели.
Нельзя достоверно сказать, кто и когда изобрел первый пороховой ракетный двигатель.
Имеются указания о том, что уже много веков тому назад пороховые ракеты применялись в Китае в качестве увеселительных огней. Точно так же уже давно пороховые ракеты стали применять и в качестве боевого оружия, в виде своеобразных ракетных снарядов, в первое время зажигательных. По свидетельству англичан, при завоевании Индии (XVIII век) им много неприятностей причинили действия отрядов индусов, вооруженных ракетными стрелами — оружием, дотоле совершенно неизвестным в Европе. Эти стрелы представляли собой бамбуковые трубки, заполненные горючим составом и открытые с задней стороны. Индусы поджигали горючее и бросали ракеты во врагов, причем реактивный эффект струи выходящих из трубки газов значительно увеличивал дальность полета стрелы и силу удара. Один из руководителей англичан, Конгрев, называл действие этих примитивных снарядов потрясающим.
Англичане заимствовали у индусов эту идею и организовали у себя под руководством Конгрева производство реактивных снарядов.
Ведущую роль в применении и развитии пороховых ракет, начиная с конца XVII века, играла Россия. Особенно широкое развитие получило ракетное дело при Петре I. Иностранцы, посещавшие в то время Россию, писали в своих записках, что ни одно государство не может в этом отношении соревноваться с Россией. Петр I ввел пороховые ракеты на вооружение русской армии в качестве сигнальных. Через 100 лет после этого пороховые ракеты стали применяться в русской армии и в качестве боевого оружия. Впервые боевые гранаты-ракеты были применены русскими в 1825 г. на Кавказе и в войне с Турцией 1828–1829 гг. Создателем этих первых отечественных боевых ракет был суворовский генерал Александр Дмитриевич Засядко.
Но особенно много сделал для создания ракетного вооружения русской армии талантливый изобретатель, инженер, исследователь и организатор — генерал Константин Иванович Константинов, живший и работавший в середине прошлого века 1818–1872 гг.). Работы Константинова, в частности, его книга «О боевых ракетах», получили широкую известность в России и за рубежом, были переведены на многие языки и в течение долгого времени служили настольными книгами для всех артиллеристов.
Константинов организовал в России заводы для производства ракет, радикальным образом изменил технологию их изготовления (в частности, устранил ручную набивку ракет порохом), сконструировал ряд машин по производству ракет; эти машины так и назывались «машинами Константинова». Константинов создал ряд новых, усовершенствованных образцов боевых ракет со значительно увеличенной дальностью полета, а также ракет для различных вспомогательных целей — спасательных, сигнальных и других; разработал тактику применения ракетного оружия. В частности, по его предложению этот род оружия был выделен в качестве самостоятельного — были созданы отдельные части в дополнение к артиллерийским.
Ракетные снаряды применялись русской армией при обороне Севастополя в 1855–1856 гг. и в военных действиях в более позднее время — до русско-турецкой войны 1877-78 гг.
Применение ракетного вооружения в первое время имело особые преимущества, так как орудийная артиллерия, имевшая на вооружении гладкоствольные орудия, стрелявшие круглыми ядрами, была весьма несовершенна — дальность полета ядер была невелика, меткость стрельбы оставляла желать много лучшего. Легкое ракетное оружие было к тому же очень удобно для вооружения им кавалерии, использования в горных условиях и т. д.
Однако, начиная со второй половины прошлого века, когда были изобретены нарезные орудия, стреляющие цилиндрическими снарядами, что значительно увеличивало дальность и улучшало точность артиллерийского огня, ракетное оружие стало быстро вытесняться артиллерийским и к концу века было повсеместно снято с вооружения.
Тем не менее, несмотря на огромный прогресс, имевший место с тех пор в ствольной артиллерии, в последние годы ракетное оружие снова получает все более широкое распространение. Большой толчок в этом отношении дал опыт минувшей воины, где в ряде случаев ракетное оружие показало себя с наилучшей стороны благодаря присущим ему принципиальным преимуществам по сравнению со ствольным оружием.
И снова, как и ранее, Россия была пионером в деле развития и широкого разнообразного применения ракетного оружия. Впервые в этой войне именно Советская армия, по достоинству оценив возможности ракетной артиллерии, широко применила это грозное оружие на поле брани.
Основное преимущество ракетной артиллерии заключается в том, что для выстрела ракетным снарядом не требуется массивного, тяжелого орудия, вес которого в обычной ствольной артиллерии превышает вес снаряда в сотни раз[6]. Поэтому ракетную артиллерию называют иногда «артиллерией без пушек».
Фиг. 9. Гвардейские минометы («катюши») на Красной площади.
Большой вес обычного артиллерийского орудия объясняется массивностью основных элементов этого орудия — ствола, в котором при выстреле газы развивают давления в тысячи атмосфер, необходимые для сообщения снаряду огромных ускорений, и станины, которая должна воспринимать значительные усилия отдачи при выстреле.
Ракетное орудие не имеет ствола, нагруженного изнутри высоким давлением газов, так как сгорание пороха происходит не в орудии, а в самом снаряде. По этой же причине орудие не воспринимает никаких усилий отдачи. Роль ракетного орудия заключается лишь в сообщении должного направления ракетному снаряду при выстреле. Вследствие этого ракетное орудие представляет собой весьма легкий станок с направляющими — трубой, лотком или салазками, по которым движется снаряд при выстреле.
Это свойство ракетного орудия позволяет осуществлять залп несколькими ракетными снарядами с. помощью одной легкой установки представляющей собой сочетание нескольких ракетных орудий (фиг. 9). Установленный на автомобиле один такой пакетный миномет заменял большое число артиллерийских орудий. Благодаря значительно большей по сравнению с пушками подвижности этих установок и возможности в короткое время концентрировать большое число их в нужном месте, гвардейские минометы представляли собой грозное для врага оружие, позволявшее осуществлять неожиданно для него мощные огневые налеты.
После первого же успешного применения «катюш» в боях под Смоленском, в августе 1941 г., товарищ Сталин, предвосхитив их будущую роль в войне, сразу же дал указание всячески развивать этот новый вид вооружения, и оно получило самое широкое распространение в нашей армии.
Большой интерес ракетные орудия, благодаря их весьма малому весу, представляют также для самолетов (фиг. 10), так как создание артиллерийских орудий авиационного типа, т. е. весьма облегченных, представляет собой очень трудную задачу. Однако не меньшее достоинство ракетных орудий в качестве авиационных заключается в том, что они не передают самолету усилий отдачи. Для обычных орудий с увеличением калибра эти усилия становятся столь большими, что создают при выстреле значительные перегрузки самолета. Как показали испытания, легкие самолеты — истребители, — имеющие пушки, стреляющие вперед, при выстреле на мгновение почти останавливаются. Это резкое торможение, естественно, вызывает большие перегрузки в конструкции самолета, могущие привести к полному его разрушению, что иногда и наблюдалось. В то же время самолет средней величины, подобно изображенному на фиг. 11, может произвести залп ракетными снарядами среднего калибра, например, в 125 мм, равный по своей огневой мощи бортовому залпу эсминца, и это вовсе не скажется на его полете.
Наряду с этими несомненными достоинствами ракетные орудия имеют и весьма большой недостаток по сравнению с артиллерийскими — гораздо меньшую точность огня. Артиллерийский снаряд благодаря получаемому им в нарезном стволе орудия вращению обладает большой устойчивостью в полете. Ракетный же снаряд не обладает такой устойчивостью. Кроме того, незначительные изменения в характере горения пороха в ракетном двигателе такого снаряда, носящие случайный характер, значительно влияют на форму траектории. Правда, точность ведения огня ракетными снарядами с помощью ряда мер может быть значительно повышена. В частности, тщательная технология производства и строгий контроль обеспечивают тождественность пороховых зарядов и вследствие этого более или менее одинаковую работу двигателей разных снарядов, снарядам может быть сообщено вращение в полете и так далее. Тем не менее в настоящее время большой разброс при стрельбе из ракетных орудий не обеспечивает достаточной прицельности огня, который поэтому ведется только по сравнительно большим целям. Главной особенностью такого огня является его массированность.
Фиг. 10. Залп ракетных орудий с самолета.
Следует отметить, что наряду с ракетными орудиями, предназначенными для стрельбы снарядами большого калибра, этой, так сказать, ракетной артиллерией, в годы войны применялось и индивидуальное ракетное оружие для стрельбы с ближних дистанций по технике (танкам и др.) и живой силе противника.
Развитие порохового ракетного двигателя связано не только с артиллерией.
На заре развития авиации, когда создание управляемых летательных аппаратов как легче, так и тяжелее воздуха во многом задерживалось из-за отсутствия легкого и достаточно мощного двигателя, взоры изобретателей не раз обращались к реактивному двигателю. Одними из первых в этом направлении были работы русских изобретателей Третесского и Соковнина, относящиеся к середине прошлого века, в которых предполагалось использование реакции струи пара или сжатого воздуха.
Приоритет в отношении идеи использования порохового ракетного двигателя для летательного аппарата тяжелее воздуха принадлежит русской науке и связан с именем революционера-народовольца, студента института инженеров путей сообщения, Николая Ивановича Кибальчича.
Как известно, Кибальчич был активным участником террористического акта, осуществленного народовольцами 1 марта 1881 г. Кибальчич изготовил бомбу, которой был убит Александр II. Находясь в камере смертников, двадцатисемилетний Кибальчич за десять дней до казни подал записку с изложением существа своего предложения, идея которого у него возникла, очевидно, в процессе работы над бомбой.
Фиг. 11. Ракетные снаряды пошли на цель.
Фиг. 12. Так выглядел бы в полете ракетный летательный аппарат Кибальчича.
По мысли Кибальчича, как подъем, так и полет его аппарата должен был осуществляться под действием реактивного эффекта струи газов, образующихся при горении пороха в специальном ракетном двигателе, который должен был поворачиваться для управления полетом (фиг. 12). Помимо того, что в своей записке Кибальчич впервые излагал идею управляемого ракетного полета, чрезвычайно важным и ценным было его указание, что в ракетном двигателе должен применяться медленно горящий порох, спрессованный в виде ряда цилиндрических шашек. Предложение Кибальчича не подверглось рассмотрению, так как чиновники полиции считали, что «это едва ли будет своевременно и может вызвать только неуместные толки» и решили приобщить его к «делу 1 марта». Записка Кибальчича была обнаружена в полицейских архивах, где она пролежала более 36 лет, только в августе 1917 года.
Пороховой ракетный двигатель не нашел себе применения в качестве авиационного главным образом потому, что такой двигатель работает лишь в течение нескольких секунд или даже десятых долей секунды, а регулирование его тяги, необходимое для осуществления управляемого полета, представляет значительные трудности.
Тем не менее пороховой ракетный двигатель довольно широко применялся в авиации во время войны и применяется сейчас. Однако он служит не в качестве основного двигателя самолета, обеспечивающего его полет, а в качестве вспомогательного двигателя, тяга которого используется лишь при необходимости. Такая необходимость в эксплоатации может встретиться, например, когда требуется осуществить взлет перегруженного самолета, либо взлетная площадка мала (применение порохового двигателя может вдвое сократить разбег при взлете), загрязнена и так далее. В этих случаях пороховой двигатель носит название стартового (фиг. 13). В частности, пороховой двигатель может быть использован для запуска самолета или снаряда с прямоточным воздушно-реактивным двигателем, который не в состоянии обеспечить самостоятельный старт.
Пороховой двигатель может быть использован и в качестве ускорителя, когда он включается с целью кратковременного увеличения скорости полета; например, когда нужно догнать противника или уйти от него.
Часто после использования пороховые двигатели сбрасываются; для этой цели они размещаются под крылом самолета (фиг. 14).
Фиг 13. Взлет пассажирского самолета с помощью стартовых ракет (ракеты размещены в фюзеляже).
Фиг. 14. Пороховые ракетные двигатели под крылом бомбардировщика.
Преимущества порохового РД в качестве вспомогательного авиационного двигателя заключаются в его простоте, дешевизне, безотказности, малом весе и вместе с тем значительной тяге, которую такой двигатель развивает в течение короткого времени, что от него в данном случае и требуется.
В заключение следует упомянуть о попытках установить пороховой РД на различных автомобилях, мотоциклах, катерах и так далее, которые делались чаще всего с целью установления новых рекордов скорости и в рекламных целях. Научное и практическое значение этих попыток невелико, так как известно, что применение пороховых ракетных двигателей целесообразно лишь при больших скоростях передвижения, свойственных авиации и артиллерии. На фиг. 15 представлена схема рекордного автомобиля, имевшего сзади батарею пороховых ракетных двигателей. Испытания таких экипажей часто кончались катастрофой.
Фиг. 15. Автомобиль с пороховыми ракетными двигателями.
Основными конструктивными элементами порохового, как и любого другого ракетного двигателя, являются камера сгорания и сопло (фиг. 16).
Благодаря тому, что подача пороха, как и вообще всякого твердого топлива, в камеру сгорания представляет весьма трудную задачу, в пороховых РД весь запас топлива (пороха) размещается в камере сгорания и затем постепенно сгорает. Таким образом, объем камеры сгорания порохового РД определяется количествам размещаемого в ней пороха. По этой причине количество пороха в двигателе не может быть очень большим и пороховой РД обычно работает только несколько секунд (а иногда даже доли секунды).
Порох принадлежит к так называемым метательным взрывчатым веществам, которые в отличие от бризантных взрывчатых веществ не производят дробящего действия при своем разложении. Это объясняется значительно более медленным течением реакции разложения метательных ВВ. Тем не менее скорость горения пороха в стволах артиллерийских орудий весьма значительна. Если бы порох, размещенный в ракетной камере, горел с такой же скоростью, то давление пороховых газов было столь велико, что несомненно разорвало камеру, прочность которой неизмеримо меньше прочности артиллерийских стволов.
Если произойдет такой разрыв камеры, то ракета, конечно, никуда не полетит. С другой стороны, если порох будет гореть очень медленно, то секундный расход газов, а следовательно и тяга, будут малы. Поэтому должны быть приняты специальные меры, обеспечивающие нужную скорость горения пороха в камере сгорания РД. Эти меры в основном сводятся к определенной технологии изготовления пороха для ракетных двигателей.
Как известно, порох был изобретен в XIV веке. Этот порох, так называемый черный, представлял собой смесь селитры, серы и угля и в таком виде применялся в течение более 500 лет. Около 100 лет тому назад был изобретен так называемый бездымный порох, который имеет ряд преимуществ перед черным — он, как показывает его название, не образует дыма и, что очень важно, выделяет больше тепла при сгорании, что в случае ракетного двигателя обеспечивает большую скорость истечения и потому большую тягу. К числу бездымных порохов относятся пироксилиновый, нитроглицериновый и другие пороха. Они отличаются от черного пороха тем, что представляют собой уже не смесь, а однородные химические соединения, которые при реакции горения разлагаются, выделяя значительное количество тепла и образовывая много пороховых газов. В ракетных двигателях в настоящее время обычно применяются различные сорта бездымного пороха. Черный порох иногда применяется в простейших ракетах — фейерверочных и других.
Фиг. 16. Схема порохового ракетного двигателя.
Химическая реакция разложения взрывчатых веществ протекает чрезвычайно быстро. При вспышке взрывчатое вещество разлагается за тысячные и даже десятитысячные доли секунды, скорость детонационной волны достигает тысяч метров в секунду. Но если горение распространяется по заряду с небольшой скоростью, то реакция разложения протекает несравненно медленнее.
Если мы, например, изготовим из бездымного пороха плотный стержень и на открытом воздухе подожжем его с одного конца, то такая пороховая «свечка» будет постепенно сгорать ее скоростью около 1 мм/сек. Правда, для этой цели нужно будет тщательно проследить за тем, чтобы пламя не перебросилось вдоль по стержню по его наружной поверхности, для чего эту поверхность нужно плотно покрыть каким-нибудь изолирующим материалом.
Если мы теперь изготовим из пороха шар и подожжем его с поверхности, то время горения шара, очевидно, будет тем больше, чем больше сам шар. Если наш шар, например, будет иметь радиус 6 см, то он сгорит приблизительно за 1 минуту (вспомните свечку); если же радиус шара будет равен 12 см, то горение пороха будет длиться уже 2 минуты и так далее.
Чем меньше будут пороховые зерна, тем быстрее сгорит порох, так что тонкая пороховая пыль сгорит почти мгновенно, произойдет вспышка, так как химическая реакция будет протекать сразу по огромной суммарной поверхности мельчайших частиц. Следует отметить, что даже сравнительно медленно горящие вещества при сильном размельчении ведут себя так же (взрывается угольная пыль, мука и т. д.). Поэтому время сгорания пороха можно изменять, подбирая размер пороховых зерен. Пистолетный и ружейный порох делается очень мелким, так как в этом случае сгорание должно быть почти мгновенным; артиллерийский порох состоит обычно из довольно больших кусков (с кулак) шарообразной или цилиндрической формы, так как сгорание его должно длиться несколько сотых долей секунды, пока снаряд движется по стволу орудия (фиг. 17).
Судя по вышесказанному можно предположить, что зерна пороха для ракетных двигателей должны быть очень крупными. Первое время, однако, порох для ракет изготовлялся из мельчайших частиц (пороховая мука), но только плотно спрессованных. При таком прессовании внутри порохового заряда сохраняются небольшие воздушные каналы, по которым распространяется горение. Вследствие этого время сгорания получалось гораздо меньшим, чем при сплошном стержне, так как поверхность горения получалась большей. Вместе с тем, вспышки не получалось, если только порох был спрессован достаточно плотно; в противном случае воздушные каналы в заряде оказывались сообщенными между собой и горение мгновенно распространялось по всей массе заряда. При такой технологии изготовления порохового заряда часто применялась так называемая набивка с пролетным пространством, т. е. с выемкой внутри заряда. В этом случае горение распространяется вглубь заряда по всей поверхности пролетного пространства, вследствие чего время сгорания уменьшается. Кроме того, придавая различную форму пролетному пространству, можно до некоторой степени изменять продолжительность сгорания и, следовательно, тягу двигателя по времени.
Фиг. 17. Горение и детонация.
В последнее время сплошная набивка порохом почти не применяется и используется лишь для простейших ракет. Дело в том, что набивные заряды из черного пороха очень чувствительны к атмосферным условиям, в особенности к температуре окружающего воздуха. На холоде или от тряски заряд может растрескаться и, кроме того, между стенкой камеры сгорания и зарядом может образоваться зазор. Все это приводит к резкому уменьшению времени сгорания пороха и вследствие этого к разрыву ракеты. Поэтому в настоящее время пороховой заряд обычно составляется из одной или нескольких шашек в виде полых цилиндров (фиг. 18), а иногда из нескольких сплошных шашек с изолированной каким-либо покрытием наружной поверхностью (такие шашки горят только с торца). Горение полых цилиндрических шашек происходит как по наружной, так и по внутренней поверхности, так что уменьшение наружной поверхности по мере выгорания пороха компенсируется увеличением поверхности горения изнутри трубки. Вследствие этого общая поверхность горения, а потому давление в камере сгорания и тяга двигателя остаются почти постоянными. Иногда для этой цели применяется так называемый профильный порох, как, например, показанный внизу на фиг. 18 (применяются и более сложные формы сечения пороховых трубок), е котором выгорание пороха с торцов компенсируется увеличивающейся поверхностью горения изнутри каналов в порохе.
Следует особенно подчеркнуть, что приготовление порохового заряда даже для простейших ракет является весьма сложным и опасным процессом и никоим образом не должно производиться неопытными людьми.
Фиг. 18. Продолжительность сгорания пороха, а следовательно, и давление в камере, зависят от формы зерен (шашек) пороха.
Воспламенение пороха осуществляется обычно с помощью электричества (фиг. 19); в начале поджигается специальный воспламенитель (чаще всего из черного пороха), от которого уже воспламеняется основной заряд. В результате горения пороха в камере сгорания образуются пороховые газы, имеющие большое давление и высокую температуру. В состав этих газов входят углекислота, угарный газ, водород, азот, пары воды и др.
Фиг. 19. Схема электрического запала пороха при запуске ракетного снаряда.
Температура пороховых газов в камере сгорания достигает 2000–2500 °C; она зависит, главным образом, от теплотворной способности пороха, т. е. от количества тепла, которое выделяется при сгорании 1 кг пороха[7].
Это количество тепла для современных ракетных порохов колеблется от 800 до 900 кал/кг. Следует заметить, что калорийность основной составной части бездымного пороха — нитроклетчатки — выше. Однако необходимость превращения последней в однородную желатинированную пороховую массу заставляет применять растворители, которые снижают калорийность пороха до указанного выше значения.
Теплотворную способность ракетных порохов и вместе с нею скорость истечения и тягу пороховых РД можно было бы повысить, если бы удалось подыскать такие растворители, которые устраняли бы взрывоопасность пороха и вместе с тем были сами достаточно калорийными. Жидкие топлива, применяющиеся в жидкостно-реактивных двигателях, обладают большей калорийностью, чем порох (примерно 1500–2000 кал/кг).
Давление пороховых газов в камере сгорания зависит от размеров проходного сечения сопла, точнее, от соотношения между поверхностью горения пороха и площадью этого сечения. Если бы сопло, через которое образующиеся пороховые газы вытекают в атмосферу, вообще отсутствовало, то давление в камере сгорания было бы очень высоким и достигало тысяч и даже десятков тысяч атмосфер.
В пороховых ракетных двигателях давление газов, конечно, гораздо меньше, так как образующиеся газы вытекают через сопло. Обычно это давление колеблется в пределах от 50 до 200 ата. Чем меньше площадь проходного сечения сопла, тем, при прочих равных условиях, это давление больше. При переходе к конструкции двигателя с повышенным давлением растет скорость истечения и тяга двигателя, но зато приходится делать более толстыми стенки камеры сгорания. Сравнительно небольшое давление по сравнению с давлениями в стволе артиллерийского орудия позволяет делать эти стенки тонкими; так, например, стенки камеры ракетного снаряда калибра 80-100 мм имеют толщину всего несколько миллиметров.
Скорость истечения газов в пороховом РД колеблется от 1500 до 2000 м/сек, в зависимости от применяемого пороха и конструкции сопла двигателя. В простейших пороховых двигателях, например фейерверочных ракетах, это сопло представляет собой простое отверстие в нижней крышке ракеты. В более совершенных двигателях внутреннее сечение сопла представляет собой канал, сначала сужающийся, а затем снова расширяющийся. Такой канал носит название сопла Лаваля и позволяет получать значительно большие скорости истечения[8].
Продолжительность работы порохового РД, вообще ограниченная количеством пороха, которое можно разместить в камере сгорания, зависит также от избранной скорости горения пороха. То же количество пороха можно сжечь за малое время, вследствие чего тяга будет большой, или же увеличить это время, так что тяга станет меньшей. Общее действие двигателя (или общий импульс), представляющее собой произведение тяги на время ее действия, останется при этом практически почти неизменным. Так, например, для одного и того же двигателя можно получить тягу 30 кг в течение 50 секунд или тягу 500 кг в течение 3 секунд; общий импульс в обоих случаях равен 1500 кг сек. Известна конструкция порохового РД, общий импульс которого достигает 45 000-50 000 кг сек; вес ракеты при этом равняется 1,5 тонны.
Применяемые пороховые ракетные двигатели имеют сравнительно небольшие размеры благодаря особенностям этого двигателя. В тех случаях, когда требуется увеличенная тяга, устанавливается несколько двигателей.
Простейшим и наиболее старым пороховым двигателем является фейерверочная ракета. Гильза ракеты (корпус) обычно делается из картона. В более мощных пороховых двигателях гильза изготовляется из латуни, стали или легких сплавов.
Аналогично устроена и градорассеивающая ракета, которая забрасывается с помощью порохового РД на высоту около 1 км, где происходит взрыв специального заряда взрывчатого вещества, находящегося в головке ракеты (фиг. 20). В ряде случаев с помощью таких ракет удавалось предотвратить выпадение града — град заменялся снегом или дождем, что объясняется интенсивным перемешиванием воздуха при взрыве ракеты.
Примерно такую же конструкцию имеют различные сигнальные ракеты, спасательные и другие. Основное отличие этих ракет заключается в том, как снаряжена их головка (несет ли она в себе светящийся состав, парашют и т. д.); двигатели же всех ракет весьма схожи между собой.
Устойчивость ракеты в полете достигается либо установкой специального стабилизатора, либо путем придания ракетному снаряду интенсивного вращения около его продольной оси. В боевых ракетах Константинова стабилизатор представлял собой деревянный стержень, прикрепленный к хвостовой части ракеты и далеко выступавший за ее задний обрез. В современных ракетных снарядах стабилизатор выполняется в виде стальных пластин, составляющих хвостовое оперение ракеты. Иногда устраивают косопоставленное (или спиральное) оперение, благодаря которому ракетный снаряд при полете в воздухе оказывается не только устойчивым, но и приобретает вращение около своей продольной оси, что улучшает кучность боя. Схема снаряда со спиральным оперением изображена на фиг. 21.
Второй способ обеспечения устойчивости ракетного снаряда, именно придание ему интенсивного вращения, как у артиллерийского снаряда, выпускаемого из нарезного орудия, достигается путем замены одного сопла коллектором сопел, расположенных под углом к оси снаряда. Благодаря такому устройству газовая струя, а следовательно и реактивная сила, направлены не только по оси снаряда, но и по касательной к нему, в результате чего снаряд приобретает быстрое вращение. Схема такого снаряда изображена на фиг. 22.
Фиг. 20. Градорассеивающая ракета.
Фиг. 21. Ракета с винтовым стабилизатором.
Фиг. 22. Ракета, вращающаяся под действием выходящих пороховых газов.
На фиг. 23 показано ракетное орудие, снятое в момент выстрела. На снимке видно несколько смонтированных на одной установке легких устройств ферменного типа для запуска ракетных снарядов.
Устройство авиационного ракетного снаряда показано на фиг. 24.
Стартовые пороховые ракетные двигатели, служащие для облегчения взлета самолетов, имеют продолжительность работы 4-10 секунд. В качестве примера приведем данные одного такого двигателя: заряд бездымного пороха — 12 кг, общий вес ракеты — 30 кг, тяга — 500 кг в течение 4 секунд. Обычно применяется батарея из нескольких таких ракет, например, от четырех до шести, так что общая тяга при этом получается равной 2000–3000 кг.
Фиг. 23. Ракетное орудие ведет огонь.
Фиг. 24. Устройство авиационного ракетного снаряда.
В заключение укажем, что были созданы пороховые ракетные двигатели и весьма внушительных размеров с тягой свыше 50 тонн. Однако эти двигатели были рассчитаны на очень кратковременное действие (меньше секунды).