Спустя три года был выдан патент на получение тугоплавких металлов, в частности молибдена, методом порошковой металлургии, которым пользуются и в наше время. Металлический порошок прессуют, спекают, затем подвергают прокатке либо волочению - лента или проволока готова к использованию в технике.
В СССР молибденовую проволоку начали выпускать в 1928 году, а уже спустя три года ее производство на Московском электрозаводе составило 20 миллионов метров.
В последние годы к производству молибдена удалось «подключить» дуговой вакуумный переплав, зонную и электроннолучевую плавку - с такими помощниками дела пошли еще веселее.
...Мы уже говорили о том, что запасы молибденовых руд в земной коре ограничены. Так, быть может, через какое-нибудь время они будут исчерпаны и перед человечеством встанет проблема, где раздобыть столь нужный металл?
Нет, пока мы можем быть спокойны за судьбу своих потомков. Ведь, помимо земной коры, громадные количества самых различных элементов содержатся в водах океанов и морей. Если морские богатства разделить поровну между всеми жителями нашей планеты, то каждый из нас станет обладателем несметных сокровищ. Достаточно сказать, что одного только золота Нептун может выдать из своих кладовых примерно тонны по три на душу населения. Вот уже действительно «золотое дно»! А что касается молибдена, то его мы бы получили тонн по сто на брата.
Люди пока еще только пытаются подобрать ключи к голубым «сундукам» Нептуна. Но подберут. Обязательно подберут.
Ag
Cd
In
Sn
Cs
Ba
La
Hf
Au
Hg
Tl
Pb
ИЗ «ПЛЕМЕНИ» БЛАГОРОДНЫХ
Александр Македонский вынужден отступить. - «Священные сосуды» Кира. - Серебряные подковы. - Вторая древнейшая профессия. - Рождение рубля. - Монархи грешат. - Хитрость русских бояр. - Юбилей Монетного двора. - Вице-губернатор получает наказ. - Тайна Невьянской башни. - Фамильное серебро. - Сервиз графа Орлова. - Сережечники не в счет. - Работа в фотографии. - «Пострадавший» циклон. - Зеркало - не роскошь. - С «Трешером» на дно. - Чемпион среди металлов. - История с географией. - Королева благословляет пирата. - Ночное веселье. - На морском дне. - Оплошность флоридского рыбака. - Находка аквалангиста. - Фиппс топает ногой. - Сон в руку?
Одерживая одну победу за другой, войско Александра Македонского неудержимо продвигалось на восток. Покорены Персия и Финикия,
Египет и Вавилон, Бактрия и Согдиана. В 327 году до н. э. греки вторглись в пределы Индии. Казалось, нет такой силы, которая могла бы остановить грозную армию великого полководца. Но внезапно среди греческих воинов начались тяжелые желудочно-кишечные заболевания. Истощенные и обессиленные солдаты взбунтовались, требуя возвращения домой. Как ни влекла царя жажда новых завоеваний, он вынужден был повернуть назад.
Но вот, что любопытно: военачальники греческой армии заболевали во много раз реже, чем рядовые воины, хотя вместе с ними делили тяготы и невзгоды походной жизни.
Более двух тысячелетий понадобилось ученым, чтобы найти причину этого загадочного явления: суть ее в том, что солдаты греческой армии пили в то время из оловянных бокалов, а военачальники - из серебряных.
Оказывается, серебро обладает замечательным свойством. Будучи растворено в воде, оно убивает находящиеся в ней болезнетворные бактерии, причем, чтобы обезвредить литр воды, достаточно нескольких миллиардных долей грамма серебра. Вот почему пользовавшаяся серебряными кубками армейская знать была в значительно меньшей степени подвержена заболеваниям, чем простые воины.
Историк античного мира Геродот рассказывает, что еще в V веке до н. э. персидский царь Кир во время походов сохранял питьевую воду в серебряных «священных сосудах». В индийских религиозных книгах также встречаются упоминания о том, как обеззараживали воду, погружая в нее раскаленное серебро. Во многих странах существовал обычай при освящении колодцев бросать в них серебряные монеты.
Пожалуй, водоочистительную деятельность серебра можно считать древнейшей профессией этого металла. Правда, порой по прихоти некоторых влиятельных особ ему приходилось заниматься совсем нелепыми делами. Так, известный своим расточительством римский император Нерон не нашел ничего лучшего, как подковать серебром тясячи своих мулов. Но это было не более чем эпизодом в биографии серебра. Его вторая древнейшая профессия - ей металл посвятил всю свою жизнь - заключалась в том, чтобы быть мерилом ценности, служить деньгами.
Древние римляне начали чеканить серебряные монеты с 269 года до н. э. - на полстолетия раньше, чем золотые. На Руси собственные монеты появились значительно позже. Сохранились серебряные монеты («сребреники») русского князя Владимира. На одной стороне их изображен князь, сидящий на престоле («столе»), а на другой - родовой знак. Надпись на монете гласит: «Володимир на столе, а се его серебро».
В XII и XIII веках русские монеты исчезли из обращения. К этому времени объединенные в Киевскую Русь земли вновь распались на отдельные княжества и чеканка единой для всей страны монеты прекратилась. Деньгами снова стали служить слитки серебра. Это время историки называют безмонетным периодом.
Тогда-то, в XIII веке, и родился на свет «рубль» - удлиненный брусок серебра, весивший примерно 200 граммов. В некоторых письменах рубль называют еще рублевой гривенкой. Рублевые гривенки изготовляли так: сначала отливали длинный и узкий слиток серебра, а затем зубилом рубили его на части - гривны. Эти гривны и называли рублевыми или просто рублями.
Монголо-татарское иго также задержало возобновление чеканки русских денег. В обращении находились выпускаемая Золотой Ордой серебряная монета диргема, или денга (по-татарски «денга» - звенящий). Постепенно слово «денга» перешло в нашем языке в «деньги».
Лишь в середине XIV века, когда русскому народу удалось ослабить монголо-татарское иго, на Руси вновь стали чеканить собственные монеты.
В 1534 году, во время правления Елены Глинской - матери Ивана Грозного - была создана единая для всего русского государства денежная система. На мелкой серебряной деньге изображали всадника с мечом - монеты получили название мечевых. На деньгах крупного веса, тоже серебряных, чеканили всадника, вооруженного копьем. Такие монеты стали называть копейными - отсюда и произошло слово «копейка».
Сейчас уже трудно докопаться до истины, но, вероятно, с появлением первых денег появились и первые фальшивомонетчики. Подделкой денег грешили даже некоторые монархи. Французский король Филипп IV Красивый, живший на рубеже XIII и XIV веков, в ряде исторических документов именуется Филиппом-Фальшивомонетчиком. Для увеличения собственного достояния он беззастенчиво уменьшал вес золотых и серебряных монет либо частично заменял в них благородные металлы медью или оловом. Не случайно великий поэт Данте, рисуя картины ада, поместил в него в числе прочих грешников и Филиппа IV.
К XVII веку относится подделка денег, осуществленная в государственных масштабах. Шел 1654 год. Изнурительная война с Польшей, которую вела Россия, опустошила казну, а потребность в деньгах все возрастала. Царь Алексей Михайлович увеличил и без того большие налоги, но обнищавший народ уже не в состоянии был их платить. И тогда боярин Федор Ртищев придумал способ, который, как он полагал, мог обогатить казну, а на самом деле привел к пагубным последствиям.
В то время в России ходили серебряные деньги. Поскольку своего серебра тогда русское государство не имело, монеты изготовляли из .... иностранных монет. Обычно для этой цели использовали западноевропейские иоахимсталеры (их чеканили в чешском городе Иоахимстале), или, как их называли в России, «ефимки»: на них сбивали латинскую надпись и ставили русскую. По совету Ртищева и других бояр царь попытался извлечь пользу из переделки. Ефимок обходился казне в 50 копеек, а царь приказал ставить на нем рублевый штемпель. Наряду с этим решено было выпускать полтинники, полуполтинники, алтыны, гривенники и копейки из дешевой меди. Ценить же их было велено как серебряные. По подсчету царских финансистов, эта реформа обещала дать казне 4 миллиона рублей дохода - в 10 раз больше того, что давали в год все налоги! От таких сумм у царя вскружилась голова, и он повелел делать новые монеты «наспех, днем и ночью, с великим радением... чтобы денег вскоре наделать много».
Дешевые деньги наводнили Россию. Но в денежном обращении существуют свои законы, которые не подвластны даже монархам. Если денег выпущено больше, чем положено, их покупательная способность падает и, как следствие, повышаются цены на все товары. Это и произошло в русском государстве. Простой люд очень быстро почувствовал на себе последствия царской реформы. Резко возросли цены на хлеб и другие продукты, причем в уплату за товар торговцы требовали только серебро. Но где же его было взять, если оно в больших количествах оседало в царских хранилищах? В стране начался голод. Чаша народного терпения переполнилась, и в 1662 году в Москве вспыхнуло восстание - «Медный бунт». Восстание было жестоко подавлено царем, но все же народ добился своего: медные деньги были изъяты из обращения и заменены серебряными.
Во время царствования Петра I изготовление денег было сосредоточено на Московском денежном дворе, расположенном в районе, который назывался Китай-городом. В 1711 году сенат «приговорил: серебряные деньги делать на одном Денежном дворе, что в Китае». Позднее, в 1724 году, по указу царя был учрежден Монетный двор в Санкт-Петербурге. Это предприятие - Ленинградский монетный двор - действует поныне и недавно отметило свой двухсотпятидесятилетний юбилей.
Петр I принимал энергичные меры, чтобы расширить добычу золота и серебра. Но, несмотря на достигнутые им результаты, еще долго продолжалась закупка этих ценных металлов за границей. Сохранились любопытные документы, свидетельствующие об этом. Так, в 1734 году правительство поручило иркутскому вице-губернатору купить в Китае большое количество серебра.
Примерно в то же время рудознатцам Акинфия Демидова - представителя могущественной династии уральских горнозаводчиков - удалось обнаружить залежи серебряных руд. По действовавшим тогда государственным законам, серебряная руда, где бы и кем бы она ни была найдена, поступала в собственность императорского двора. Но Демидов не желал расставаться с новыми богатствами. Он начал чеканить свои монеты, ничем не отличающиеся от царских. Впрочем, отличие все же было: демидовские деньги содержали больше серебра, чем государственные. Должно быть, это единственный случай в истории, когда фальшивые деньги были ценнее настоящих.
Если верить легенде, в Невьянске - вотчине Демидовых - находился подпольный монетный двор. Здесь в подвале высокой башни прикованные к стенам рабы днем и ночью чеканили фальшивые деньги. Это была ужасная тюрьма, откуда никто не мог выйти, чтобы тайна Невьянской башни не стала известна правительству. Но, несмотря ни на что, слухи о ней все же просачивались в столицу. Сначала это были только слухи, и даже сама императрица Анна Иоановна не рисковала портить отношения с некоронованным царем Урала. Правда, рассказывают, что однажды, получая при игре с Демидовым в карты выигрыш новенькими серебряными монетами, она неожиданно спросила его: «Твоей или моей работы,
Никитич?» Тот встал из-за стола, развел руками и, склонив голову, с улыбкой ответил: «Мы все твои, матушка-государыня: и я - твой, и все мое - твое!».
Но вскоре произошло событие, которое положило конец тайному монетному двору. Один из демидовских мастеров, спасаясь от гнева хозяина, сумел бежать иг Невьянска в Петербург. Как только об этом узнал Демидов, он снарядил погоню, приказав догнать и убить беглеца, а если это не удастся сделать, - скакать что есть сил в столицу и сообщить императрице «радостную весть» об открытии залежей серебра.
Беглец не был пойман - пришлось сообщить «радостную весть». В Невьянск направилась комиссия для приема серебряных богатств. За два дня до ее приезда Акинфий распорядился открыть шлюзы, отделявшие подвал башни от озера, и все находившиеся там рабочие - главные свидетели демидовского преступления - навеки остались под водой.
Серебро издавна применяли и в ювелирном деле: из него изготовляли чайные и столовые сервизы, кубки, бокалы, пудреницы, портсигары, табакерки и другие предметы роскоши. Большую слабость к изделиям из этого металла питала русская и французская аристократия, для которой «фамильное серебро» служило как бы визитной карточкой, свидетельствующей о знатном происхождении и богатстве его владельцев. Уникальный сервиз принадлежал графу Орлову: в него входило 3275 предметов, для изготовления которых было израсходовано около двух тонн чистого серебра!
Издавна славились новгородские серебряных дел мастера, создавшие свою неповторимую школу резьбы и чеканки по серебру. Изготовленные ими кубки, чаши, стаканы поражали современников красотой узора. Найдены записи, свидетельствующие, что в конце XVI века в Новгороде работало около ста крупных мастеров-серебряников, а крестечникам, сережечникам, колечникам (так называли мелких ремесленников - по виду выпускаемой продукции) не было числа. Сохранившиеся изделия замечательных новгородских художников по серебру экспонируются в Оружейной палате, Государственном историческом музее, Русском музее в Ленинграде.
Роль металла, украшающего быт человека, серебро не потеряло и в наши дни, но сегодня у него находится много, пожалуй, более серьезных и важных дел. С тех пор как в 1839 году французский художник и изобретатель Дагер разработал способ получения изображения на светочувствительных материалах, серебро неразрывно связало свою судьбу с фотографией. Тончайший слой бромистого серебра, нанесенный на фотографическую пленку или бумагу, и является «главным действующим лицом» в этом процессе. Под влиянием световых лучей, падающих на пленку, бромистое серебро распадается. Бром при этом химически связывается с имеющейся в слое желатиной, а серебро выделяется в виде мельчайших кристалликов, невидимых даже в обычный микроскоп. Степень разложения бромистого серебра зависит от силы освещения: чем оно ярче, тем больше выделится серебра.
Дальнейшая обработка (проявление и фиксация) позволяет получить на пленке негативное изображение, которое затем в истинном виде переносится при печати на фотобумагу. Как ни усовершенствовалась за более чем вековое существование фотография, она по-прежнему немыслима без серебра и его соединений.
Интересную и полезную работу нашли ученые иодистому серебру: с его помощью удается довольно успешно бороться с ...тропическими циклонами. Ко каким же образом? Чтобы уменьшить разрушительную силу циклона, его нужно как бы растянуть, т. е. увеличить в диаметре. Добиться этого и помогает иодистое серебро, способное конденсировать атмосферную влагу в капельки дождя.
Такие опыты уже проводили. Первым «пострадал» лет десять назад ураган «Бейла». На его пути при помощи самолетов поставили завесу из иодисто-серебряной взвеси высотой 10 и длиной 30 километров. Несмотря на столь внушительные размеры для ее «устройства» понадобилось всего несколько центнеров иодистого серебра. Налетев на завесу, ничего не «подозревавший» циклон свернул ее в «трубочку» и поглотил. В тот же момент облачная стена вокруг его центральной части, называемой «глазом», распалась, пролившись дождем, и скорость урагана резко упала. Правда, он «не растерялся» и вновь начал создавать облачную стену, но уже гораздо большего диаметра, а значит, движущуюся значительно медленнее, чем прежде. Разрушительная сила «посеребренного» циклона стала намного меньше.
С середины прошлого века и по сей день серебро используют в производстве зеркал. Стекло, покрытое тонким слоем серебра, обладающего максимальной из всех металлов отражательной способностью, служит не только предметом нашего быта, но и инструментом врачей, деталью телескопов, микроскопов и других оптических приборов.
Ни один металл не может сравниться с серебром по «умению» проводить тепло и электрический ток. Из него делают проволоку для точнейших физических приборов, изготовляют наиболее ответственные клеммы разнообразных реле, серебряными припоями паяют важные детали радиоаппаратуры.
В многочисленных автоматических устройствах, космических ракетах и подводных лодках, счетно-вычислительных машинах и ядерных установках, средствах связи и сигнализации непременно имеются контакты. За свою долгую службу каждый из них срабатывает миллионы раз. Чтобы выдержать такую колоссальную нагрузку, контакты должны быть износостойкими, надежными в эксплуатации, отвечающими ряду электротехнических требований. Материалом для контактов обычно служит серебро. У специалистов нет к нему претензий: металл отлично справляется с этой трудной ролью. Особенно высокие качества демонстрирует серебро, если к нему добавить редкоземельные элементы. Срок службы таких контактов возрастает в несколько раз.
По данным зарубежной печати, детали сопел некоторых реактивных двигателей изготовляют из пористого вольфрама, пропитанного серебром. Немногим, видимо, известно и то, что с обломками американской подводной лодки «Трешер», загадочно исчезнувшей в океанских пучинах, на дно легло несколько тонн серебра, использованного в ее аккумуляторах.
Серебро настолько пластично, что из него можно изготовить прозрачный листик толщиной всего 0,00003 сантиметра, а серебряная крупица, которая весит 1 грамм, может быть превращена в проволоку длиной около 2 километров!
Чистое серебро - красивый белый металл. Этим и объясняется его латинское название «аргентум», произошедшее от заимствованного из санскритского языка слова «аргента», что означает «светлый».
Поскольку речь зашла о названиях, расскажем об одном не лишенном интереса факте. Географическая карта не раз служила «подсказкой» при выборе имени для вновь открытых химических элементов. Взгляните на таблицу Менделеева - вам охотно подтвердят это германий и франций, европий и америций, скандий и калифорний. Таких примеров много, а вот случай, когда крупная река и даже целое государство получили название в честь металла, пожалуй, уникален. Металлом, которому суждено было попасть в «историю с географией», оказалось серебро. Произошло это более четырех столетий назад при следующих обстоятельствах.
В начале XVI века испанский мореход Хуан Диас де Солис, плавая вдоль берегов Южной Америки, обнаружил устье большой реки, которую он без ложной скромности назвал своим именем. Спустя десять лет вверх по течению этой реки довелось плыть капитану Себастьяну Каботу. Он был поражен количеством серебра, которое его матросы награбили у местных жителей, живших на берегах реки. Кабот решил назвать ее Ла-Платой, т. е. серебряной (по-испански «плата» - серебро). Отсюда впоследствии произошло и название всей страны. В начале XIX века владычество Испании кончилось, и, чтобы не вспоминать об этом печальном периоде, жители страны латинизировали ее название. Так и возникло название «Аргентина» (серебро по-латыни - «аргентум»).
Существует и другая легенда, в которой серебро также фигурирует в качестве «крестного отца» при рождении географического названия. В 1577 году от берегов Англии отошла группа кораблей, которыми командовал вновь испеченный адмирал Фрэнсис Дрейк. Высокий морской чин был пожалован ему королевой Елизаветой за многолетнюю и плодотворную... пиратскую деятельность. Да и целью нового плавания с тайного благословления королевы, был грабеж принадлежащих Испании городов тихоокеанского побережья Южной Америки. Елизавета и ее знатные вельможи, ставшие «акционерами» общества «Дрейк и К°» по насильственному изъятию ценностей, рассчитывали нажиться с помощью «железного пирата», имя которого было слишком хорошо известно мореплавателям всех стран.
В течение нескольких месяцев эскадра Дрейка бороздила моря и океаны, добросовестно «трудясь» на благо королевы. В многочисленных баталиях Дрейк потерял четыре корабля из пяти, но его флагман «Золотая лань» своими дерзкими и внезапными налетами по-прежнему наводил ужас на жителей прибрежных городов. Однажды под вечер, когда уже стемнело, пират появился вблизи Кальяо, где стояло на рейде около тридцати испанских судов. Смелости Дрейку было не занимать: «Золотая лань» вошла в гавань и простояла всю ночь бок о бок с кораблями противника. Испанские моряки, изрядно хлебнувшие рому, далеко за полночь веселились на палубах и громко рассуждали о кораблях, которые незадолго до этого покинули порт с ценными грузами. Один из них - королевский галеон «Какафуэго», по словам моряков, был буквально набит сокровищами. Узнав об этом, Дрейк без промедления снялся с якоря и устремился в погоню.
Корабль пиратского адмирала не случайно именовался «Золотой ланью»: редкое судно могло поспорить с ним в быстроте. Не мудрено, что уже вскоре у берегов Эквадора «Какафуэго» был взят на абордаж. Вот как описывает дальнейшие события один из помощников Дрейка: «На следующее утро начался осмотр и подсчет, длившийся шесть дней... Мы нашли здесь драгоценные камни, тринадцать ящиков серебряной монеты, восемьдесят фунтов золота, двадцать шесть бочек нечеканенного серебра... В исходе шестого дня мы простились и расстались с хозяином судна: он, несколько облегченный, поспешил в Панаму, а мы - в открытое море».
Дальновидный Дрейк понимал, что «Золотой лани» еще предстоит очень долгое плавание. Не исключено, что испанцы попытаются вернуть захваченные пиратами богатства (которые они, в свою очередь, награбили у населения Южной Америки), а ход перегруженного ценным металлом корабля убавился. Здравый смысл или алчность? Дрейк принял правильное решение: сорок пять тонн нечеканенного серебра полетели за борт. В память о серебряных сокровищах, с которыми ему пришлось расстаться, адмирал пират назвал находящийся неподалеку островок Ла-Платой.
Этот случай, разумеется, далеко не единственный, когда золото, серебро и другие драгоценности оказывались на морском дне. За многовековую историю мореплавания тысячи кораблей терпели по разным причинам крушения и отправлялись в морскую бездну, порой унося с собой несметные богатства. Они-то издавна и не дают покоя многочисленным искателям кладов.
Неохотно отдает океан свою добычу людям, но они снова и снова предпринимают попытки завладеть покоящимися на дне драгоценностями. История подводного кладоискательства накопила немало интересных фактов и событий. О некоторых из них, связанных с серебром, пойдет речь ниже.
В 1939 году у берегов Флориды, к юго-востоку от острова Пиджен-Кейс, один старый рыбак поднял с небольшой глубины несколько тяжелых продолговатых камней. В течение какого-то времени он использовал их в качестве балласта для своей лодки, а затем выбросил в море. Случайно остался лишь один камень, который старик приспособил под «наковальню» и выпрямлял на нем молотком гвозди. Прошло два года. От частых ударов камень стал почему-то мягким и начал блестеть. И тут-то рыбака осенило, что его «наковальня» представляет собой слиток чистого серебра. Однако, вместо того чтобы радоваться, рыбак едва не зарыдал от жалости к самому себе. Какой же он старый дурак, если мог своими руками выбросить за борт посланные ему богом сокровища. О горе, горе!..
Но еще не все потеряно. Скорей туда, к тому месту, где лежит множество - старик видел это своими глазами - точно таких же бесценных камней! Рыбак избороздил все бухты вдоль и поперек, но время безжалостно стерло в памяти ту ничем не примечательную гряду рифов, у которых он достал со дна балластные «камни» - слитки серебра с затонувшего когда-то поблизости старинного галеона.
Более удачливым оказался американский аквалангист Мак-Ки. В мае 1949 года он занимался подводными съемками на побережье Флориды, неподалеку от рифов Ки-Ларго. Однажды на двадцатиметровой глубине Мак-Ки заметил обломки какого-то корабля. Тщательно осмотрев судно, пловец обнаружил несколько пушек, якорь и три тяжелых бруска продолговатой формы. Мак-Ки не поленился поднять их на поверхность и был с лихвой вознагражден: бруски оказались слитками чистого серебра с клеймом «NATA». Когда он принес находку в вашингтонский исторический музей, специалисты определили, что это клеймо принадлежит древнему серебряному руднику в Панаме, а обнаруженный аквалангистом корабль - один из четырнадцати испанских галеонов, которые погибли во время чудовищного урагана, пронесшегося в тех местах весной 1715 года.
И флоридский рыбак, и Мак-Ки стали кладоискателями, сами того не ожидая. Значительно чаще поиски затонувших сокровищ проводятся по заранее продуманному плану. Но и участники специально снаряженных подводных экспедиций частенько возвращаются на берег с пустыми руками. Иногда же успех приходит тогда, когда, казалось бы ждать его уже неоткуда. Именно при таких обстоятельствах фортуна улыбнулась некому Уильяму Фиппсу, который в конце XVII века по заданию короля Англии Джеймса II пытался достать сокровища испанского галеона, затонувшего у Багамских островов.
Шли дни, недели, месяцы, но экспедиции все не удавалось обнаружить останки погибшего корабля. Истек год, и Фиппс, наконец, решил признать себя побежденным.
Созвав своих главных помощников на совещание, он объявил им о прекращении поисков, и при этом в сердцах топнул под столом ногой. От удара из-под стола выкатился какой-то предмет, похожий на кусок кораллового нароста, но подозрительно правильной формы. Ударом топора Фиппс разбил его - внутри оказался небольшой ящик из твердого дерева. Еще удар топора, и на пол посыпались золотые и серебряные монеты.
Этот «кусок коралла» принес и бросил под стол один из нырял ыдиковиндейцев. В том месте, где была обнаружена находка, тотчас же спустили под воду несколько ныряльщиков, которые доставили на палубу еще с десяток таких же предметов.
Работа закипела. Фиппс и сам не раз спускался на дно в сооруженном им подводном колоколе. За три месяца экспедиция сумела поднять на поверхность тридцать тонн серебра, немало золота и множество ящиков с монетами. Общая стоимость добытых сокровищ составила триста тысяч фунтов стерлингов (по современному курсу - более миллиона фунтов).
Совсем недавно серебро, добытое из пучин, стало причиной чуть ли не международного скандала. А началось все с того, что летом 1972 года американский археолог Роберт Маркс, сотрудник компании «Сифайндерс», занимающейся поисками сокровищ на дне морей и океанов, обнаружил в 45 милях севернее Багамских островов затонувший испанский галеон. Через несколько дней уже закипела работа по поднятию грузов с корабля. Вскоре удалось установить, что судно затонуло в 1656 году, а как показало изучение документов, на его борту находилась крупная партия серебра и драгоценностей. Их стоимость составляла около двух миллионов рублей.
Поскольку обитатели подводного царства совершенно равнодушны к серебру, нетрудно было предположить, что все оно в целости и сохранности покоится в трюме или каютах галеона. И Епрямь - спустя две-три недели на поверхность были подняты первые партии сокровищ. Руководители компании не без основания (и уж, конечно, не без удовольствия) потирали руки в надежде на хороший куш, как вдруг возникли неожиданные затруднения: правительство Багамских островов, узнав об этой находке, заявило о своих притязаниях на серебро и вообще на весь клад. Работы пришлось прекратить, а конфликт принял такие размеры, что в дело вмешался даже государственный департамент США. Его представитель заявил, что затонувший корабль находится не в территориальных, а в международных водах и потому правительство Багамских островов не вправе рассчитывать на его «содержимое». Спор затянулся, и чем он кончится - трудно сказать.
Несмотря на то что подобные удачи крайне редки, армия подводных «искателей счастья» постоянно растет. Разумеется, сегодняшний аквалангист имеет больше шансов на успех, чем, допустим, ныряльщик Фиппса, который мог рассчитывать лишь на собственные легкие, тем не менее океан не спешит расстаться со своими богатствами, ч веками покоящимися на его дне.
Серебряные клады довольно часто отыскиваются и на земле. Совсем недавно, например, клад в тысячу арабских серебряных монет был найден на шведском острове Готланд, причем при довольно любопытных обстоятельствах. Нашел его... кролик - обыкновенный серый кролик, который пожелал отрыть себе нору в окрестностях небольшого городка Бюрс. В ходе «строительных работ» на зверька вдруг обрушился град металлических кругляшек, и бедняга приложил немало усилий, чтобы вышвырнуть их подальше из норы. Вскоре они попались на глаза археологам, проводившим раскопки на острове. Монеты были переданы в Стокгольмский исторический музей, и специалисты сумели раскрыть тайну этого клада.
Когда-то в старину Готланд был одним из богатейших торговых центров Европы, куда съезжались купцы из многих стран. Сотни и тысячи серебряных монет переходили из рук в руки, но порой скапливались у наиболее удачливых торговцев. Иногда эти богатства попадали в руки викингов, совершавших походы на остров с отнюдь не познавательными целями. По преданию, клад, найденный кроликом, был зарыт в землю в те далекие времена одним из предводителей викингов Ставером. И вот что интересно: на протяжении многих десятилетий народная молва утверждала, будто бы примерно полтора века назад подвыпившему готландскому крестьянину приснился черт, который дал ему горсть серебряных монет якобы из клада Ставера и под большим секретом сообщил, что через пять поколений люди найдут весь клад, припрятанный могущественным викингом «на черный день».
Имела ли эта легенда какие-нибудь реальные основы - трудно сказать. Но как бы то ни было, именно через пять поколений на том самом месте, которое фигурировало в легенде, клад был обнаружен. Не ясно только одно: почему черт решил скрыть от крестьянина такое важное обстоятельство, что главную роль в этой находке суждено сыграть кролику.
Sr
Y
Zr
Nb
Cd
In
Sn
Sb
Ba
La
Hf
Ta
«ТВЕРДЫЙ», НО... МЯГКИЙ
Гибель экспедиции. - «Оловянная чума». - Шутки русской зимы. - Пропажа пуговиц. - Во всем виноваты ведьмы. - Атомы располагаются посвободней. - «Вакцина» против «чумы». - «Оловянный крик». - Конкурентов нет. - Судьба оловянного солдатика. - Твердый или мягкий? - Находка в могиле. - Гефест снаряжает Ахилла. - Деньги ацтеков. - Юлий Цезарь может подтвердить. - Король был неправ. - Весомый экспонат. - На вечном поселении. - Поиски в Святом Носу? - Стекло фирмы «Форд мотор». - «Ловушка» для солнца. - Провал «банковской операции». - Олово «жертвует» собой.
В 1910 году английский полярный исследователь капитан Роберт Скотт снарядил экспедицию, целью которой было добраться до Южного полюса, где в то время еще не ступала нога человека. Много трудных месяцев продвигались отважные путешественники по снежным пустыням антарктического материка, оставляя на своем пути небольшие склады с продуктами и керосином - запасы на обратную дорогу.
В начале 1912 года экспедиция, наконец, достигла Южного полюса, но к своему великому разочарованию Скотт обнаружил там записку: выяснилось, что на месяц раньше здесь побывал норвежский путешественник Руаль Амундсен. Но главная беда поджидала Скотта на обратном пути. На первом же складе не оказалось керосина: жестянки, в которых он хранился, стояли пустые. Уставшие, продрогшие и голодные люди не могли согреться, им не на чем было приготовить пищу. С трудом добрались они до следующего склада, но и там их встретили пустые банки: весь керосин вытек. Будучи не в силах сопротивляться полярной стуже и страшным буранам, разразившимся в это время в Антарктиде, Роберт Скотт и его друзья вскоре погибли.
В чем же крылась причина таинственного исчезновения керосина? Почему тщательно продуманная экспедиция окончилась так трагически? Какую ошибку допустил капитан Скотт?
Причина оказалась простой. Жестяные банки с керосином были запаяны оловом. Должно быть, путешественники не знали, что на морозе олово «заболевает»: блестящий белый металл сначала превращается в тусклосерый, а затем рассыпается в порошок. Это явление, называемое «оловянной чумой», и сыграло роковую роль в судьбе экспедиции.
А ведь подверженность олова «заболеванию» на холоде была известна задолго до описанных событий. Еще в средние века обладатели оловянной посуды замечали, что ча морозе она покрывается «язвами», которые постепенно разрастаются, и в конце концов посуда превращается в порошок. Причем стоило «простудившейся» оловянной тарелке прикоснуться к «здоровой», как та вскоре тоже начинала покрываться серыми пятнами и рассыпалась.
В конце прошлого века из Голландии в Россию был отправлен железнодорожный состав, груженный брусками олова. Когда в Москве вагоны открыли, в них обнаружили серый ни на что не пригодный порошок - русская зима сыграла с получателями олова злую шутку.
Приблизительно в эти же годы в Сибирь направилась хорошо снаряженная экспедиция. Казалось, все было предусмотрено, чтобы сибирские морозы нё помешали ее успешной работе. Но одну оплошность путешественники все же допустили: они взяли с собой оловянную посуду, которая вскоре вышла из строя. Пришлось вырезать ложки и миски из дерева. Лишь тогда экспедиция смогла продолжить свой путь.
В самом начале XX века в Петербурге на складе военного оборудования произошла скандальная история: во время ревизии к ужасу интенданта выяснилось, что оловянные пуговицы для солдатских мундиров тсчезли, а ящики, в которых они хранились, доверху заполнены серым порошком. И хотя на складе был лютый холод, горе-интенданту стало жарко. Еще бы: его, конечно, заподозрят в краже, а это ничего, кроме каторжных работ, не сулит. Спасло бедолагу заключение химической лаборатории, куда ревизоры направили содержимое ящиков:
«Присланное вами для анализа вещество, несомненно, олово. Очевидно, в данном случае имело место явление, известное в химии под названием „оловянная чума”».
Какие же процессы лежат в основе этих превращений олова? В средние века невежественные церковники считали что «оловянная чума» вызывается наговорами ведьмы, и поэтому многие ни в чем не повинные женщины были сожжены на «очистительных» кострах.
С развитием науки нелепость таких утверждений становилась очевидной, но найти истинную причину «оловянной чумы» ученые еще долго не могли.
Лишь после того, как на помощь металловедам пришел рентгеновский анализ, позволивший заглянуть внутрь металлов и определить их кристаллическое строение, удалось полностью реабилитировать «ведьм» и дать подлинно научное объяснение этому загадочному явлению. Оказалось, что олово (как, впрочем, и другие металлы) может иметь различнбш кристаллические формы. При комнатной и более высокой температуре самой устойчивой модификацией (разновидностью) является белое олово - вязкий, пластичный металл. При температуре ниже 13°С кристаллическая решетка олова перестраивается так, чтобы атомы расположились в пространстве менее плотно. Образующаяся при этом новая модификация - серое олово - уже теряет свойства металла и становится полупроводником. Внутренние напряжения, которые возникают в местах контакта разных кристаллических решеток, приводят к тому, что материал трескается и рассыпается в порошок. Одна модификация переходит в другую тем скорее, чем ниже окружающая температура. При - 33°С скорость этого превращения достигает максимума. Вот почему сильные морозы так быстро и безжалостно расправляются с оловянными изделиями.
Но ведь олово широко применяют для пайки радиоэлектронной (особенно полупроводниковой) аппаратуры, для полуды проводов и различных деталей, вместе с которыми оно попадает и в Арктику, и в Антарктиду, и в другие холодные места нашей планеты. Значит, все эти приборы, в которых использовано олово, быстро выходят из строя? Разумеется, нет. Ученые научились делать олову «прививки», обеспечивающие металлу иммунитет против «оловянной чумы». Подходящей для этой цели «вакциной» служит, например, висмут. Атомы висмута, поставляя дополнительные электроны в решетку олова, стабилизируют его состояние, что полностью исключает возможность «заболевания».
Чистое олово обладает очень любопытным свойством: при изгибе прутков или пластинок этого металла слышен легкий треск - «оловянный крик». Этот характерный звук возникает вследствие взаимного трения кристаллов олова при их смещении и деформации. Сплавы же олова с другими металлами в подобных ситуациях, как говорится, «держат язык за зубами».
Почти половина всего добываемого в мире олова расходуется сегодня на производство белой жести, используемой главным образом для изготовления консервных банок. Здесь в полной мере проявляются ценные качества металла: его химическая устойчивость по отношению к кислороду, воде, органическим кислотам и, вместе с тем, полная безвредность его солей для человеческого организма. Олово прекрасно справляется с этой своей ролью и практически не знает конкурентов. Не случайно его называют «металлом консервной банки». Благодаря тончайшему слою олова, покрывающему жесть, люди имеют возможность подолгу хранить миллионы тонн мяса, рыбы, фруктов, овощей, молочных продуктов.
Прежде для нанесения оловянного покрытия применяли горячий способ, при котором очищенный и обезжиренный лист железа погружали в расплавленное олово. Если же надо было полудить еще одну сторону листа, ее очищали, нагревали и натирали оловом. Сейчас этот способ уже сдан в архив, а на смену ему пришло лужение в гальванических ваннах.
Рано или поздно каждая консервная банка попадает на мусорную свалку, но олову (а в одной банке его примерно полграмма) не грозит быть здесь навеки погребенным: человек заботится о том, чтобы извлечь ценный металл и вновь использовать для своих нужд. Отделить олово от жести несложно: ведь олово легко растворяется в щелочах, а из щелочного раствора его извлекают при помощи электрического тока. Для этой цели пользуются и другим свойством олова: оно «охотно» вступает во взаимодействие с хлором. Если над старой банкой пропустить струю сухого хлора, образуется летучее хлорное олово, извлечь из которого олово уже не представляет труда.
Олово - сравнительно легкоплавкий металл. Помните, как в сказке Ганса Христиана Андерсена мгновенно растаял в огне стойкий оловянный солдатик, когда злой мальчик бросил его в печку? Легкоплавкость олова обусловила широкое применение этого металла в качестве основного компонента припоев.
Интересно отметить, что сплав олова (16%) с висмутом (52%) и свинцом (32%) может расплавиться даже в кипятке: температура плавления этого сплава всего 95°С, в то время как его составляющие плавятся при значительно более высокой температуре: олово - при 232°С, висмут - при 271°С, а свинец - при 327°С. Еще более охотно переходят в жидкое состояние сплавы, в которых олово служит добавкой к галлию и индию: известен, например, сплав, плавящийся уже при 10,6°С. Сплавы такого типа применяют в электротехнике как предохранители.
Олово входит также в состав различных бронз, типографских сплавов, баббитов (подшипниковых сплавов, обладающих способностью хорошо сопротивляться истиранию).
Широко используют в технике и химические соединения олова. Хлористое и хлорное олово, например, служит протравой при крашении хлопка и шелка. Натуральный шелк очень легок и плохо прокрашивается; при обработке же его растворами соединений олова на поверхности шелковых волокон откладывается гидрат двуокиси олова (в количестве, иногда вдвое превышающем вес самой ткани), и волокно приобретает способность удерживать на своей поверхности краситель.
Для придания фарфору и стеклу красных оттенков применяют так называемый кассиев пурпур, образующийся при действии хлористого олова на раствор хлористого золота. В качестве золотистой краски может служить двусернистое олово - «сусальное золото».
В военной деле хлорным оловом пользовались для создания дымовых завес: это вещество легко взаимодействует с водой, образуя густой дым из двуокиси олова.
Начало знакомства человека с оловом теряется в глубине веков. Поначалу олово применяли лишь в союзе с медью: сплав этих металлов, называемый бронзой, был известен задолго до начала нашей эры. Бронзовые орудия были значительно тверже медных. Видимо, этим и объясняется латинское название олова «станнум» - от санскритского слова «стан» - твердый. Само же олово в чистом виде - мягкий металл, совсем не оправдывающий свое название. История узаконила этот парадокс, а металлурги легко обрабатывают податливое олово, не подозревая, что имеют дело с «твердым» материалом.
Изделия из бронзы были найдены при раскопках захоронений, сделанных почти 60 веков назад. Плиний Старший, говоря о зеркалах, утверждал, что «наилучшие из известных нашим праотцам были сделаны в Брундизиуме из смеси меди и олова».
Установить точно период, когда человеческое общество стало использовать олово в чистом виде, довольно трудно. В одной из египетских могил, относящейся к эпохе восемнадцатой династии (от 1580 до 1350 года до н. э.), найдены кольцо и бутылка из олова, которые и считаются наиболее ранними оловянными изделиями.
Гомер рассказывает в «Илиаде», как древнегреческий бог огня и кузнечного ремеела Гефест ковал щит для героя Ахилла. На этом легендарном щите Гефест нанес рисунок.
«Сделал на нем отягченный гроздием сад виноградный
Весь золотой, лишь одни виноградные кисти чернелись;
И сто ял он на сребряных, рядом вонзенных подпорах.
Около саду и ров темно-синий и белую стену вывел из олова».
Выковав щит и броню, Гефест принялся за другие «предметы туалета» Ахилла:
«Сделал и тяжкий шелом...
Пышный, кругом изукрашенный, гребнем златым повершенный;
После из олова гибкого сделал ему и поножи».
В одной из древних крепостей перуанских индейцев инков ученые обнаружили чистое олово, предназначенное, по-видимому, для получения бронзы: обитатели этой крепости славились как отличные металлурги и искусные мастера по изготовлению бронзовых изделий. Должно быть, инки не использовали олово в чистом виде, так как в крепости не удалось найти ни одного оловянного изделия.
Испанский конкистадор Фернандо Кортес, в начале XVI века завоевавший Мексику, писал: «Несколько небольших кусочков олова были найдены у туземцев провинции Такско в виде очень тонких монет; продолжая мои поиски, я обнаружил, что в этой провинции, а также во многих других, оно использовалось в качестве денег...»
В 1925 году в Англии проводили раскопки у старинного замка, который был построен в III веке до н. э. Археологам удалось найти плавильные ямы, а в них - шлак, содержащий олово. Это означало, что здесь свыше 2000 лет назад была развита оловянная промышленность. Кстати, и Юлий Цезарь в своей книге «Комментарий по поводу Галльской войны» упоминает о производстве олова в некоторых районах Британии.
В 1971 году в Англии состоялась посмертная реабилитация 94 чеканщиков монет, которые были осуждены ... 847 лет назад. Еще в 1124 году английский король Генрих I обвинил рабочих своего монетного двора в мошенничестве: кто-то донес ему, что при чеканке серебряных монет в металл добавляют слишком много олова. Королевский суд был скор, и суровый приговор - отрубить преступникам правую руку - придворные палачи тут же привели в исполнение. И вот спустя восемь с половиной столетий один из оксфордских ученых, подвергший злополучные монеты тщательному анализу при помощи рентгеновских лучей, пришел к твердому выводу: «Монеты содержат очень мало олова. Король был неправ».
С давних пор основным источником олова служил минерал касситерит, или оловянный камень. Наиболее крупные месторождения этого ценного минерала расположены на Малайском архипелаге. В Советском Союзе оловянные руды встречаются на Дальнем Востоке, в Забайкалье. Казахетане. В музее комбината «Дальолово» в Уссурийске хранится редчайший сросток оловянного камня. Его размеры невелики: 30 на 20 сантиметров при толщине 8 сантиметров. Однако поднять этот камень не так-то просто: он весит почти полцентнера.
Несколько лет назад был создан портативный переносной прибор - гамма-резонансный оловоискатель. Чтобы определить содержание олова в руде с точностью до сотых долей процента, геологу, вооруженному таким прибором, потребуется всего несколько минут. Ценность прибора заключается еще и в том, что он реагирует на касситерит и не обращает внимания на другой минерал, содержащий олово, - станнит, который в качестве оловянного сырья практически не интересует промышленность.
Крупное открытие было сделано недавно советскими учеными, установившими, что своеобразным индикатором присутствия олова в том или ином геологическом районе может служить фтор. Многочисленные анализы и эксперименты позволили ученым как бы воспроизвести картину рудообразования, происходившего многие миллионы лет назад.
В те далекие времена олово, как выяснилось, находилось в виде комплексного соединения, в котором непременно присутствовал фтор.
Постепенно олово и его соединения выпадали в осадок, образуя месторождения, а его бывший компаньон фтор оставался вблизи залежей оловянных руд «на вечное поселение». Это открытие позволит определять возможные районы залегания олова и даже прогнозировать его запасы.
Геологи ищут касситерит не только на суше, но и под водой. Поиски уже увенчались успехом: россыпи оловянного камня удалось обнаружить на дне Японского моря, в бухте Тихангоу. Богаты им и прибрежные воды морей Северного Ледовитого океана - Ванькина губа, акватория мыса Святой Нос и другие районы. Большую помощь морским рудознатцам оказывают аквалангисты. Да и сами геологи к своей обычной экипировке добавили акваланг, без которого в Святом Носу не поковыряешь.
Дефицитность олова заставляет ученых и инженеров постоянно искать ему заменители. В то же время олово находит все новые области применения. Американская фирма «Форд мотор» не так давно построила завод, на котором применен любопытный метод производства непрерывной ленты оконного стекла шириной 2,5 метра. Расплавленное стекло из печи попадает в длинную 53-метровую ванну и здесь растекается по слою жидкого олова. Поскольку металлический расплав имеет идеально гладкую поверхность, стекло, остывая и затвердевая на нем, тоже становится совершенно гладким. Такое стекло не нуждается в шлифовке и полировке, что существенно сокращает производственные расходы.
Необычное стекло, которое служит своеобразной «ловушкой» для солнца, создали советские ученые. Выглядит оно совсем как простое, но отличается от него тем, что покрыто тончайшей пленкой двуокиси олова. Эта невидимая для глаза пленка беспрепятственно пропускает солнечные лучи, но очень «бдительно следит» за тем, чтобы тепло «не переходило границу» в обратном направлении. Такое стекло - находка для овощеводов: в нагретой солнцем за день теплице ночью сохранится почти та же температура, в то время как через обычное стекло тепловые калории одна за другой к утру без труда проскользнут наружу. В новых теплицах растения чувствуют себя уютно, даже если на улице стоит десятиградусный мороз. Стекло с оловянным покрытием пригодится для различных солнечных нагревателей и других устройств, где энергия дневного светила превращается в тепло.
Биография олова будет неполной, если не рассказать об одной почти детективной истории со счастливым концом, в которой этот металл сыграл далеко не последнюю роль.
...Вторая мировая война подходила к концу. Понимая, что ближайшее будущее не сулит ничего приятного, правители «независимого» Словацкого государства, сфабрикованного Гитлером в 1939 году на территории Чехословакии, задумали кое-что припрятать на черный день. Проще всего, как им казалось, было запустить руки в золотой фонд, созданный трудом словацкого народа. Однако группа патриотов, занимавших ответственные банковские посты, решила не допустить этого. Часть золота была тайно переведена в швейцарский банк и блокирована там до конца войны в пользу Чехословацкой Республики. Другую часть удалось переправить партизанам. Но часть золота все же оставалась еще в сейфах Братиславского банка.
Один из главарей марионеточного правительства по секрету сообщил немецкому послу в Братиславе о ценностях, хранящихся в бронированных подвалах, и попросил выделить солдат для «банковской операции» по изъятию золота. Пришлось, правда, брать третьим компаньоном еще и генерала войск СС, но зато в успешном проведении грабежа можно было не сомневаться.
Эсэсовцы окружили здание банка, и офицер, угрожая служащим расстрелом, приказал сдать ценности. Через несколько минут ящики с золотом перекочевали из сейфов в эсэсовские грузовики. Дельцы радостно потирали руки, не подозревая, что в ящиках хранятся слитки «золота», предусмотрительно изготовленные директором Монетного двора из... олова. А служащие банка еще раз проверили замки на тайниках, где хранилось настоящее золото, и стали с нетерпением дожидаться освобождения своей страны от гитлеровских войск.
Sn
Sb
Te
I
Hf
Ta
W
Re
Pb
Bi
Po
At
РОЖДЕННЫЙ В МУКАХ
Муки Тантала. - Сходство вводит в заблуждение. - Генрих Розе вносит ясность. - Рука об руку. - На 101-м году жизни. - Предчувствия не обманули. - «Представьте характеристику». - Со спичечную головку. - Интерес растет. - Бессилие «царской водки». - «Здесь ремонтируют черепа?» - Танталовые нервы. - Точный диагноз. - Гуманная миссия. - Солидный заказчик. - Чудовищные температуры не страшны. - Тесные связи. - На горячей работе. - Солидарность с Танталом. - Завидное постоянство. - В руках ювелиров. - Затраты окупаются.
Однажды фригийский царь Тантал - любимый сын Зевса, желая потрясти приглашенных к нему на пиршество богов, подал к столу мясо собственного сына Пелопса. Разгневанные этой жестокостью боги решили обречь Тантала на вечные муки жажды, голода и страха.
С тех пор стоит он в преисподней по горло в прозрачной воде. Под тяжестью созревших плодов склоняются к нему ветви деревьев. Когда томимый жаждой Тантал открывает уста, чтобы напиться, вода уходит от его губ. Стоит ему протянуть руку к сочным плодам, ветер поднимает ветвь, и обессилевший от голода грешник не может ее достать. А над его головой нависла скала, грозя вот-вот обрушиться.
Так мифы древней Греции повествуют о «муках Тантала».
Должно быть, не раз пришлось шведскому химику Андерсу Экебергу вспомнить о мучениях этого мифологического страдальца, когда он безуспешно пытался растворить в кислотах окисел открытого им в 1802 году элемента. Столько раз, казалось, ученый был близок к цели, но выделить новый металл в чистом виде ему так и не удалось. В конце концов он вынужден был отказаться от этой затеи, но, видимо, в память о сбэих мучениях решил назвать новичка «танталом».
Спустя некоторое время выяснилось, что у тантала есть близнец, который, правда, появился на свет годом раньше, но почти не отличался от него по свойствам. Этим близнецом был колумбий, открытый в 1801 году англичанином Чарльзом Гатчетом. Столь поразительное сходство ввело в заблуждение многих химиков. После долгих споров они пришли к ошибочному выводу, что речь идет об одном и том же элементе - тантале.
Заблуждаться ученым суждено было более сорока лет. Лишь в 1844 году немецкому химику Генриху Розе удалось внести ясность в этот запутанный вопрос и доказать, что колумбий, как и тантал, имеет полное право претендовать на индивидуальное место под Солнцем. А уж поскольку налицо были родственные связи этих элементов, Розе дал Колумбию новое имя - «ниобий», которое подчеркивало их семейственность (мифологическая богиня Ниоба - дочь Тантала).
С тех пор тантал и ниобий шагают рука об руку по жизненному пути. А путь этот был тернистым...
На протяжении многих десятилетий промышленный мир не проявлял к танталу никакого интереса. Да, собственно говоря, тантала, как такового, попросту и не существовало: ведь в чистом компактном виде тантал удалось получить лишь после того, как он отпраздновал столетие со дня своего рождения.
Это произошло в самом начале нашего века - в 1903 году. И тогда же, т. е. на 101-м году жизни, он получил наконец приглашение на работу: узнав, что этот металл обладает весьма тугоплавким «характером», ученые решили использовать его для нитей электроламп. Не имея других предложений, тантал вынужден был дать согласие, хотя чувствовал., что это не его признание.
И, действительно, суровые законы конкурентной борьбы, царящие в мире металлов, вскоре лишили тантал работы. На его место был взят другой металл - вольфрам, который оказался еще более тугоплавким, а потому и более счастливым.
Снова потянулись годы вынужденного безделья. На «бирже труда» котировались лишь те металлы, которые либо были давно известны, либо успели представить свои отличные характеристики, заверенные физиками, химиками и другими учеными. Тантал в то время имел мало знакомств в мире науки и техники и вынужден был сидеть «сложа руки». Но удача все же пришла: в 1922 году он был успешно применен в выпрямителях тока, а спустя год - в радиолампах. Тогда же началась разработка промышленных методов получения этого металла.
Любопытно, что первый промышленный штабик тантала (полуфабрикат, подвергаемый дальнейшей обработке), который был получен в 1922 году, не превышал по величине спичечную головку. В последнее время на танталовых заводах рождаются штабики иногда в 1000 раз крупнее «первенца».
Земная кора содержит лишь 0,0002% тантала, однако природа сравнительно богата его минералами - их насчитывается более 130 (как правило, тантал в этих минералах неразлучен с ниобием). Наиболее важное сырье для получения тантала - танталит и колумбит. Большие месторождения их имеются в Африке и Южной Америке.
Если до второй мировой войны ежегодная добыча тантало-ииобиевых руд составляла всего 600 - 900 тонн, то уже к 1944 году она возросла в несколько раз. Только в США за период с 1940 по 1944 год производство тантала увеличилось в 12 раз. Повышенный интерес к танталу объясняется просто: уже тогда науке стали известны многие его ценные свойства, которые не могли оставить равнодушными представителей самых различных областей техники.
Тантал - светло-серый металл со слегка синеватым оттенком. По тугоплавкости (температура плавления около 3000°С) он уступает лишь вольфраму и рению. Высокая прочность и твердость сочетаются в нем с отличными пластическими характеристиками. Чистый тантал хорошо поддается различной механической обработке, легко штампуется, перерабатывается в тончайшие листы (толщиной около 0,04 миллиметра) и проволоку.
Но, несомненно, самым важным свойством тантала является исключительная химическая стойкость - в этом отношении он уступает только благородным металлам, да и то не во всех случаях. Тантал не растворяется даже в таких известных химических «агрессорах», как «царская водка» и концентрированная азотная кислота. При 200°С в 70%-ной азотной кислоте тантал вовсе не подвергается коррозии; в серной кислоте при 150°С коррозии также не наблюдается, а при 200°С металл корродирует лишь на 0,006 миллиметра в год. Это делает тантал ценным конструкционным материалом для химической промышленности.
Танталовую аппаратуру применяют при производстве многих кислот (соляной, серной, азотной, фосфорной, уксусной), перекиси водорода, брома, хлора. На одном из предприятий, использующих газообразный хлористый водород, детали из нержавеющей стали выходили из строя уже через 2 месяца. Но как только сталь была заменена танталом, даже самые тонкие детали (толщиной 0,3 - 0,5 миллиметра) оказались практически вечными: срок службы их увеличился до 20 лет. Лишь плавиковая кислота вправе утверждать, что перед ней пасует сам тантал.
Танталовые катоды применяют при электролитическом выделении золота и серебра. Достоинство этих катодов - в том, что осадок золота и серебра растворяется «царской водкой», которая не может причинить вреда танталу.
Уникальное качество тантала - его высокая биологическая совместимость с живыми тканями, т. е. способность сживаться с тканями тела, не вызывая их раздражения. На этом свойстве основано широкое применение его в медицине, главным образом в восстановительной хирургии, для «ремонта» человеческого организма. Пластинки из этого металла используют, например, при повреждениях черепа - ими закрывают проломы черепной коробки. В литературе описан случай, когда из танталовой пластинки было создано искусственное ухо, причем пересаженная с бедра кожа при этом настолько хорошо прижилась, что ухо трудно было отличить от настоящего. Танталовая пряжа служит для возмещения мускульной ткани. С помощью тантала хирурги укрепляют после операции стенки брюшной полости. Танталовые скрепки, подобные тем, которыми сшивают тетради, надежно соединяют кровеносные сосуды. Сетки из тантала применяют при изготовлении глазных протезов. Тончайшие нити этого металла заменяют сухожилия и даже нервные волокна. И если выражение «железные нервы» обычно употребляется в переносном смысле, то людей с танталовыми нервами вы, быть может, не раз встречали на улице.
Швейцарские врачи считают, что тантал может с успехом служить своеобразным индикатором при рентгенографическом анализе бронхов и легких человека. Безвредная для организма танталовая пыль при вдыхании проникает в мельчайшие ответвления бронхов, но не задерживается там: ее удаляют оттуда «реснички», имеющиеся на здоровых клетках. Больные же клетки не в силах очистить себя от танталовой пыли, и она «маркирует» эти участки на рентгеновском снимке, помогая тем самым врачу поставить точный диагноз заболевания.
Медицина хотя и не самая важная, но, пожалуй, самая благородная «профессия» тантала. Право, есть что-то символическое в том, что именно на долю металла, названного в честь мифологического мученика, выпала гуманная миссия - облегчать людские страдания и муки.
На медицинские нужды расходуется лишь 5% производимого в мире тантала; около 20% потребляет химическая промышленность. Основной же заказ на этот металл и его соединения (более 45%) поступает от металлургов. В последние годы тантал все чаще используют в качестве легирующего элемента в специальных сталях - сверхпрочных, коррозионностойких, жаропрочных. Действие, оказываемое на сталь танталом, сходно с влиянием ниобия. Добавка этих металлов к обычным коррозионностойким хромистым сталям повышает их прочность, понижает хрупкость после закалки и отжига.
Очень важная область применения тантала - производство жаропрочных сплавов, в которых все больше и больше нуждается ракетная и космическая техника. Замечательными свойствами обладает сплав, состоящий из 90% тантала и 10% вольфрама. Листы из такого сплава можно применять до 2500°С, а более массивные детали выдерживают чудовищные температуры - выше 3300°С! За рубежом этот сплав считают вполне надежным для изготовления форсунок, выхлопных труб, деталей систем газового контроля и регулирования, передней кромки и многих других ответственных узлов космических кораблей. В тех случаях, когда сопла ракет охлаждаются жидким металлом, способным вызвать коррозию (литием или натрием), без сплава тантала с вольфрамом просто невозможно обойтись.
Еще более поразительной становится жаропрочность деталей из танталовольфрамового сплава, если на них нанесено покрытие - слой карбида тантала (температура плавления 4000°С). При опытных запусках ракет такие сопла выдерживали колоссальные температуры, при которых сплав без покрытия довольно быстро корродирует и разрушается.
Карбид тантала отличается и очень высокой твердостью (близкой к твердости алмаза), благодаря которой он широко применяется в производстве твердых сплавов. При скоростном резании металл настолько разогревается, что стружка приваривается к режущему инструменту - кромка его выкрашивается, ломается. Резцам, изготовленным из твердых сплавов на основе карбида тантала, выкрашивание не грозит, и они служат весьма продолжительный срок.
Многие записи в «трудовой книжке» тантала свидетельствуют о его тесных связях с электрическим током: приблизительно четвертая часть мирового производства этого металла потребляется электротехнической и электровакуумной промышленностью. Танталовые выпрямители применяют в сигнальной службе железных дорог, телефонных коммутаторах, противопожарных сигнальных системах. Миниатюрные танталовые конденсаторы используют в передаточных радиостанциях, радарных установках и других электронных схемах.
Тантал служит материалом для различных деталей электровакуумных приборов. Как и ниобий, он является отличным геттером, т. е. газопоглотителем. Так, при 800°С тантал способен поглотить 740 объемов газа. Адсорбируя газы, оставшиеся в электронных лампах после откачки вакуум-насосами, геттеры обеспечивают высокую степень разрежения. Из тантала изготовляют горячую арматуру ламп - аноды, сетки, катоды косвенного накала и другие нагреваемые детали. В тантале особенно нуждаются те лампы, которые, работая при высоких температурах и напряжениях, должны долго сохранять точные характеристики. В некоторых типах вакуумных ламп тантал применяют для поддержания давления газов на определенном уровне.
Танталовую проволоку можно встретить в криотронах - сверхпроводящих элементах, используемых в вычислительной технике.
Упомянем еще об одном электротехническом занятии тантала: он служит отличным материалом для газовых разрядников. Металл, словно из солидарности со своим мифическим тезкой Танталом, бросает вызов Зевсу-громовержцу, разряжая молнии, которые тот в гневе посылает на землю.
При производстве искусственного шелка волоки для протягивания нитей имеют мельчайшие отверстия - диаметр их равен сотым долям миллиметра. Волоки часто засоряются, и их постоянно приходится чистить. Но при этом диаметр отверстия должен оставаться строго постоянным. Естественно, что для волок необходим прочный, износостойкий, некорродируемый материал. Вот почему эти детали изготовляют из тантала - металла, отвечающего всем этим требованиям.
В последнее время тантал начал пробовать свои силы и в ювелирном деле: во многих случаях ему удается успешно заменять платину. Такая замена дает солидную экономию: ведь платина в 15 раз дороже тантала. Ювелирной деятельности этого металла способствует его свойство покрываться тончайшей пленкой окиси красивых радужных цветов. Тантал используют для изготовления часов, браслетов, различных украшений.
Международное Бюро мер и весов во Франции и Бюро стандартов США применяют тантал вместо платины для изготовления стандартных аналитических разновесов большой точности. В производстве наконечников для перьев автоматических ручек тантал выступает как заменитель весьма дорогого иридия.
Конечно, конкурировать в цене с платиной или иридием танталу тяжело, но цены на него довольно высоки. Во многом это объясняется дороговизной используемых в производстве тантала материалов и сложностью технологии его получения. Достаточно сказать, что для получения 1 тонны танталового концентрата необходимо переработать до 3000 тонн руды. Но все затраты окупаются с лихвой.
...Уже отошли в область преданий молодые годы тантала, когда он был полон сил и желания трудиться, но тем не менее рисковал прослыть тунеядцем. В наши дни, как вы убедились, работы у этого металла хватает. А сколько важных, нужных и интересных дел ему еще предстоит свершить!...
Nb
Mo
Tc
Ru
Sb
Te
I
Xe
Ta
W
Re
Os
ДАЮЩИЙ СВЕТ
Нужны ли комментарии? - «Волчья пена». - Открытие бывшего аптекаря. - «Самокал Мюшета». - Пасовать не намерен. - «Цвет персика». - Опыты на Путиловском заводе. - Успех немецких инженеров. - Голь на выдумки хитра. - Лакомый кусочек. - Держи карман шире. - Томительное молчание. - «Делянка» князей Владимировичей. - «К чертовой матери». - «Помощь» со стороны. - В холод и зной. - Возвращение «беглецов». - У поверхности Солнца. - Миллиарды молний. - Минуты и века. - «Уран-1» в Монреале. - Ювелирная точность. - «Усы» входят в моду. - «Сбережения» вольфрама.
Названия многих элементов говорят сами за себя: водород - «рождающий воду»; углерод - «рождающий уголь»; менделевий, эйнштейний, фермий, кюрий, курчатовий названы в честь выдающихся ученых; европий, америций, франций, германий, калифорний - производные от географических понятий. Но есть элементы, названия которых, как говорится, нуждаются в комментариях. К таким элементам относится вольфрам.
Даже перевод слова «вольфрам» - волчья пена - вряд ли объяснит происхождение этого названия. В самом деле, что может быть общего у элемента VI группы Периодической системы Д. И. Менделеева с лесным хищником?
...Еще в давние времена металлурги не раз сталкивались со странным явлением: время от времени по совершенно непонятным причинам выплавка олова из руды резко падала. Поскольку технико-экономические показатели плавки не могли не волновать и наших предков, они стали внимательно присматриваться к оловянной руде, идущей в плавку. Вскоре им удалось подметить такую закономерность: неприятности возникали тогда, когда в руде встречались тяжелые камни бурого или желтоватосерого цвета. Вывод напрашивался сам собой: камень «пожирает олово, как волк овцу». А коли так, то пусть и называется этот злой камень «вольфрамом». В некоторых же странах минерал получил другое название «тунгстен», что означает «тяжелый камень».
Вольфрам был открыт знаменитым шведским химиком Карлом Шееле. Аптекарь по профессии, Шееле в своей маленькой лаборатории провел много замечательных исследований. Он открыл кислород, хлор, барий, марганец. Незадолго до смерти, в 1781 году, Шееле - к этому времени уже член Стокгольмской Академии наук - обнаружил, что минерал тунгстен (впоследствии названный шеелитом) представляет собой соль неизвестной тогда кислоты. Сйустя два года испанские химики братья д’Элуяр, работавшие под руководством Шееле, сумели выделить из этого минерала новый элемент - вольфрам, которому суждено было произвести переворот в промышленности. Однако это произошло через целое столетие.
В 1864 году англичанин Роберт Мюшет впервые ввел вольфрам (примерно 5%) как легирующую добавку в сталь. Сталь, вошедшая в историю металлургии под названием «самокал Мюшета», могла выдерживать красное каление, не только сохраняя, но и увеличивая свою твердость, т. е. обладала свойством «самозакалки». Резцы, изготовленные из этой стали, позволили в полтора раза повысить скорость резания металла (7,5 метров в минуту вместо 5).
Спустя примерно 40 лет появилась быстрорежущая сталь, содержащая уже до 8% вольфрама. Теперь скорость резания металла достигла 18 метров в минуту. Прошло еще несколько лет, и скорость обработки металла возросла до 35 метров в минуту. Так примерно за полвека вольфрам сумел повысить производительность металлорежущих станков в 7 раз!
Ну, а как еще выше поднять скорость резания? Стали это уже было не под силу, и даже вольфрам не мог ей ничем помочь. Неужели достигнут предел? Неужели быстрее резать металл невозможно?
Ответ дал все тот же вольфрам. Нет, он не исчерпал еще своих возможностей и не намерен пасовать перед температурой в битве за скорость обработки металла. В 1907 году был создан сплав, состоящий из вольфрама, хрома и кобальта - стеллит, ставший родоначальником широко известных ныне твердых сплавов, которые позволили еще более повысить скорость резания. В наши дни она достигает уже 2000 метров в минуту. \
От 5 до 2000! Такой громадный путь пройден техникой металлообработки. И вехами на этом пути были все новые и новые соединения вольфрама.
Современные сверхтвердые сплавы представляют собой полученную спеканием смесь карбидов вольфрама и некоторых других элементов (титана, ниобия, тантала). При этом зерна карбидов как бы цементируются кобальтом. Такие материалы, называемые металлокерамическими, не теряют твердости даже при 1000°С, допуская тем самым колоссальные скорости обработки металла. Твердость одного из сплавов на основе карбида вольфрама - «рэлита» настолько велика, что, если по образцу из этого сплава провести напильником, то на нем (на напильнике!) остается борозда.
Металлообработка была основным, но не единственным направлением, по которому вольфрам вторгался в технику. Еще в середине прошлого века было замечено, что ткани, пропитанные натриевой солью вольфрамовой кислоты, приобретали огнеупорность. Широкое распространение получили тогда же и краски, содержащие вольфрам, - желтые, синие, белые, фиолетовые, зеленые, голубые. Эти краски использовали в живописи, в производстве керамики и фарфора. Кстати, до сих пор сохранились изготовленные в Китае еще в XVII веке изумительные фарфоровые изделия, окрашенные в необычайно красивый цвет - «цвет персика». Химический анализ, проведенный уже в наши дни, показал, что своей нежной окраской фарфор обязан вольфраму.
В 1860 году нагревом чугуна с вольфрамовой кислотой был получен сплав железа с вольфрамом. Твердость этого сплава заинтересовала многих химиков и металлургов. Вскоре удалось разработать промышленный способ производства ферровольфрама - это послужило мощным толчком к использованию вольфрама в металлургии.
В 1882 году были сделаны первые попытки ввести вольфрам в ружейную и орудийную сталь. В 1896 году в Петербурге на Путиловском заводе профессор В. Н. Липин выплавил вольфрамовую сталь. Даже небольшое количество вольфрама, добавленное к стали, значительно повышало сопротивляемость ружейных и орудийных стволов разъеданию пороховыми газами. Раньше других это сумели оценить немецкие инженеры. В годы первой мировой войны легкие германские пушки выдерживали до 15 тысяч выстрелов, в то время как русские и французские орудия выходили из строя уже после 6 - 8 тысяч выстрелов.
Естественно, что в эти годы добыча вольфрамовой руды резко возросла. Если в 90-х годах прошлого века в мире ежегодно добывалось лишь 200 - 300 тонн вольфрамовой руды, то уже в 1910 году добыча ее составила 8 тысяч тонн, а в 1918 году достигла 35 тысяч тонн.
И все же вольфрама не хватало. Особенно остро это чувствовала Германия, почти не располагавшая собственными источниками этого металла. Правда, готовясь к войне, дальновидные немцы запаслись впрок вольфрамовой рудой, но вскоре эти запасы иссякли, а военная промышленность продолжала настойчиво требовать вольфрамовую сталь.
Нужда заставила немецких металлургов поломать голову. Но, ведь недаром говорят: «голь на выдумки хитра». Выход из трудного положения был найден: вспомнили, что «волчья пена», съедая олово, увлекала его с собой в шлаки, а на территории Германии, где начиная с XII века выплавлялся этот металл, скопились целые горы оловянных шлаков. Вскоре металлурги уже начали получать из них вольфрам. Разумеется, полностью утолить вольфрамовый голод шлаки не могли, но «заморить червячка» с их помощью удалось.
В царской России даже в период общего подъема вольфрамовой промышленности добыча этого ценнейшего металла была ничтожной: в 1915 году с Забайкальского месторождения на Ижорский завод поступило всего 1,4 тонны вольфрамовой руды, а в 1916 году Мотовилихинскому заводу было отгружено 8,7 тонны. Производство ферровольфрама на одном из петроградских заводов составило в эти годы лишь 60 пудов.
На Забайкальское месторождение, как на лакомый кусочек, поглядывали многие иностранные фирмы, главным образом шведские и японские. Летом 1916 года геологи одной японской фирмы провели в тех краях поисковую разведку в районе горы Антана. Должно быть, результаты их поисков были многообещающими, так как руководители фирмы предприняли не одну попытку «прибрать к рукам» это месторождение, однако в аренде его им было отказано.
Наиболее известное тогда Букукинское месторождение, а также Олданду в те годы арендовали на паях промышленник Толмачев и горный инженер Зикс. Эти дельцы сочли выгодным для себя передать аренду шведской фирме Мортимера и Богаю, представители которой, обследовав месторождение, весьма им заинтересовались. Толмачев уже намеревался отхватить 30 тысяч рублей в качестве аванса по договору с фирмой, но этой сумме не суждено было перекочевать в его карман: заподозрив, что Толмачев умышленно занизил предполагаемые запасы вольфрама, геологический комитет предложил ввиду трудностей военного времени реквизировать толмачевские рудники и передать их в ведение кабинета царского двора. Высочайшее согласие на эту акцию вскоре было получено.
В своих воспоминаниях о том периоде академик А. Е. Ферсман писал: «До Октябрьской революции работа комиссии естественных производительных сил Академии наук не могла развернуться. В тяжелых условиях, в которых находилась тогда русская наука, инициатива ученых наталкивалась на бесчисленные препятствия. Даже на разработку такой исключительно важной проблемы, как освоение месторождений вольфрама, в течение двух лет Академия наук не могла получить самых ничтожных кредитов».
К сожалению, перед учеными стояли не только финансовые, но и другие, пожалуй, еще более сложные проблемы. Показателен в этом смысле эпизод, о котором вспоминает в одной из своих книг крупнейший ученый-кораблестроитель академик А. Н.. Крылов. В январе 1917 года, т. е. в последние недели царствования Николая II, комиссия естественных производительных сил Академии наук обсуждала вопрос о месторождениях вольфрама, в котором Россия ощущала большую нужду. Докладчик - влиятельный царский сановник - сообщил, что залежи руд этого металла имеются на территории Туркестана и для снаряжения туда экспедиции требуется 500 рублей. После его доклада наступило молчание. Почти все присутствующие на заседании знали о том, что вольфрамом богаты и недра Алтая, но заговорить об этом никто не решался: ведь весь Алтайский край - один из богатейших районов русской земли - принадлежал близким родственникам царя великим князьям Владимировичам, а о том, чтобы в их владениях проводить геологоразведочные работы, грешно было даже подумать.
Томительную паузу нарушил А. Н. Крылов: «Насчет туркестанских рудников дело обстоит весьма просто - вот пятьсот рублей, - и, вынув бумажку с портретом Петра I, он передал ее председательствовавшему на заседании А. Е. Ферсману. Сложнее дело с Алтаем. Докладчик не сказал, что рудники находятся на землях великих князей Владимировичей. Вольфрам - это быстрорежущая сталь, т. е. более чем удвоение выделки шрапнелей. Если где уместна реквизиция или экспроприация, то именно здесь: не будет шрапнелей - это значит проигрыш войны, а тогда не только Владимировичи, но и вся династия к чертовой матери полетит».
Как в воду глядел смелый ученый: спустя месяц династия Романовых в полном составе уже «летела» по указанному им адресу.
Еще одним препятствием, тормозившим развитие вольфрамовой промышленности в нашей стране, была «помощь» зарубежных специалистов.
В 1931 году в музее Московского университета, разбирая старые минералогические коллекции, ученые обнаружили образцы шеелита из неизвестного до того времени месторождения Могол-Тау в Таджикистане. Оказалось, что эти образцы были найдены еще в 1912 году и присланы в Москву для исследования. Однако привлеченные в качестве консультантов крупные немецкие геологи забраковали месторождение как нерентабельное, и царское правительство поставило на нем крест. Комиссия, направленная в Таджикистан спустя уже несколько месяцев после находки в Московском университете, установила, что Могол-Тау - одно из богатейших месторождений вольфрама.
Примерно в эти же годы крупный советский геолог академик С. С. Смирнов вместе со своими учениками развернул на территории нашей страны широкие поиски вольфрамовых месторождений. Не одну тысячу километров в холод и зной пришлось преодолеть геологам. Пешком, на собаках, на оленях исколесили они вдоль и поперек многие районы страны. И там, где проходили мужественные разведчики недр - в Забайкалье, Якутии, на Охотском побережье, возникали новые рудники, строились новые заводы - создавалась советская вольфрамовая промышленность.
В наше время примерно 80% всего добываемого в мире вольфрама потребляет металлургия качественных сталей, около 15% идет на производство твердых сплавов, остальные 5% промышленность использует в виде чистого вольфрама - металла, обладающего удивительными свойствами.
Чтобы расплавить вольфрам, его нужно нагреть до такой температуры, при которой большинство металлов уже испаряется - почти до 3400°С. Сам же вольфрам мог бы оставаться в жидком состоянии даже вблизи самого Солнца: температура кипения его свыше 5500°С. Тугоплавкость этого элемента и обеспечила ему применение в одной из важнейших отраслей промышленности - электротехнике
С тех пор как в 1906 году вольфрамовая нить вытеснила применявшиеся ранее для изготовления электрических ламп угольные, осмиевые и танталовые нити, каждый вечер в наших домах вспыхивают крохотные вольфрамовые молнии. Ежегодно в мире производят несколько миллиардов электроламп. Миллиарды огней!.. А много ли это? Судите сами: с начала нашего летоисчисления человечество прожило лишь немногим более миллиарда минут (29 апреля 1902 года в 10 часов 40 минут время начало отсчитывать второй миллиард минут новой эры).
Ученые и инженеры постоянно совершенствуют электрическую лампу, стремясь к тому, чтобы ее «жизнь» продолжалась как можно дольше. Подобно тому как тает горящая восковая свеча, при включении лампы вольфрам начинает испаряться с поверхности нити накаливания. Чтобы уменьшить испарение и тем самым продлить срок службы лампы, в нее под давлением обычно вводят различные инертные газы. А недавно предложено использовать для этой цели пары иода, который, как выяснилось, играет любопытную роль: он «ловит» испарившиеся молекулы вольфрама, вступает с ним в химическую связь, а затем оседает на нити, возвращая ей тем самым «беглецов», - лампа становится намного долговечнее.
Ассортимент электрических ламп, выпускаемых промышленностью, весьма разнообразен: от миниатюрных «бусинок», используемых в медицине, до мощных прожекторных «солнц».
На Всемирной выставке в Монреале в павильоне СССР демонстрировалась установка радиационного нагрева «Уран-1», одним из главных элементов которой служит лампа оригинальной конструкции, снабженная водяным и воздушным охлаждением. В сравнительно небольшой колбе из жаростойкого кварца, наполненной инертным газом ксеноном, находятся два вольфрамовых электрода. При включении лампы между электродами вспыхивает газовая плазма, раскаленная до 8000°С. Специальный зеркальный отражатель, по сравнению с которым обычные зеркала кажутся тусклыми жестянками, направляет инфракрасные лучи искусственного «солнца» (лампа воссоздает солнечный спектр) в оптическую систему установки, где они фокусируются в единый поток диаметром чуть больше сантиметра. Температура в фокусе пучка лучей достигает 3000°С. В этом горячем режиме «Уран-1» может непрерывно работать сотни часов.
Широкое применение в технике находят так называемые катодные лучи, которые представляют собой поток электронов, вырывающихся с поверхности металлического катода в вакуум («электронная эмиссия»). Как показала практика, одним из лучших материалов для катодов оказался вольфрам.
Вольфрам не только самый тугоплавкий металл. В чистом виде он обладает и колоссальной прочностью: его сопротивление разрыву достигает 40 тонн на квадратный сантиметр, значительно превышая прочность лучшей стали. И такие характеристики металл «ухитряется» сохранять даже при 800°С!
Высокая прочность металлического вольфрама сочетается с хорошей пластичностью: из него можно вытянуть тончайшую проволоку, 100 километров которой весят всего 250 граммов!
Вольфрамовая проволока, широко применяющаяся в электролампах, обрела недавно еще одну «профессию»: ее предложено использовать в качестве режущего инструмента для обработки хрупких материалов. Ультразвуковой генератор при помощи преобразователя придает вольфрамовой нити колебательные движения, и она медленно, но верно врезается в обрабатываемый материал. Новый «резак» легко справляется с такими материалами, как кварц, рубин, ситалл, стекло, керамика, разрезая их с ювелирной точностью на части или оставляя в них пазы и щели любой формы, любых размеров.
Но как ни велика прочность вольфрамовой проволоки, она не идет ни в какое сравнение с прочностью «усов» из этого металла - тончайших кристалликов, которые в сотни раз тоньше человеческого волоса. Советские физики сумели получить вольфрамовые «усы» диаметром всего две миллионные доли сантиметра. Их прочность 230 тонн на квадратный сантиметр - это почти равно абсолютному потолку прочности, т. е. теоретическому пределу, предсказанному наукой для земных веществ. Но такой чудо-металл существует пока только в стенах лабораторий.
Используемый же в технике чистый вольфрам получают восстановлением его трехокиси водородом. Образующиеся при этом мельчайшие вольфрамовые пылинки прессуют и спекают, нагревая электрическим током до 3000°С. Из этого вольфрама вытягивают нити накаливания электроламп, штампуют детали радиоламп и рентгеновских трубок, изготовляют контакты для рубильников, электродов, выключателей.
Учеными разработан плазменно-дуговой метод выращивания крупных монокристаллов вольфрама, молибдена и других тугоплавких металлов. В Институте металлургии Академии наук СССР этим методом был получен монокристалл вольфрама весом 10 килограммов. Благодаря высокой чистоте такой металл отличается необычными механическими свойствами: при очень низких температурах он сохраняет пластичность, а при значительном нагреве почти не теряет своей прочности. Монокристаллы находят применение во многих электровакуумных приборах.
Интересный эксперимент, в котором деятельное участие принимал вольфрам, был проведен во время совместного полета советских и американских космонавтов по программе «Союз»-«Апполон». Дело в том, что в земных условиях трудно, а зачастую и невозможно получить сплав металлов, значительно различающихся по плотности: в процессе плавки и кристаллизации частицы более тяжелого компонента будут стремиться в нижние слои слитка, а в верхних «поселятся» частицы более легкого металла. Естественно, что пользоваться сплавом с таким «разношерстным» составом практически нельзя. Иное дело - космическая плавка. Здесь, в условиях невесомости, все равны - и легкие, и тяжелые, поэтому сплав обещает быть равномерным и по составу, и по структуре. Вот и решено было в так называемой «универсальной печи» выплавить сплав легковесного и легкоплавкого алюминия с солидным тяжеловесом - вольфрамом, обладающим к тому же рекордной тугоплавкостью.
Этот эксперимент - только начало освоения космической технологии. «Пройдет немного времени, - говорит один из участников исторического полета Валерий Кубасов, - ив космосе совместными силами мы сможем создать целые заводы. Они займутся совершенно новой металлургией - получением сплавов и материалов, которые невозможно получить в условиях Земли».
Еще в 1929 году в США был сделан любопытный подсчет той экономии, которая получена благодаря внедрению вольфрама в технику. Выяснилось, что появление вольфрамовой нити накаливания в электрических лампочках позволило сэкономить электроэнергии на сумму 400 миллионов рублей. Производство одного автомобиля с помощью инструмента из вольфрамовой стали оказалось на 40 рублей дешевле, чем при использовании для этой цели углеродистой стали. Общие сбережения в машиностроении, «виновником» которых был вольфрам, уже тогда оценивались в 500 - 600 миллионов рублей в год.
...Много веков металлы верно служат человеку, помогая ему создавать изумительный мир техники. И одно из почетных мест среди них по праву принадлежит вольфраму - металлу, стоящему на огненных рубежах.
I
Xe
Re
Os
Ir
Pt
At
Rn
ЗА ТРЕМЯ ЗАМКАМИ
Находка конкистадоров. - Указ испанского короля. - Близкие родственники. - Первый в России. - «Алмазная» сталь. Позвольте усомниться! - Оплошность министра финансов. - На добрую память. - Клад в отходах. - Лауреат Демидовскои премии. - «В грамм добыча». - Радушный прием. - Искры гаснут на ветру? - Сквозь сетку. - Как утолить «голод»? - В грозный год. - Прозрачные зеркала. - Дар Моптесумы. - Измерьте температуру. - Три ключа. - Равнение на платину. - «Для всех времен, для всех народов». - Оранжевые лучи. - Платина ставит диагноз. - Не чувствуя боли. - Высокая честь.
В XVI и XVII веках испанские конкистадоры бесцеремонно расхищали богатства древних государств ацтеков и инков. Тонны золота, серебра, изумрудов заполняли трюмы галеонов, которые постоянно курсировали между Испанией и Южной Америкой. Однажды отряд завоевателей, передвигаясь вдоль реки Платино-дель-Пинто (Колумбия), обнаружил на берегах ее золото и крупицы неизвестного им тяжелого серебристого металла. Из-за исключительной тугоплавкости он оказался ни на что не пригодным и лишь затруднял очистку золота. Новый металл испанцы решили назвать платиной, что означает «серебрецо» («серебришко», «плохое серебро»), выразив тем самым свое недоброе к нему отношение.
Все же довольно большие количества платины были вывезены в Испанию, где ее продавали по цене, значительно более низкой, чем серебро. Вскоре испанские ювелиры обнаружили, что платина хорошо сплавляется с золотом, и те из них, кто был не чист на руку, стали примешивать ее к золоту при изготовлении ювелирных изделий и, главным образом, фальшивых монет. Об этой «проделке» ювелиров стало известно правительству, и король не нашел ничего лучшего, как издать приказ, требующий прекратить ввоз в Испанию никчемного металла, а заодно и уничтожить все его запасы, чтобы мошенники-ювелиры не могли больше морочить голову честным людям. Вся имевшаяся в стране платина была собрана и при свидетелях брошена в море. Этим печальным эпизодом завершился первый этап в биографии платины.
Прошло немало лет, прежде чем снова заговорили об этом металле. Сначала им заинтересовались ученые. Большой вклад в изучение платины внес в конце XVIII века замечательный русский химик вице-президент Горной коллегии в Петербурге Аполос Аполосович Мусин-Пушкин, почетный член многих иностранных академий наук.
Исследование платины привело к открытию нескольких металлов, сопутствующих ей в природе и получивших общее название платиновых: в 1803 году были открыты палладий и родий, в 1804 году - осмий и иридий, а спустя сорок лет химикам стал известен и последний элемент этой группы - рутений. Как потом выяснилось, он оказался самым редким из платиновых металлов, и поэтому его появление на свет было несколько запоздалым.
Работам в этой области в немалой степени способствовал тот-факт, что в 1819 году на Урале вблизи Екатеринбурга (ныне Свердловск) геологи обнаружили довольно солидные россыпные месторождения платины. Спустя пять лет на берегу небольшой уральской реки Баранчи начал действовать первый в России платиновый рудник.
Примерно в эти же годы платину начали использовать как добавку к стали. «6 фунтов стали расплавлены были с 8 золотниками очищенной платины в огнепостоянном глиняном горшке, охраняя металл от доступа воздуха, - писал тогда «Горный журнал». - Расплавленная масса была вылита в чугунную форму и скоро охлаждена в холодной воде. По разломе стального бруска сталь оказалась весьма однородной сыпи и столь мелкой, что простыми глазами невозможно было усмотреть зернистого ее сложения. Будучи выточена и закалена, без отпуска, она резала стекло, как алмаз, рубила чугун и железо, не притупляясь... Вообще платинистая сталь гораздо тверже всех доселе известных и выдерживает наибольшие удары, не ломаясь». За необыкновенно высокую твердость сталь получила название «алмазной». (В этой роли платина выступала довольно долго, но затем вынуждена была уступить свое место менее дорогому и к тому же еще более «способному» вольфраму.)
В 1828 году профессор Дерптского университета Г. В. Озанн, действуя «царской водкой» на некоторые самородные платиновые руды, добытые на Урале, пришел к заключению, что в них присутствуют три неизвестных науке элемента, по своим химическим свойствам относящиеся к группе платиновых металлов. Ученый назвал их полураном, полином и рутением. Это открытие поставил под сомнение шведский химик Берцелиус. Тогда Озанн решил повторить опыты. Поскольку результаты их не подтвердили первоначального предположения, ученый вынужден был от него отказаться.
К этому времени платина привлекла внимание уже не только ученых, но и финансовых деятелей царского правительства. В 1828 году министр финансов граф Е. Ф. Канкрин отдал распоряжение о чеканке платиновых монет достоинством в 3 рубля, 6 рублей и 12 рублей.
Однако воплотить в жизнь это распоряжение оказалось не так-то просто: ни одна из существовавших в то время печей не могла нагреть платину до температуры плавления, равной 1769°С. Да, было над чем поломать голову.
За решение этой проблемы взялся петербургский инженер, основатель «Соединенной лаборатории Департамента горных и соляных дел, Горного кадетского корпуса и Главной горной аптеки» П. Г. Соболевский. Если крепостью не удается овладеть штурмом, приходится искать другие пути. Так и поступил П. Г. Соболевский. Он взял платину в виде пористой «губки» (такой металл получался при химической обработке руд), заполнил ею форму для монет, спрессовал, а затем нагрел примерно до 1000°С. И неожиданно металл «поддался»: минуя плавление, губчатая платина превратилась в монеты, причем по внешнему виду их невозможно было отличить от литых. Так, впервые в истории мировой техники русский инженер создал и применил на практике оригинальный технологический процесс, который сохранил свое значение и по сей день. Лишь спустя три года аналогичный метод изготовления изделий из платины, названный позднее порошковой металлургией, был вторично «открыт» английским ученым Волластоном.
«В примерное вознаграждение» больших заслуг Соболевского министр финансов предложил ежегодно выдавать ему по 2500 рублей сверх его жалованья, «доколе на службе пребывает». Царь утвердил предложение министра.
Благодаря работам П. Г. Соболевского, Монетный двор начал полным ходом выпускать платиновые деньги. За сравнительно короткий срок был выпущен 1 миллион 400 тысяч платиновых монет, на которые пошло 899 пудов 30 фунтов (около 15 тонн) платины. Поск.ольку цена на этот металл росла, как говорится, не по дням, а по часам, правительство поняло, что совершило ошибку: платиновые деньги становились все дороже и дороже, в результате чего их истинная стоимость значительно превысила нарицательную и уже вскоре они фактически вышли из обращения. Этому с одной стороны, способствовали меры, срочно принятые министерством финансов с целью возвращения платины в казну, а с другой стороны, инициатива частных лиц, которые предпочитали расплачиваться другими деньгами, оставляя платиновые себе «на добрую память». Сейчас эти монеты - большая редкость: их можно увидеть лишь в очень немногих крупных нумизматических коллекциях.
Выпуск платиновых монет неожиданно оказал пользу науке. В лаборатории Петербургского Монетного двора скопилось довольно много остатков платиновых руд - отходов от производства монет. В 1841 году профессор химии Казанского университета Карл Карлович Клаус, который очень интересовался работами Озанна, попросил Монетный двор прислать ему для исследования два фунта этих остатков. К своему удивлению ученый обнаружил в них до 10% платины и небольшие количества осмия, иридия, палладия и родия.
Никого до этого не волновавшие остатки сразу превратились по сути дела в богатейший клад. Клаус немедленно сообщил о полученных результатах в Горное управление. Спустя некоторое время он приехал в Петербург, где его принял граф Канкрин, тот самый, что в свое время санкционировал выпуск платиновых монет. Канкрин внимательно отнесся к сообщению химика и оказал ему содействие в получении платиновых остатков для дальнейших исследований.
Упорный труд Клауса увенчался успехом: ему удалось доказать, что среди прочих, уже известных, элементов платиновые остатки содержат новый металл - рутений, о котором в свое время писал Озанн. Аргументация ученого оказалась настолько убедительной, что даже Берцелиус, вновь усомнившийся в рождении еще одного металла платиновой группы, в конце концов вынужден был публично признать ошибочность своих взглядов. За это открытие Клаус получил полную Демидовскую премию - 1000 рублей.
Добыча платины на Урале быстро росла. Показательно, что в 1915 году на долю России приходилось 95% от общего количества платины, добываемой в мире (остальные 5% получала Колумбия). В последнее время на мировой рынок начала поступать платина из Южной Африки, Канады, США, но СССР по-прежнему играет важную роль в добыче этого металла.
Любопытно, что если ежегодное мировое производство золота давно перевалило за тысячу тонн, то добыча платины и сейчас исчисляется лишь тоннами. Так, например, в 1960 году во всех капиталистических странах мира, вместе взятых, было добыто всего немногим более 16 тонн платины.
В этом нет ничего удивительного: слова поэта «в грамм добыча, в год труды» могут быть с полным правом отнесены к платине. Действительно, чтобы получить грамм этого металла, приходится порой перерабатывать сотни кубометров руды - целый железнодорожный вагон. Это объясняется чрезвычайной бедностью платиновых руд и отсутствием крупных месторождений платины. В самородном же состоянии она встречается крайне редко. Самый большой из когда-либо найденных самородков платины весил менее 10 килограммов.
Практическое применение этот металл начал находить еще в начале прошлого века, когда кому-то пришла в голову удачная мысль изготовить из него реторты для хранения концентрированной серной кислоты. С тех пор исключительно высокая стойкость платины по отношению к кислотам обеспечивает ей радушный прием в химических лабораториях, где она служит материалом для тиглей, чашей, сеток, трубок и других лабораторных атрибутов. Большое количество платины расходуется также на изготовление кислото- и жароупорной аппаратуры химических заводов.
Несмотря на то что платиновый винт, которым перемешивают стекломассу на знаменитых стекловаренных заводах Чехословакии, стоит три четверти миллиона крон, а платиновый тигель, где происходит этот процесс, - вдвое больше, «игра стоит свеч»: такое оборудование считается самым современным, позволяющим, получать высококачественные стекла для микроскопов, биноклей и других оптических приборов.
Химики нашли платине еще одно важное применение: она оказалась активнейшим катализатором для многих химических процессов. Эта способность платины позволила венгерским изобретателям создать недавно зажигалку нового типа: в ней нет ни традиционного зубчатого колесика, ни«кремня». Стоит снять колпачок - тотчас же появляется пламя: выходящий из зажигалки газ вспыхивает от соприкосновения с воздухом. Но эта реакция протекает лишь в присутствии катализатора. Им служит платиновое колечко, через которое вытекает газ. Такой зажигалке не страшен ветер. Более того, чем он сильнее, тем энергичнее идет реакция, тем длиннее язычок пламени. Как только кольцо закрывается колпачком, пламя гаснет.
В качестве катализатора платина совершенно необходима для окисления аммиака при производстве азотной кислоты. Смесь аммиака и воздуха с большой скоростью продувают через тончайшую платиновую сетку (имеющую до пяти тысяч отверстий на каждый квадратный сантиметр), при этом образуются окислы азота и водяные пары. При растворении окислов азота в воде и получается азотная кислота.
В практику заводского производства азотной кислоты платина вошла благодаря работам пионера отечественной азотнокислотной промышленности И. И. Андреева, в течение долгого времени изучавшего влияние различных катализаторов на окисление аммиака. Произошло это в годы первой мировой войны, когда потребность в азотной кислоте, необходимой для получения взрывчатых веществ, резко возросла. Еще бы: ведь на каждый килограмм взрывчатки расходовалось более двух килограммов азотной кислоты. К концу 1916 года месячная потребность русской армии во взрывчатых веществах составляла около 6400 тонн. Естественное сырье для получения азотной кислоты имелось лишь в Чили, поэтому все участвовавшие в войне страны, испытывая острейший азотнокислотный «голод», лихорадочно искали пути его утоления.
Тогда-то И. И. Андреев и предложил использовать в качестве искомого сырья аммиак, содержащийся в отходах коксового производства. Проведенные им до этого исследования убедили его в высоких каталитических способностях платины и в том, что в ее присутствии аммиак окисляется очень энергично. По предложению и проекту И. И. Андреева в Донбассе, где были сосредоточены коксохимические предприятия, а следовательно, имелось достаточно аммиака, начали строить завод для производства азотной кислоты, который летом 1917 года уже дал свою первую продукцию. Азотнокислотная проблема была успешно решена.
О громадном значении, которое к этому времени придавалось платине, можно судить по такому факту: в грозном для нашей страны 1918 году в России был организован специальный институт по изучению этого металла, вошедший позднее в состав Института неорганической химии Академии наук СССР. Здесь и поныне ведется большая научно-исследовательская работа, связанная с химией и технологией элементов платиновой группы.
В платине сегодня нуждаются не только химики. Способность хорошо впаиваться в стекло делает ее незаменимой для изготовления многих стеклянных приборов.
Нанося тончайший слой этого металла на стекло, получают платиновые зеркала, обладающие удивительным свойством - так называемой односторонней прозрачностью: со стороны источника света зеркало непрозрачно и отражает находящиеся перед ним предметы, как и обычное зеркало. Но с теневой стороны оно прозрачно, как стекло, и, таким образом, вы можете видеть все, что находится по другую его сторону. Платиновые зеркала получили одно время широкое распространение в США. Их вставляли вместо стекол в окна нижних этажей различных контор и учреждений, а в жилых помещениях они с успехом заменяли занавеси.
Кстати, первые платиновые зеркала, но не стеклянные, а «цельнометаллические», представлявшие собой хорошо обработанный и отполированный до блеска лист платины, изготовляли еще древние ацтеки. Как они это делали, - до сих пор загадка: ведь платина сваривается и хорошо куется только при белом калении, т. е. при очень высокой температуре, недоступной металлургам того времени. Но, как бы то ни было, знаменитый вождь ацтеков Монтесума послал несколько таких зеркал в дар королю Испании. Монарх «не остался в долгу»: в 1520 году Монтесума был взят в плен конкистадорами, а затем казнен.
Свойство губчатой платины поглощать большие объемы газа лежит в основе удивительного явления: водород или кислород, заключенные в герметически закрытый платиновый сосуд, при нагревании «вытекают» из него, поскольку молекулы газа проходят сквозь платиновые стенки сосуда, как вода сквозь сито.
Плодотворно трудится платина и на поприще измерения высоких температур. В технике довольно широко применяют платиновые термометры сопротивления. Принцип их действия основан на том, что при нагревании электрическое сопротивление платины возрастает по очень строгой и постоянной зависимости от температуры. Подключенная к прибору, регистрирующему изменение сопротивления, платиновая проволочка без промедления сигнализирует ему о самых незначительных колебаниях температуры.
Еще более распространены так называемые термопары - несложные, но очень чуткие термоизмерительные приборы. Если спаять две проволочки из разных металлов, а затем нагреть место спая, то в цепи появится электрический ток. Чем выше температура нагрева, тем большая электродвижущая сила возникает в цепи термопары. Наиболее часто для изготовления этих приборов используют платину и ее сплав с родием или иридием.
Вместе с иридием платина уже довольно продолжительное время выполняет ответственнейшее «поручение» общества. В Ленинграде на Московском проспекте есть внешне ничем не примечательное здание, у входа в которое висят черные таблички, где на двух языках - по-русски и по-французски - написано: «Государственные эталоны
СССР». Это - один из корпусов Всесоюзного научно-исследовательского института метрологии имени Д. И. Менделеева. Здесь в сейфе за толстыми дверями хранится эталон килограмма, изготовленный еще в 1883 году из сплава платины (90%) с иридием (10%).
Войти в этот сейф, где поддерживают строго постоянную температуру и влажность, можно лишь в присутствии трех человек: директора института, ученого хранителя государственных эталонов и ученого хранителя данного эталона. Каждый из них имеет ключ только от одного из трех замков сейфа. Массивная дверь откроется лишь тогда, когда в замки вставлены все три ключа. Эталон, представляющий собой цилиндрик высотой и диаметром 39 миллиметров, покоится на подставке из горного хрусталя под двумя стеклянными колпаками.
Периодически на сверхчувствительных метрологических весах, реагирующих даже на дыхание человека, государственный эталон «экзаменует» вторичные эталоны. Чтобы избежать даже малейших толчков, вызванных движением на улице или работой каких-нибудь механизмов в самом здании, весы установлены на фундаменте глубиной 7 метров. Для сохранения в помещении постоянной температуры и влажности весами управляют дистанционно - из соседней комнаты.
За свое без малого столетнее существос вание государственный эталон килограмма, несмотря на тщательное хранение, все же изменил свой вес на 0,017 миллиграмма. Но это отклонение столь незначительно, что в апреле 1968 года платино-иридиевый цилиндрик вновь был утвержден Государственным эталоном килограмма СССР.
В том же самом сейфе в специальном футляре хранится и платино-иридиевый стержень, который еще недавно служил государственным эталоном метра. Эта линейная единица, равная одной сорокамиллионной части длины парижского меридиана, была установлена во Франции в 1793 году. Спустя шесть лет был изготовлен первичный эталон метра, который и сейчас находится в Париже, в Международном бюро мер и весов. На нем начертаны пророческие слова: «Для всех времен, для всех народов». Метр действительно стал самой распространенной на нашей планете мерой длины. С 1889 года и до последнего времени точная копия парижского эталона, выполненная даже из металла той же самой плавки, служила «главным метром» нашей страны.
Ученые постоянно ищут новые пути повышения точности эталонов, и в 1960 году платино-иридиевому стержню пришлось подать в отставку. На смену ему пришел луч криптоновой лампы. С тех пор эталоном метра считается длина, равная 1 650 763,73 длины волны оранжевого излучения криптона-86. Но как же пользоваться таким эталоном? Эти заботы переложены «на плечи» специального прибора - интерференционного компаратора, который определяет, укладывается ли длина волны необходимое число раз в сличаемой метровой мере.
Существует еще один эталон - световой, также непосредственно связанный с платиной. В качестве его используют свечение, исходящее из полости трубки (материалом для нее служит плавленая окись тория), погруженной в расплавленную платину. Измерения проводят во время затвердевания платины. Поскольку в это время температура ее не меняется, единица сиды света (свеча, или кандела) воспроизводится с очень высокой степенью точности.
Платина завоевывает прочные позиции в медицине. Специальные электроды из этого металла, вводимые в кровеносные сосуды, служат хирургам многих стран для диагностики различных, главным образом сердечных заболеваний. Такой метод называется платино-водородным, так как в основе его лежит электрохимическая реакция между этими элементами.
Интересное и важное применение нашли платине недавно американские врачи из штата Огайо. Они разработали принципиально новый метод анестезии, который заключается в следующем. Платиновой пластинкой длиной несколько сантиметров спинной мозг соединяют с электрическим стимулятором. При малейшем движении пациента аппарат посылает электрический сигнал в мозг, блокируя таким образом болевые ощущения.
В большом почете платина у зубных техников, которых привлекает ее неокисляемость - важнейшее свойство материала для протезов. Однако в чистом виде платина слишком мягка, чтобы успешно выполнять эту роль, зато ее сплавы, обладающие и высокой прочностью, успешно служат в качестве зубных коронок и искусственных зубов. Сначала для повышения твердости к платине добавляли серебро и никель, затем для этой цели стали использовать золото и платиновые металлы. В союзе с ними коррозионностойкая платина обретает к тому же необычайную износостойкость - любой орешек ей становится «по зубам».
Значительная часть добываемой в мире платины поступает сегодня в руки ювелиров, которые начали проявлять к ней особенный интерес после того, как цены на этот металл в несколько раз превысили цены на золото. Уже перед первой мировой войной вошли в моду платиновые кольца, броши, серьги, брелки и другие украшения (порой же этому ценнейшему металлу приходится по прихоти толстосумов играть малоприятную роль - из него изготовляют цепочки для любимых болонок или клетки для ученых попугаев). Наряду с чистой платиной ювелиры используют и ее сплавы с другими металлами, которые вводятся либо для повышения твердости, либо чтобы сделать украшения дешевле в расчете на покупателей, не обладающих большим достатком, но не желающих тем не менее отставать от моды.
В СССР платине оказана большая честь: из нее сделано рельефное изображение В. И. Ленина на высшем ордене нашей страны.
Ag
Cd
In
Sn
Cs
Ba
La
Hf
Au
Hg
Tl
Pb
ЦАРЬ МЕТАЛЛОВ - МЕТАЛЛ ЦАРЕЙ
«Скромное» желание. - Орешек не по зубам. - В «Долине царей». - Заботы Семирамиды. - Удобства ради. - И днем, и ночью. - Проделки «Синей бороды». - Сокровища тамплиеров. - Где же кони? - Выкуп Атауальпы. - Храм Солнца. - Океан мстит. - «Золотые лихорадки». - «Коллекция» императрицы. - «Не лыком шиты!». - Сюткин пъет горькую. - На смену лотку. - «Рекордсмен» из Австралии. - Каменный костюм Будды. - В глубокой тайне. - Бактерии-золотоежки. - «Алхимики» XX века. - Архимед уличает мошенников. - Церковники в дураках. - Хитрость кассира. - Медаль Нильса Бора. - В вечном плену. - «Золотые печати». - По дну Атлантики.
Золото!.. Ни один другой металл не играл столь зловещей роли в многовековой истории человечества. За право владеть им велись кровопролитные войны, уничтожались целые государства и народы, совершались тяжкие преступления. Сколько горя, страданий и мук принес людям этот красивый желтый металл...
Пожалуй, одним из первых, кому золото доставило массу неприятностей и хлопот, был фригийский царь Мидас. Вот что рассказывает об этом древняя легенда.
Однажды сын Зевса Дионис, бог вина и веселья, вместе со своей многочисленной свитой бродил по прекрасной земле Фригии. Постепенно от шумной компании отстал сильно захмелевший любимый учитель Диониса Силен. Его заметили фригийские крестьяне, связали гирляндами из цветов и привели к царю Мидасу. Тот сразу узнал в добродушном пьяненьком старичке Силена, с почетом принял его во дворце и девять дней пировал в честь высокого гостя. На десятый день Мидас сам отвел Силена к Дионису, который несказанно обрадовался и пообещал Мидасу выполнить любое его желание.
«О, великий бог Дионис, - воскликнул счастливый царь Фригии, - повели, чтобы все, к чему я прикоснусь, превращалось в чистое блестящее золото!». «Скромное» желание было выполнено, и ликующий Мидас поспешил в свой дворец. Вот он обломал по дороге зеленую дубовую ветвь - она тотчас же стала золотой, тронул рукою в поле колосья - в тот же миг их зерна превратились в золотые, сорвал яблоко - тут же оно заблестело золотым отливом. Решил помыть руки - вода стекла с ладоней золотыми струями. Радости Мидаса нет границ. Но вот царь сел за стол и только тут он понял, какой ужасный дар выпросил он у Диониса. От одного прикосновения в золото обращалось все - и хлеб, и вино, и яства. Испуганный царь, которому грозила смерть от голода и жажды, простер руки к небу и воскликнул: «Смилуйся, смилуйся, о, Дионис! Прости! Я молю тебя о милости! Возьми назад этот дар!» По велению Диониса отправился Мидас к истокам реки Пактол. Чистые воды смыли с него злополучный дар.