В докладе Л. И. Брежнева на XXV съезде партии говорилось: "...по мере развития народного хозяйства, роста городов и промышленных центров все больше средств будет требовать сохранение окружающей среды, - только в текущей пятилетке на эти цели выделяется 11 миллиардов рублей. И эта сумма будет увеличиваться". Чем, по вашему мнению, вызвана необходимость увеличения средств на эти цели? Какие мероприятия намечено осуществить в десятой пятилетке для охраны природной среды?

Рост ассигнований на охрану природы - проявление постоянной, всевозрастающей заботы партии, государства о хозяйском отношении к природным ресурсам.

Уместно в этой связи напомнить, что выполнение заданий десятой пятилетки по охране природы позволило значительно расширить объем работ в этой области. Построены сотни километров крупных магистральных ирригационных каналов, орошены сотни тысяч гектаров засушливых земель. Сооружены крупные водохранилища. В строй действующих вступили несколько тысяч комплексов для очистки сточных вод, уменьшился объем молевого сплава, выполнены значительные работы по подъему затонувшей древесины.

Предприятия, которые были введены в строй, оснащены высокоэффективными установками для очистки газов и улавливания пыли. Увеличились площади, где применялись биологические методы борьбы с вредителями сельскохозяйственных растений. Практически все основные порты нашей страны оснащены плавучими нефтемусоросборщиками, а в ряде портов построены береговые приемоочистные сооружения. Всего, что осуществлено по охране природы, здесь не перечислить.

Важнейшие задачи природоохранительной работы в десятой пятилетке четко сформулированы в "Основных направлениях развития народного хозяйства СССР на 1976 - 1980 годы", одобренных XXV съездом КПСС. Здесь речь идет о применении новейших научно-технических средств исследования природных ресурсов, контроля за состоянием окружающей среды, о развитии научных основ разумного использования и охраны почв, недр, растительного и животного мира, воздушного пространства, о резком уменьшении вредного воздействия отходов, о совершенствовании прогнозирования влияния производства на окружающую среду и о многом другом.

На отдельных примерах покажу, что это даст нам уже в ближайшие годы. Широко известно, какую цену в наше время приобретает вода, сколь важно ее разумно использовать. Во всех отраслях промышленности будет осуществляться переход на использование оборотных вод. Значительно увеличится объем сточных вод, очищаемых различными методами. В химической промышленности, несмотря на значительный рост объемов производства, сократятся сброс промышленных сточных вод в водоемы и вредные выбросы в атмосферу, а расход свежей воды на производственные нужды в 1980 г. останется на уровне 1975 г. Все введенные в эксплуатацию новые предприятия оснащены высокоэффективными установками для очистки газов и улавливания пыли.

Большое внимание уделяется подготовке специалистов в области охраны природы. Вузы страны уже начали подготовку специалистов, чьей профессией станет постоянная забота о сохранении биосферы.

Проблема охраны природной среды приобретает ныне интернациональный характер.

Социалистические страны успешно сотрудничают в области охраны природы как на двусторонней основе, так и в рамках СЭВ. За последние годы Советский Союз заключил соглашения о сотрудничестве в этой области и с целым рядом капиталистических стран - США, Англией, Францией, Бельгией, Данией, Финляндией, Канадой, Швецией, Италией, Ираном. Предложения о совместной работе по защите окружающей среды были внесены делегациями СССР, ГДР и Венгрии на общеевропейском совещании по безопасности и сотрудничеству в Европе. Они нашли отражение в Заключительном акте хельсинкского совещания.

Большой международный резонанс вызвало предложение, выдвинутое Генеральным секретарем ЦК КПСС товарищем Л. И. Брежневым, о созыве общеевропейского совещания, посвященного проблемам окружающей среды.

В соответствии с решениями XXV съезда КПСС с целью повышения эффективности научных исследований еще в 1976 г. в нашей стране был проведен переход от координационных планов исследований к научно-техническим программам. Естественно, что это коснулось и научно-исследовательских и опытно-конструкторских работ, связанных с созданием новых экономичных технологических средств и методов предотвращения вредного воздействия различных технологических процессов на природу и человека. Каковы первые результаты работы по научно-техническим программам?

Прежде всего надо отметить, что все эти программы, в том числе по охране природы и рациональному использованию ресурсов, имеют межотраслевой характер. В процессе подготовки они были проанализированы различными подразделениями Госплана СССР, чтобы обеспечить их необходимыми капиталовложениями. Природоохранительные программы нацелены на решение таких задач, как рациональное использование водных ресурсов с учетом переброски части стока северных рек в южные районы страны; разработка новых методов и создание совершенного оборудования для очистки природных и сточных вод, улавливания газовых и пылевых выбросов в атмосферу; утилизация и переработка отходов. В программах предусматривается также создание комплекса приборов и систем контроля за состоянием природной среды. Предусмотрено и проведение исследований по созданию научно обоснованных методических основ стандартизации, разработке прогноза состояния среды на длительный и пятилетний сроки и многое другое.

Кроме программ по охране природы большое количество научно-исследовательских и опытно-конструкторских работ ведется в рамках программ, обеспечивающих технический прогресс в таких отраслях промышленности, как химическая, нефтехимическая и нефтеперерабатывающая, в черной и цветной металлургии, энергетике и в ряде других областей народного хозяйства.

Приведу лишь несколько примеров.

С 1976 г. успешно развиваются работы по созданию бессточных систем водоснабжения для Тобольского нефтехимического комплекса, Краснодарского комбината биохимических и витаминных препаратов, калушского производственного объединения "Хлорвинил". Ввод в строй этих систем намечен на конец пятилетки. Опыт, накопленный в ходе этого строительства, будет использован для проектирования аналогичных систем и в других отраслях промышленности. Однако уже сегодня на основе имеющейся практики удалось создать первый вариант методических указаний по созданию бессточных систем водоснабжения промышленных предприятий, которые после необходимой доработки будут рекомендованы в качестве обязательных для всех проектных организаций.

Закончено проектирование и начато строительство в городе Можайске сооружений для биологической очистки городских сточных вод с флотационным разделением иловой смеси, что позволит значительно сократить площади под очистные сооружения за счет компактности флотационных камер.

Досрочно создана и разработана в промышленных условиях система очистки и охлаждения газов в производстве нефелина, позволяющая сократить одну ступень очистки и обеспечить соблюдение санитарных норм. Реализация этой системы позволит при реконструкции старых химических комбинатов вдвое сократить площади, занимаемые газоочистными сооружениями.

Важные исследования и технические разработки, в особенности по совершенствованию технологии, проводятся в рамках отраслевых программ.

В нефтехимической промышленности, например, в 1977 г. осуществлено внедрение новых технологических процессов на Кадиевском заводе технического углерода и бакинском заводе "Нефтегаз", а также на Нижнекамском нефтехимическом комбинате. Это позволит прекратить сброс сточных вод за счет их использования в системах оборотного водоснабжения.

В химической промышленности разработан процесс получения серной кислоты под давлением, позволяющий в 2 - 3 раза сократить выбросы в атмосферу. В 1979 г. на Гомельском химическом заводе планируется ввод в действие опытной установки для отработки указанного метода.

На никелевых предприятиях Министерства цветной металлургии СССР отработаны высокоэффективные процессы очистки газов, что позволило резко уменьшить выброс пыли в атмосферу. Для Ачинского глиноземного комбината выданы рекомендации на реконструкцию газоочистных систем печей спекания. Это позволит не только устранить выбросы, но и даст ощутимый экономический эффект, так как "уловленная" продукция снова будет возвращаться в производство.

В нашей стране создана первая опытная установка, где отслужившие свой срок автопокрышки "превращаются" в технический углерод, а также в ряд жидких и газообразных углеводородов. Дальнейшая отработка этого процесса на опытно-промышленных установках позволит решить одну из сложных проблем утилизации твердых отходов.

Для решения одной из самых грандиозных задач в области перераспределения водных ресурсов научно-исследовательские организации различных министерств и Академии наук разработали основные положения технико-экономического обоснования переброски части стока северных и сибирских рек в Среднюю Азию, Казахстан и южные районы европейской части нашей страны.

Хотелось бы еще заметить, что программы по защите природной среды не суть что-то застывшее, окостеневшее. Они непрерывно совершенствуются. Так, например, за последние два года в задание по разработке новых методов и оборудования для утилизации отходов были введены дополнительные темы по созданию методик экономической оценки эффективности их переработки, а также по организации исследования санитарно-гигиенического воздействия ее на природные и биологические ресурсы. Эта работа, в результате которой задание приобретает полную логическую завершенность, поручена Академии наук Украинской ССР и Министерству здравоохранения Азербайджанской ССР. Минбум-пром СССР совместно с другими министерствами и ведомствами в настоящее время завершает выполнение другого дополнительного задания создания и внедрения бессточной системы водоснабжения на Байкальском целлюлозно-бумажном комбинате.

Не остаются без внимания и так называемые вторичные минеральные ресурсы, то есть промышленные отходы. Госкомитет по науке и технике совместно с министерствами приступил к созданию специальной программы, реализация которой позволит не только уменьшить вредное воздействие на природу, но и даст заметную экономию природных ресурсов. Достаточно сказать, что, согласно экономическим расчетам, от полного использования золы и шлаков тепловых электростанций народное хозяйство получит до 400 миллионов рублей в год. Подобный же эффект даст и использование шлаков черной металлургии, фосфоросодержащих шлаков в химической промышленности и многих других отходов.

Но я бы согрешил против истины, если бы остановился лишь на наших успехах в деле охраны окружающей среды. К сожалению, здесь есть еще немало недостатков и нерешенных вопросов.

Министерствам необходимо улучшить контроль и повысить ответственность за своевременный ввод в действие опытных и опытно-промышленных установок по очистке сточных вод и газовых выбросов, по переработке отходов.

Принимая меры для ускорения научно-технического прогресса, необходимо повышать требования ко всем хозяйственным органам и организациям по усилению практической деятельности в области охраны окружающей среды. Борьба за качество в десятой пятилетке предусматривает значительное улучшение и качества окружающей среды, ибо это объективная необходимость в деле более полного удовлетворения материальных и духовных потребностей всех членов социалистического общества.

Известно, что еще в октябре 1917 г. II Всероссийский съезд Советов по предложению В. И. Ленина принял основополагающий законодательный акт Декрет о земле. Знамени

тые ленинские декреты о создании заповедников, об охране памятников природы, садов и парков, о лесах, о недрах земли и другие природоохранительные акты были подписаны в тяжелейшие годы гражданской войны. Сегодня правовой порядок охраны окружающей среды в нашей стране основывается прежде всего на Конституции СССР, в соответствии с которой земля и ее недра, леса и воды, богатства растительного и животного мира являются всенародным достоянием. Именно на этих положениях нашего Основного Закона зиждется законодательство СССР и союзных республик по вопросам охраны природной среды. Не могли бы вы подробнее рассказать о современной системе правовой охраны природы и рационального использования природных ресурсов, действующей в нашей стране?

Сохранение, использование и воспроизводство природных ресурсов, бережное отношение к природе - составная часть деятельности социалистического государства, его политики, а качество природной среды, окружающей человека, - существенный элемент его материального благополучия. Эта сторона деятельности Советского государства нашла отражение в новой Конституции СССР. Статья 18 Конституции СССР гласит: "В интересах настоящего и будущих поколений в СССР принимаются необходимые меры для охраны и научно обоснованного, рационального использования земли и ее недр, водных ресурсов, растительного и животного мира, для сохранения в чистоте воздуха и воды, обеспечения воспроизводства природных богатств и улучшения окружающей человека среды". Развитие науки и техники не только дает возможность удовлетворить потребности человечества в продовольствии, сырье и энергии, но и создает новые возможности для сохранения, восстановления и улучшения природных условий на Земле.

Незыблемую основу организации наиболее правильного использования природных богатств составляет у нас социалистическая государственная собственность на землю, ее недра, воды, леса. В этом важном деле трудно переоценить также роль политики партии и государства, законов, правовых актов по охране природы, воспитание людей в духе строжайшего соблюдения действующих законов. Рациональному природоиспользованию в нашей стране активно содействуют проводимые в плановом порядке разнообразные организационно-хозяйственные и идейно-воспитательные мероприятия, а также широкая система природоохранительных норм.

За последние годы приняты важнейшие законы и постановления по защите природной среды. Это постановление Верховного Совета СССР (сентябрь 1972 г.) "О мерах по дальнейшему улучшению охраны природы и рациональному использованию природных ресурсов", Основы законодательства Союза ССР и союзных республик о недрах, Основы водного, земельного и лесного законодательства. В стадии завершающей разработки находится проект закона об охране атмосферного воздуха.

ЦК КПСС и Совет Министров СССР приняли важные постановления: о мерах по дальнейшему улучшению охраны природы и рациональному использованию природных ресурсов, о мерах по защите Каспийского моря, бассейнов рек Волги и Урала, сохранению богатств озера Байкал, о предотвращении загрязнения вод Черного и Азовского морей, Балтийского моря и др. Ныне во всех союзных республиках действуют законы об охране природы, согласно которым государственной охране подлежат все природные ресурсы - уже вовлеченные в хозяйственный оборот и те, что еще не эксплуатируются,

Подытоживая огромную работу в этой области, товарищ Л. И. Брежнев подчеркнул на XXV съезде партии: "Мы привели юридические нормы в соответствие с новым уровнем, достигнутым нашим обществом. Были подготовлены законоположения, касающиеся таких сфер жизни, которые раньше оставались вне рамок правового регулирования, как, например, охрана окружающей среды, в том числе водоемов, недр, воздушного пространства и т. д. Очень хорошо, что теперь у нас есть обоснованные юридические нормы, позволяющие целеустремленно вести работу в защиту природы".

Мероприятия по охране природы и рациональному использованию природных ресурсов стали неотъемлемой частью ежегодных государственных планов экономического и социального развития. Они выделяются в самостоятельный раздел, и по ним установлена соответствующая государственная отчетность.

Таким образом, меры по охране природы и рациональному использованию естественных ресурсов приобретают силу закона для всех органов государственной власти и управления. Улучшение природоиспользова-ния подкрепляется разносторонней пропагандистской и воспитательной деятельностью партийных, комсомольских, профсоюзных и других массовых организаций трудящихся.

В Верховном Совете СССР имеются постоянные комиссии по охране природы. Доклады и предложения этих комиссий в необходимых случаях обсуждаются на сессиях Верховного Совета СССР, в Президиуме Верховного Совета СССР или по его поручению Советом Министров СССР, а также общесоюзными министерствами и ведомствами. Комиссии по охране природы созданы и действуют также в местных Советах народных депутатов.

Совет Министров СССР направляет, координирует и контролирует деятельность министерств и ведомств СССР в области охраны окружающей среды, разрабатывает комплексные мероприятия в масштабе страны, отдельных крупных регионов и принимает соответствующие постановления. Аналогичная работа проводится Советами Министров союзных и автономных республик. На Госплан СССР возложена обязанность рассматривать вносимые министерствами и ведомствами СССР, а также Советами Министров союзных республик годовые и пятилетние планы по охране природы и рациональному использованию природных ресурсов, обеспечивать материальные возможности для их осуществления.

С целью проверки исполнения законодательства о природе некоторые министерства и ведомства наделены функциями государственного контроля за деятельностью предприятий независимо от их подчиненности. Так, Министерство сельского хозяйства СССР осуществляет контроль за соблюдением законов о земле, правильным ведением охотничьего хозяйства, сохранением и обогащением полезной фауны и флоры, а также по всем вопросам работы заповедников. Министерство мелиорации и водного хозяйства СССР контролирует рациональное использование вод, выполнение мероприятий по охране водоемов, следит за работой очистных сооружений и сбросом сточных вод. В ряде союзных республик - -на Украине, в Белоруссии, Грузии, Азербайджане, Литве и Молдавии образованы республиканские комитеты по охране природы. Недавно создан Государственный комитет СССР по гидрометеорологии и контролю природной среды.

Научно-технический прогресс в области охраны среды в нашей стране обеспечивается также программами ГКНТ, в соответствии с которыми разрабатываются новые высокоэффективные методы очистки сточных вод, газовых выбросов, переработки отходов, создается система контроля состояния окружающей среды, комплексно решаются задачи улучшения использования водных ресурсов, а также изучаются многие другие вопросы природоохранительной деятельности.

Важные задачи по научному обоснованию принимаемых решений, в выработке единой технической политики в области охраны природы возложены на созданный при Государственном комитете СССР по науке и технике Междуведомственный научно-технический совет. В его составе - ведущие специалисты и ученые в области наук о Земле, медицины, градостроительства, знатоки промышленной технологии, эксперты по охране земельных, водных, лесных и других биологических ресурсов. Членами этого совета являются также партийные, государственные и общественные деятели.

На своих заседаниях совет рассматривал такие вопросы, как ограничение влияния сточных вод целлюлозно-бумажного комбината на озеро Байкал, проблемы окружающей среды в районе Кавказских минеральных вод, состояние заповедников нашей страны. Были также изучены различные методики экономической оценки природных ресурсов. "Конечная продукция" Междуведомственного научно-технического совета - конкретные предложения для директивных органов.

В Академии наук СССР также работает научный совет по проблемам биосферы. Он координирует усилия многих научных учреждений, разрабатывающих теоретические аспекты проблемы рационального использования и охраны естественных ресурсов, методы экономической и экологической оценки их использования.

В настоящее время совет при ГКНТ разрабатывает комплексный научно-технический прогноз возможных изменений в биосфере на ближайшие 20 30 лет. Он будет служить научной основой для всех природоохранительных мероприятий, проводимых в СССР.

Несколько слов о деятельности общественных организаций, связанных с охраной окру-жающей среды. Широко известна работа Всесоюзного совета научно-технических обществ и его органов и первичных организаций НТО. Так, например, Академией наук СССР вместе с ВСНТО в 1977 г. была проведена 1-я Всесоюзная конференция "Научно-технические основы безотходного производства", которая имела большое значение для дальнейшего совершенствования технологических процессов, исключающих вредное воздействие на биосферу. Члены НТО активно содействуют выполнению мероприятий по охране природы, разрабатывают многие инженерные решения, осуществляют общественный контроль за строительством и эксплуатацией очистных сооружений. Много делают в этом направлении Всероссийское общество охраны природы, насчитывающее в своих рядах более 26 миллионов членов, а также общества охраны природы в других союзных республиках. Разностороннюю пропагандистскую работу в области охраны природы ведут организации общества "Знание".

В одной беседе трудно осветить все стороны многогранной работы по охране природы, проводимой в нашей стране. В заключение хотелось бы еще раз подчеркнуть, что забота о сохранении природных богатств стала у нас воистину всенародным делом. И она должна из года в год усиливаться, становиться более действенной, эффективной. Этого требуют интересы коммунистического строительства, к этому призывают решения XXV съезда КПСС.

"Не только мы, но и последующие поколения должны иметь возможность пользоваться

всеми благами, которые дает прекрасная природа нашей Родины" - эти слова Л. И. Брежнева как нельзя лучше характеризуют курс на охрану природы и ее ресурсов, который был взят партией с первых лет существования нашего государства и который сегодня неуклонно проводится в жизнь.

ПОЯСНЕНИЕ НЕКОТОРЫХ СПЕЦИАЛЬНЫХ ТЕРМИНОВ

Биосфера - от греческих слов "биос" (жизнь), "сфера" (шар), буквально - "сфера жизни". Биосфера - одна из земных оболочек, пространство, где обитают или обитали в прошлом живые организмы. Она охватывает тропосферу (нижний слой атмосферы высотой 10 - 15 км), гидросферу (водную оболочку), а также часть литосферы - твердой оболочки Земли до глубины 2 - 3 километров.

От состояния биосферы непосредственно зависит существование человека, так как зеленые растения, составляющие неотъемлемую часть биосферы, аккумулируют солнечную энергию в сложных органических соединениях, обеспечивая тем самым пищей животный мир нашей планеты, в том числе и человека. Биосфера является единственным каналом, через который к человеку поступает энергия, необходимая для жизни.

Создателем учения о биосфере является выдающийся русский и советский ученый, академик В. И. Вернадский. Наряду с биосферой он ввел также понятие ноосферы - материальной оболочки Земли, меняющейся в результате воздействия человека. "Человечество, взятое в целом, становится мощной геологической силой. И перед ним, перед его мыслью и трудом, становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества как единого целого... Ноосфера есть новое геологическое явление на нашей планете", - писал он.

Глобальные проблемы - проблемы, связанные с изучением природных или других процессов и явлений, охватывающих всю нашу планету. К числу подобных процессов относятся, например, атмосферные явления, определяющие изменения погоды и климата. Для познания закономерностей глобальных процессов их необходимо изучать в масштабах всей Земли, вести одновременные наблюдения определенных явлений по единой программе. Во второй половине XX столетия был осуществлен ряд подобных международных научных мероприятий, в которых приняли участие ученые многих стран. К их числу относятся Международный геофизический год (МГГ), Международный год спокойного Солнца (МГСС), а также ряд других международных исследований. В 1979 г. намечается провести глобальный эксперимент по изучению метеорологических процессов. В течение нескольких месяцев наблюдения по согласованной программе предполагается одновременно вести на всем земном шаре.

Магнитные полюса и магнитная ось Земли - изучение магнитного поля Земли показало, что в первом приближении оно совпадает с полем магнитного диполя (магнитный диполь - магнит, состоящий из двух жестко связанных друг с другом магнитных зарядов, положительного и отрицательного, то есть северного и южного), находящегося в центре Земли. Ось этого диполя расположена под углом 11° к направлению оси вращения нашей планеты. Поэтому точки пересечения оси диполя с поверхностью Земли - магнитные полюса не совпадают с положением географических полюсов, хотя и находятся от них не так далеко.

Согласно современным представлениям, земной магнетизм порождается в результате самовозбуждения магнитного поля вследствие движения электропроводящего вещества в ядре Земли (так называемый динамо-эффект).

Палеомагнетизм, или остаточный магнетизм. Им обладают многие горные породы, из которых состоит земная кора. Его возникновение относится к тем временам, когда эти породы, изверженные из земных недр, находились в разогретом состоянии. Под действием земного магнитного поля происходило их намагничивание. При остывании направление этого поля как бы закрепляется в веществе и впоследствии может быть обнаружено. Следы магнитного поля Земли хранятся и в осадочных породах. Когда мелкие зерна осадочных пород оседают на дно водоемов, они ведут себя подобно маленьким магнитным стрелкам, ориентируясь в соответствии с направлением земного магнитного поля в данном месте.

Сопоставляя эти данные с возрастом тех или иных пород, который определяется одним из имеющихся в распоряжении ученых методов, можно установить, какое направление имело в том или ином районе нашей планеты земное магнитное поле в определенные исторические эпохи.

Тектоника - тектонические процессы - процессы, протекающие в земной коре (ее толщина - несколько десятков километров: около 35 км на материках, 5 - 7 км под дном океанов) и связанные с движениями вещества, происходящими под влиянием различных причин. С тектоническими процессами, в частности, связаны такие катастрофические явления природы, как землетрясения.

Техносфера - физико-географическая среда, преобразованная человеком и предельно насыщенная продуктами человеческой деятельности.

Микромир

I. В глубины вещества

"Странный" мир

В этой главе мы познакомимся с некоторыми достижениями одной из наиболее фундаментальных областей современного естествознания - физики микромира, занимающейся изучением строения материи на уровне микропроцессов - атомов, атомных ядер и элементарных частиц.

Пожалуй, нет другой области науки, где бы с такой отчетливостью и убедительностью происходила периодическая смена представлений, где бы "привычное" постоянно уступало место "непривычному", иногда весьма странному, где бы углубление знаний неуклонно вело ко все большему отходу от "наглядного", к отрыву от непосредственно окружающей нас реальности и где бы, несмотря на все это, неизменно умножалось число все более кардинальных практических приложений. По существу, вся короткая история атомной физики и физики элементарных частиц - сплошная цепь удивительных открытий.

По мере все более глубокого проникновения в тайны строения материи физика неоднократно сталкивалась с явлениями, которые вначале казались исключительными, парадоксальными. Например, теория относительности А. Эйнштейна показала, что с увеличением скорости масса тел не остается неизменной, а растет, что не существует единого времени - его течение происходит по-разному в различных материальных системах, движущихся относительно друг друга.

С не менее удивительными фактами столкнулась и атомная физика. В частности, выяснилось, что в области так называемых моле-кулярно-атомных процессов, характеризующейся пространственно-временными интервалами 10-6 10-11 см и 10-17 - 10-22 секунды, невозможно одновременно точно определить скорость движения микрочастицы и ее положение в пространстве (так называемый принцип неопределенности). Таким образом, оказалось, что движение микрочастиц (например, электронов в атомах) существенным образом отличается от движения обычных макроскопических тел, которые всегда в тот или иной определенный момент занимают вполне определенное положение в пространстве и обладают вполне определенной скоростью.

Тем самым уже на одном из начальных этапов проникновения в микромир обнаружилось, что привычные понятия классической механики не только не могут быть автоматически перенесены на микроявления, но и совершенно недостаточны для их описания.

Проникновение в тайны строения атомов потребовало экспериментов с энергиями от нескольких электрон-вольт до сотен тысяч электрон-вольт. Когда же были достигнуты еще более высокие энергии - до сотен миллионов и, наконец, миллиардов электрон-вольт, - то оказалось, что при таких энергиях поведение микрочастиц отличается уже не только от поведения макроскопических тел, но и от поведения элементарных частиц в обычных условиях, например электронов в атомах.

Было обнаружено, что при достижении определенного, достаточно высокого уровня энергии начинаются сложные взаимопревращения частиц. Частицы одних типов превращаются в частицы других типов.

В течение последних десятилетий эта область науки бурно прогрессировала. Еще какие-нибудь 20 лет назад физикам было известно всего около десятка элементарных частиц и казалось, что именно из этих частиц и состоят все объекты окружающего нас мира. Но затем благодаря введению в строй гигантских ускорителей и применению электронно-вычислительной техники было открыто множество новых частиц, и сейчас их число измеряется сотнями.

На первых порах мир элементарных частиц казался разрозненным - в нем трудно было усмотреть общие закономерности, связывающие различные частицы между собой. Однако в результате усилий сначала экспериментаторов, а затем и теоретиков удалось обнаружить некоторые закономерности, позволяющие систематизировать элементарные частицы и построить их классификацию, подобную периодической системе Менделеева. И подобно тому как система Менделеева позволила предсказать существование неизвестных химических элементов, система элементарных частиц, построенная физиками, дала возможность предсказывать новые неизвестные явления, открывать новые частицы с весьма необычными свойствами.

Теория элементарных частиц наряду с астрофизикой всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. В частности, современная теория элементарных частиц не только знакомит нас со все новыми и новыми объектами, но и подводит к новым представлениям о том, что такое элементарность. Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем - от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим повседневным здравым смыслом, согласно которому целое всегда больше и сложнее любой из составляющих его частей.

Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Так, протон на очень короткое время распадается на протон и пи-мезон, а каждый пи-мезон - на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, а следовательно, теряет смысл и привычное для нас представление об элементарности.

Эти новые представления, разумеется, весьма необычны. Но в том, что по мере проникновения в тайны микроявлений подобные необычные представления возникают, нет ничего неожиданного. Теория элементарных частиц по мере своего развития ведет нас в глубины "все более странного мира", к открытию все более необычных, диковинных явлений. Но еще В. И. Ленин подчеркивал, что открытие диковинных явлений - "это только лишнее подтверждение диалектического материализма" [В. И. Ленин. Полн. собр. соч., т. 18, стр. 276].

Казалось бы, развитие физики, и в первую очередь тех ее разделов, которые изучают строение материи, должно "автоматически" служить укреплению атеизма, подрывать позиции религии.

Однако в действительности все обстоит значительно сложнее. Когда воздвигнутая классической физикой стройная картина, в которой все было строго определено и не оставалось места для каких-либо сверхъестественных сил, уступила место более глубокой, но зато и более сложной картине, "нарисованной" физикой XX столетия, теоретики богословия заметно оживились. Из революции, совершившейся в физике, они постарались сделать нужные им выводы: если классическая физика, отрицавшая идею бога, оказалась несостоятельной, значит, несостоятельны вообще любые попытки отрицать существование бога с точки зрения науки.

Как известно, в процессе становления новой физики выяснилось, что применение физических понятий за границами их применяемости неизбежно ведет к неполному и даже неверному описанию реальной действительности. Следовательно, в природе всегда существует некоторый круг явлений, описание которых остается за пределами возможностей современной науки. По-своему толкуя это бесспорное обстоятельство, теологи сделали вывод о том, что существует и такая область, в которую науке не удастся проникнуть никогда, - область сверхъестественного.

"У науки есть свои пределы... - утверждал известный теоретик православия митрополит Николай. - Но есть другая область, область другого, особого знания - это область веры" ["Журнал Московской патриархии", 1957, No 9, стр. 21]. "...Откровение вступает в действие там, где наука теряет возможность что-либо объяснить", - провозглашает, например, один из видных теоретиков современной католической церкви, епископ О. Шпюльбек.

Однако все разговоры о пределах, о том, что за этими пределами будто бы исчезает материя, что существуют нематериальные, сверхъестественные силы, лишены какого бы то ни было основания. Конечно, возможность ссылаться на "нечто", что недоступно пока научному объяснению, у богословов сохранится всегда. Но может ли факт существования явлений, еще не познанных, служить сколько-нибудь серьезным аргументом в пользу религии?

Разумеется, нет. Тем более что весь опыт развития естествознания вообще и физики в частности убеждает в том, что не познанное сегодня затем неизменно получает естественное объяснение и экспериментальное подтверждение, сводится к естественным объективным закономерностям окружающего мира. Это правило не знает исключений.

Не оставляют богословы попыток толковать в пользу религии и некоторые выводы современной физики.

Как известно, главными основами науки являются законы сохранения: закон сохранения энергии, сохранения заряда, сохранения импульса, сохранения барионного числа и т. д.

Они лежат и в фундаменте теории элементарных частиц. В частности, исходя из того, что не может нарушаться закон сохранения энергии, физики предсказали существование такой частицы, как нейтрино.

"Однако закон сохранения энергии, - заявляет все тот же епископ Шпюльбек, - не имеет больше... всеобщей силы. С тех пор как стало известно, что энергия может излучаться из массы и, наоборот, энергия протонов может превращаться в массу, закон сохранения получил тяжелый удар. Массу необходимо рассматривать как форму энергии..." И это написано в 1957 г., то есть тогда, когда физики на страницах множества книг и брошюр популярно разъясняли, что ни о каком переходе массы в энергию нет и не может быть речи, что в действительности совершается переход вещества в излучение (поле), то есть переход одной формы материи в другую, при которой выделяется некоторое количество энергии.

Другие богословы используют более отвлеченные рассуждения для нападок на принцип сохранения. Никто не может доказать, утверждают они, что со временем не будут открыты такие факты, которые окажутся несовместимыми с принципом сохранения...

Может ли на самом деле произойти что-либо подобное? В принципе это возможно, то есть может быть, что сохранение как свойство материи также имеет свои определенные границы и в природе существуют условия, при которых это свойство не проявляется. Однако последовательный материалист и диалектик не увидит в этом факте ничего угрожающего его взгляду на мир. В конце концов важно не то, подчиняется или не подчиняется то или иное явление законам сохранения, а то, что любое явление всегда и во всех случаях подчиняется тем или иным объективным принципиально познаваемым законам.

Это положение, непосредственно вытекающее из принципа единства мира, носит фунда

ментальный характер. Оно имеет первостепенное, можно сказать, решающее значение для естествознания, для всего процесса познания человеком мира. Важно подчеркнуть и обратное. Тот факт, что в действительности реальный мир, даже такие его сокровенные глубины, как элементарные частицы и атомные ядра, на практике поддается научному исследованию, - наиболее убедительное свидетельство в пользу его материального единства, отсутствия области действия сверхъестественных сил.

Развитие физики микромира, несомненно, еще поставит перед наукой немало сложных философских и методологических проблем. Но, опираясь на основополагающие работы В. И. Ленина в области философии естествознания, ученые-материалисты, безусловно, смогут правильно осмыслить любые новые явления природы.

Явлениям микромира в нашей естественнонаучной атеистической пропаганде, к сожалению, уделяется значительно меньше места, чем астрономии или физике вообще. Причина ясна. Как известно, религия, уделяя весьма значительное внимание вопросам мироздания, положения Земли и человека во Вселенной, строения Солнечной системы и движения небесных тел, почти совершенно не касалась вопросов строения материи, особенно глубинного. Это объясняется тем, что космос привлекал пристальное внимание людей еще много веков тому назад. Атомная же физика и физика элементарных частиц, реально показавшие всю неисчерпаемость, противоречивость и многообразие микромира, появились, по сути, лишь в начале XX в. Популяризация диалектико-ма-териалистического осмысления достижений науки в сфере микромира - насущная задача атеистической пропаганды, тем более, что теологи и идеалисты всех мастей при каждом удобном случае стараются обратить в свою пользу открытия в этой области знания.

Ученые

дают интервью

Неклассическая наука и современный рационализм

На вопросы отвечает

профессор Б. Г. Кузнецов

В последние годы в ряде стран резко усиливаются нападки на разум и науку. Их рассматривают как угрозу человечеству и противопоставляют им алогическое мышление и религиозную веру. На чьей стороне в этом вековом споре между защитниками и противниками разума теория относительности и квантовая механика?

На стороне разума. Более того, современная неклассическая физика дает рационализму такие аргументы, каких он никогда еще не получал от науки. Вместе с тем она требует от рационализма, от апологии разума дальнейшего развития. Теория относительности изменила представление об евклидовой геометрии мира - многовековую основу рациональной познаваемости Вселенной. Напомню, что Достоевский в "Братьях Карамазовых" говорил об евклидовой геометрии мира как о рациональной схеме мироздания и о неевклидовой - как об иной, но также рациональной его схеме. Квантовая механика изменила саму логику рационального, научного мышления. Когда-то Лаплас писал, что человеческий разум испытывает меньше трудностей, когда он продвигается вперед, чем тогда, когда он углубляется в самого себя. Наука сейчас подошла к периоду очень быстрого "углубления разума в самого себя", очень быстрого перехода от одного логического строя к другому, от одного стиля научного мышления к другому.

Нужно подчеркнуть, что и в современной науке, стоящей на пороге систематического анализа парадоксальных процессов в космосе и в ультрамикроскопическом мире, и в современной культуре в целом речь идет не об отказе от рационалистического анализа, от детерминизма, не о каких-либо границах познания. Речь идет о более сложном, более парадоксальном рационализме, о более сложном детерминизме, о новых, еще более далеких от классических эталонов путях познания.

Мне кажется, в XX в. неклассическая физика перешла от характерного для науки XIX в. игнорирования элементарных процессов в макроскопической картине мира к переносу центра тяжести на индивидуальное, на то "элементарное", которое стало в современной науке очень сложным и тесно связанным с космическими процессами, со Вселенной в целом. Сейчас такая тенденция в физических представлениях о космосе и микрокосме стала еще более отчетливой.-С другой стороны, сейчас яснее видна связь неклассической физики с преобразованием энергетики и технологии, с характером труда, со стилем современного мышления, с судьбами современной культуры в целом.

Современный рационализм физической теории не может ограничиться познанием законов бытия, он включает трансформацию познавательных норм, логических правил, аксиом самого познания, и вместе с тем он ведет к рациональному преобразованию бытия. Классическая физика, и прежде всего законы механики, изложенные в "Математических началах натуральной философии" Ньютона, в известном смысле претендовали на роль вечных скрижалей науки. Большинство мыслителей XVIII - XIX вв. думали, что законы механики Ньютона представляют собой незыблемый фундамент естествознания. Классическая наука - это не только определенные аксиомы, но и уверенность в том, что это действительно аксиомы. Что же такое неклассическая физика? Иногда ее определяют чисто негативным образом: она "не классическая", в общем случае она отказывается от фундаментальных постулатов, из которых исходит классическая физика.

Но это лишь часть дела. С новыми открытиями в физике изменилось не только представление о самой науке. Теория относительности и квантовая механика не только заменили старые фундаментальные физические законы новыми. Эти новые законы уже не претендовали на окончательное решение основных проблем бытия.

В XIX в. Гельмгольц видел высшую и конечную цель науки в сведении всей картины мира к центральным силам, полностью подчиненным механике Ньютона. Современный же физик вообще не ставит перед собой какой бы то ни было окончательной цели. Подобные иллюзии утеряны навсегда. Неклассическая физика - это здание, которое не только растет вверх, но и углубляется в поисках все более глубокого фундамента, который, однако, никогда не будет последним.

Каждая эпоха в науке характеризуется некоторыми идеалами физического объяснения природы. Современный идеал науки отличается от классического не только своим содержанием, но и своей динамичностью. Современная наука даже в том идеале объяснения мира, к которому она стремится, видит нечто меняющееся уже на глазах одного поколения.

В чем же состоит этот динамический идеал науки второй половины XX в.? В чем состоят связанное с этим идеалом радикальное обновление стиля фундаментальных исследований и те новые принципы науки, которые несут в себе зародыш новой, послеатомной цивилизации?

Исходная область новой научной революции - теория элементарных частиц. Видимо, ближайшая ступень этой теории будет состоять в систематизации уже известных частиц и тех, что будут открыты. Есть также основания думать, что общей тенденцией дальнейшего развития науки будет уже наметившаяся тенденция, направленная к объяснению известных из эксперимента основных свойств элементарных частиц, к ответу на вопрос, почему частицы данного типа обладают именно такими, а не другими массами и зарядами.

Второй путь, который ведет к принципиально новым основаниям научной картины мира, - это современные космология и астрофизика. Оба эти пути все больше сливаются в один.

При рациональной организации общества этот путь развития науки приводит к существенному преобразованию роли человеческой личности: человек становится инициатором радикальных преобразований картины мира, характера труда, структуры производства, баланса используемых природных ресурсов. Современное учение о пространстве, времени, движении, веществе и жизни, наиболее фундаментальные исследования, которые иногда называют меганаукой, становятся непосредственным импульсбм для самых радикальных, технических, экономических и экологических трансформаций. Отсюда - небывалый интерес в очень широких кругах к физике, к ее воздействию на другие науки, к возникновению и развитию неклассической науки, которая получает от современной физики импульсы, заимствует у нее понятия, применяет и конкретизирует ее выводы. И этот широкий интерес является существенным вкладом в современную идейную борьбу. Он направлен против иррационализма, он укрепляет доверие к разуму, он дает очень важную гарантию прогресса современной культуры.

По-видимому, практическое применение неклассической физики является одной из основ того интереса, о котором вы говорите?

Да, конечно. Важно отметить, что для такого применения требуется очень смелая постановка собственно познавательных задач. Здесь важны уверенность в том, что фундаментальные исследования не могут не принести важных практических результатов. Но эти результаты далеко не всегда можно предвидеть. Когда экспериментатор хочет установить новую, еще неизвестную закономерность, результат предстоящих исследований не может быть заранее известен. Когда мыслитель обдумывает кардинальные вопросы, на которые дадут ответы новые ускорители или новые телескопы, каждый из этих будущих ответов может поставить под сомнение самый смысл заданных вопросов. И во всяком случае, каждый такой ответ может быть совершенно неопределенным в смысле практических выводов. В космос и в микромир человека прежде всего ведет стремление к решению познавательных задач. Каковы бы ни были возможные практические результаты будущих астрофизических исследований или сооружения сверхмощных ускорителей элементарных частиц, отнюдь не эти результаты, которые нельзя определить заранее, служат непосредственным стимулом указанных исследований.

Теория относительности стала источником такого радикального практического результата, как атомная энергетика, именно благодаря общему, отвлеченному и чисто познавательному характеру поставленных в начале столетия вопросов о пространстве, времени, движении, массе, энергии... Сейчас перед наукой, и в первую очередь перед физикой элементарных частиц и астрофизикой, стоят еще более общие и еще более фундаментальные вопросы. И они, конечно, будут решаться независимо от определенности их будущих практических приложений.

Поэтому принципиальная уверенность в ценности разума, в ценности науки так важна сейчас для темпа исследовательской работы в области фундаментальных наук.

Все же можно ли сейчас нарисовать хотя бы самые общие контуры тех сдвигов в производстве, которые вызовет фундаментальная наука в ближайшие десятилетия?

Перспективы, скажем, до 2000 г. просматриваются довольно ясно и однозначно. К указанному сроку атомная энергетика станет преимущественной компонентой электроэнергетического баланса. Она будет опираться на реакторы-размножители, которые дают больше ядерного горючего, чем потребляют его. К этому времени основой технологии станет квантовая электроника. Кибернетика будет введена в основные производственные процессы. Молекулярная биология и особенно радиационная генетика позволят преобразовать органическую жизнь. Химия приблизится к возможности делать "все из всего" и коренным образом изменит сырьевую базу производства. Экономический эффект: в нашей стране производительность труда будет возрастать не только с большой скоростью, но и с непрерывным ускорением.

Что же касается более далеких прогнозов, которые еще не обрели хронологической определенности, то для них исходным пунктом являются теоретические коллизии современной физики и некоторые экспериментальные направления. Сейчас физика занята подготовкой вопросов, которые будут заданы природе с помощью новых, чрезвычайно мощных ускорителей частиц. Я имею в виду ускорители, которые будут превосходить самые мощные современные установки в десятки раз. Они дадут возможность проникнуть в очень малые пространственно-временные области - порядка 10-13 сантиметра и 10-24 секунды. Можно ожидать, что в этих областях наука столкнется с принципиально новыми явлениями. В частности, есть основания предполагать, что здесь частицы не движутся в обычном смысле, а возникают и исчезают, то есть основная проблема состоит не в поведении, а в бытии частиц.

Очевидно, развитие этого направления потребует не только огромных экспериментальных, но и весьма больших интеллектуальных усилий, преобразования логики научного мышления. А это в свою очередь не может не сказаться на общем интеллектуальном потенциале науки.

В свое время теория относительности не только привела к таким практическим выводам, как использование внутренней энергии атомного ядра, но и оказала заметное воздействие на цивилизацию вообще преобразованием самого стиля научного мышления. Современная физика, опираясь на изучение микромира и космоса, идет к еще более радикальному преобразованию научного мышления.

Можно ли сейчас сказать что-либо определенное о возможностях человеческой цивилизации, когда она овладеет тайнами микромира? Как будет выглядеть эта "послеатомная" цивилизация - эпоха, которая наступит тогда, когда практическое применение получат не только достижения атомной физики, но и физики элементарных частиц?

Контуры "послеатомной" цивилизации можно наметить лишь весьма неопределенно. Однако не исключено, что центральную роль в практических применениях "послеатомной" физики будут играть процессы трансмутации частиц, в том числе аннигиляции пар частица - античастица.

Сейчас такие процессы относятся к числу довольно экзотических. Но весьма вероятно, что именно они станут исходным научно-техническим звеном "послеатомного" века, подобно тому как экзотические для конца 30-х годов процессы деления ядер урана стали исходным звеном атомного века.

Процессы трансмутации частиц в принципе могут освободить всю энергию, соответствующую всей массе покоя вещества. Это примерно в тысячу раз больше, чем при делении ядер урана.

Если удастся изолировать античастицы, отделив их от частиц, мы получим аккумулятор, который сможет накапливать в каждом грамме вещества 9-1020 эрг энергии. Подобные сверхаккумуляторы найдут себе применение в космических кораблях и позволят достичь периферии Солнечной системы, а может быть, даже выйти за ее пределы.

С помощью достижений физики элементарных частиц станет возможной аккумуляция энергии в очень малых по размерам приборах, в которых на миллиметровых или еще меньших уровнях создаются мощные электромагнитные поля, высокие напряжения, температуры, давления... Высокоэнергетическая миниатюризация может радикально изменить всю технологию и силовой аппарат производства. Подобные сверхаккумуляторы найдут широкое применение и в медицине.

По-видимому, мир, который открывается перед современной физикой, - это все более "странный" мир?

Да, это так, но "странность" его - особая, специфическая для нашего времени. Очень крупные, эпохальные открытия всегда раскрывали "странную", непривычную, парадоксальную реальность. Такой реальностью была, например, гелиоцентрическая система.

Парадоксы неевклидовой геометрии стали парадоксами бытия, схемой реального "странного" мира в нашем столетии в рамках общей теории относительности и релятивистской космологии. Но даже не в этом специфическая "странность" современной картины мира. Сейчас новые фундаментальные представления о мире не перестают быть странными, не становятся традиционными. Из всех исторических традиций науки современная физика берет прежде всего "традицию антитрадиционализма" и делает ее необходимым условием научного творчества. Но именно в этом - отличие разума от рассудка: немецкая классическая философия присвоила рассудку функцию подведения наблюдений под известные законы, а разуму - функцию изменения законов. Современная наука (именно в этом "странность" ее результатов, именно в этом - смысл понятия "меганаука", именно в этом - основа характерной для нашего времени связи фундаментальных исследований с практикой) - апофеоз разума. И тем самым - беспрецедентное исключение иррационализма во всех его модификациях из современной культуры.

Д. А. Франк-Каменецкий

От мегамира к микромиру

[Известного советского физика-теоретика доктора физико-математических наук, профессора Давида Альбертовича Франк-Каменецкого уже нет среди нас. Данная беседа состоялась в 1969 г. Однако многие высказанные в ней мысли сохранили свою актуальность и до сегодняшнего дня. В тех случаях, когда развитие науки внесло изменения в существовавшие ранее представления, мы дали соответствующие подстрочные примечания. - Ред]

Какое значение для теории происхождения химических элементов имеет открытие новых необычных объектов во Вселенной, излучающих громадные количества энергии, в частности квазаров?

Эта проблема принадлежит к числу еще не решенных вопросов современной астрофизики. Существует довольно распространенная точка зрения, согласно которой для решения всех вопросов, связанных с происхождением элементов, достаточно рассмотрения процессов, происходящих в звездах. Что же касается космических процессов катастрофического характера (в частности, взрывных явлений), то они здесь ничем помочь не могут.

Однако я не согласен с подобной точкой зрения. Дело в том, что за последнее время накопился ряд данных, заставляющих предположить, что мы знаем еще далеко не все космические процессы, ответственные за фактически наблюдаемое распределение химических элементов во Вселенной. Вот хотя бы "проблема гелия". Согласно теории расширяющейся "горячей" Вселенной, в космических объектах должно содержаться не меньше 25 - 30 процентов гелия. Данные же астрономических наблюдений дают более низкое число - не больше 20 процентов. Известны отдельные звезды, в которых содержание гелия еще значительно ниже. С другой стороны, привести к почти полному разрушению гелия термоядерные процессы не могут. В связи с этим возникает подозрение, что в дозвездной стадии существования материи, теорию которой развивает В. А. Амбарцумян, могли происходить не термоядерные процессы, а процессы, связанные с очень высокой концентрацией электромагнитной энергии, способные приводить к разрушению гелия.

Вторая проблема - это "проблема дейтерия", тяжелого водорода. Дело в том, что в "земном" водороде содержится около одной шеститысячной доли дейтерия. Как известно, водород - самый распространенный химический элемент во Вселенной. Однако содержание в нем дейтерия пока еще точно неизвестно. Но если оно совпадает с тем, что мы наблюдаем в земных условиях, возникает трудноразрешимая задача. Ведь при термоядерных реакциях в недрах звезд дейтерий очень быстро уничтожается, "выгорает". Между тем одна шеститысячная - это очень высокий процент содержания дейтерия в водороде. И если химические элементы образуются исключительно при термоядерных реакциях в звездах, то совершенно непонятно, как эти реакции могли обеспечить столь высокий процент.

Правда, высказывается предположение, что "земной" дейтерий образовался в результате так называемых холодных плазменных процессов в процессе образования Солнечной системы и, следовательно, его должно быть больше, чем вообще в космосе. Однако подобная гипотеза имеет много уязвимых мест. В частности, в реакции, о которой идет речь, должны принимать весьма существенное участие так называемые тепловые нейтроны. Но если бы таких нейтронов в период формирования Земли действительно было много, то некоторые редкоземельные элементы, поглощая их, должны были бы исчезнуть. А они существуют...

Так что есть основания ожидать, что и во Вселенной процент содержания дейтерия в водороде приближается к одной шеститысячной. Если наблюдения покажут, что это в самом деле, так, мы получим весьма убедительное свидетельство в пользу того, что химические элементы образуются не только при термоядерных реакциях в звездах, но и в результате плазменных процессов - холодного ускорения частиц.

Какую же роль во всем этом играют квазары?

Как известно, квазары являются источником очень мощного радиоизлучения. Согласно современным физическим представлениям, оно возникает при движении релятивистских электронов в мощных магнитных полях (так называемое синхротронное радиоизлучение). Однако в мощных магнитных полях могут ускоряться не только электроны, но и атомные ядра. А значит, создаются условия для холодных ядерных реакций.

Существует ли связь между изучением термоядерных, процессов во Вселенной и исследованиями физиков по управляемым термоядерным реакциям?

Исторически эти проблемы связаны между собой очень тесно. Ведь сама мысль о возможности земного технического применения термоядерных реакций возникла в результате изучения источников звездной энергии. На первых порах физики, работавшие в этой области, широко пользовались в качестве исходных данных количественными закономерностями, выведенными при изучении термоядерных реакций в звездах. Однако в дальнейшем эти две области исследований - наука о звездной плазме и об управляемых термоядерных реакциях - довольно сильно разошлись.

Дело в том, что существенно различается физика этих процессов. В звездах плазма удерживается мощной силой тяготения. В искусственных же условиях подобным методом воспользоваться нельзя, так как для этого потребовались бы гравитационные силы, в сотни раз превосходящие силу тяготения Земли. Земная физика пошла другими путями для удержания плазмы, она, например, стремится использовать электромагнитное поле [В последние годы ведутся исследования и в другом направлении: изучается возможность возбуждения термоядерной реакции в высокотемпературной плазме с помощью лазерного облучения. - Ред.].

Более общий вопрос: считаете ли вы, что все основные физические законы уже открыты и любое новое явление может быть объяснено с их помощью?

Конечно нет! Такому предположению противоречит хотя бы то обстоятельство, что физики непрерывно открывают все новые и новые элементарные частицы, общая полная теория которых пока не построена.

Это ответ на ваш вопрос, так сказать, с точки зрения эксперимента. Если же взглянуть на дело с точки зрения теории, то во всяком случае современная физическая теория не может считаться внутренне замкнутой. Существует теория, описывающая квантовые явления, но не включающая гравитации, и гравитационная теория, не включающая квантовых явлений [В настоящее время теоретики много работают над созданием квантовой гравитационной теории. Ее рвз-работка - одна из центральных проблем современной физики и астрофизики. - Ред.].

Как, по вашему мнению, должно сказаться на мировоззрении современного человека то обстоятельство, что развитие фундаментальных физических представлений все еще совершается вопреки здравому смыслу?

По существу, так было всегда. Вспомните хотя бы историю с антиподами. Разве легко было в свое время нашим предкам привыкнуть к мысли о том, что где-то на другой стороне Земли люди ходят "вниз головой"? Разве это не противоречило здравому смыслу того времени?

Разница состоит лишь в том, что сейчас наука развивается быстрее и потому приходится гораздо чаще, чем прежде, приспосабливаться к новым идеям.

Я хотел бы подчеркнуть следующее. Идеалисты, как объективные, так и субъективные, считают, что все законы природы заложены в некоем духе мировом или в духе данного индивидуума. Но если бы дело действительно обстояло так, то в любых самых экстравагантных законах природы мы не должны были бы видеть ничего противного нашему здравому смыслу. То обстоятельство, что науки, и в первую очередь физика элементарных частиц, все чаще открывают законы и закономерности, вступающие во все большие противоречия со здравым смыслом, на мой взгляд, является одним из самых убедительных аргументов против религиозно-идеалистической точки зрения. Это свидетельствует о том, что сознание формируется под влиянием внешнего мира, а не наоборот.

Какие идеи в современной теоретической физике, на ваш взгляд, представляются наиболее интересными?

Лично мне весьма импонирует идея так называемых квазичастиц. Как известно, современная теоретическая физика исходит из идеи квантово-волнового дуализма. Элементарная частица рассматривается либо как частица, либо как волновой процесс. С другой стороны, любой волновой процесс можно "прокванто-вать", то есть разложить на частицы. Именно так в физике появились "частицы" света - фотоны, "частицы" тяготения - гравитоны и т. п.

В то же время любой вообще физический процесс может быть представлен как волновой, а следовательно, и проквантован. В этом смысле можно говорить о звуковых "частицах" - фононах, о плазменных "частицах" - плазмонах и т. д. Рассмотрение подобных "частиц" или, лучше сказать, квазичастиц имеет важное значение. Во-первых, оно лишает элементарные частицы их особых привилегий и позволяет взглянуть на разнородные физические явления с единой точки зрения. Во-вторых, изучение свойств квазичастиц имеет для современной физики ничуть не меньшее значение, чем исследование свойств элементарных частиц.

В связи с квазичастицами я хотел бы подчеркнуть еще одно, как мне представляется, чрезвычайно важное обстоятельство. Быть может, самая великая революция в физике состоит в том, что современная наука приходит к пониманию того факта, что не всегда сложное построено из более простого. Атом, разумеется, сложнее электронов и протонов, из которых он построен. Однако, проникая еще дальше в глубь атомного ядра, мы обнаруживаем, что там все обстоит еще значительно сложнее. И приходим к поразительному выводу: может быть, простое строится из сложного.

В поисках единой теории

На вопросы отвечает

доктор физико-математических наук

В. С. Барашенков

Каково, на ваш взгляд, современное состояние теории элементарных частиц?

После некоторого периода кажущегося застоя в этом разделе современной физики произошел серьезный сдвиг. В частности, в области теории идут исследования проблемы объединения различных известных типов взаимодействия, в первую очередь слабых и электромагнитных, а также сильных. И делается все это на очень глубоком - кварковом уровне. Однако теоретических моделей, описывающих мир элементарных частиц, пока еще слишком много, и в настоящее время трудно какой-либо из них отдать предпочтение.

Важное значение для дальнейшего развития наших представлений об элементарных частицах будет иметь недавнее открытие так называемых пси-частиц, обладающих необычными свойствами. Хотя теоретические предпосылки, допускающие наличие в природе подобных частиц, существовали, само их экспериментальное обнаружение явилось все же довольно неожиданным.

С другой стороны, открытия новых частиц стали важным аргументом в пользу гипотезы кварков. Дело в том, что без этой гипотезы было бы очень трудно объяснить свойства частиц. Более того, существование пси-частиц подтвердило, что кварков должно быть не три, а четыре. К тому же мы сейчас знаем, что каждый из этих кварков имеет три различных "цвета".

Кстати, хотел бы заметить, что мысль о существовании трехцветных кварков еще несколько лет назад была высказана известным советским физиком-теоретиком академиком Н. И. Богомоловым. Теперь она получила убедительные подтверждения.

Какое место занимает теория элементарных частиц в современном естествознании?

Наряду с астрофизикой она всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. Так, она подводит нас к новым представлениям о том, что такое элементарность.

Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем - от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим здравым смыслом, согласно которому целое всегда больше любой из составляющих его частей.

Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Например, протон на очень короткое время распадается (диссоциирует) на протон и пи-мезон, а каждый пи-мезон на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, о простом и сложном, а следовательно, теряет смысл и привычное для нас представление об элементарности. Появилась идея "прекварков" - еще более фундаментальных частиц, из которых состоят сами кварки.

Пожалуй, наиболее поражающим воображение обстоятельством является постепенно открывающаяся нам все более глубокая взаимосвязь между микропроцессами и макроскопическими явлениями, в том числе явлениями космического порядка. Становится все более ясно, что многие важные свойства космических объектов определяются в конечном счете свойствами микрочастиц.

Как известно, одним из основных положений материалистической диалектики является утверждение о всеобщей взаимосвязи явлений природы. Взаимосвязь микро- и макропроцессов - одно из конкретных выражений этой связи. В качестве объектов, где связь микро и макро реально проявляется, можно привести черные дыры с радиусом 10-13 сантиметров. Их масса должна составлять 108 тонн. Экспериментальное обнаружение таких удивительных объектов - одна из интереснейших задач современной физики.

Чего вы ждете в ближайшем будущем от теории элементарных частиц?

Прежде всего построения единой теории сильных, слабых и электромагнитных взаимодействий. Кроме того, должна быть понята природа кварков и получен ответ на вопрос, почему их не удается наблюдать. Не исключена возможность, что кварки представляют собой особый тип образований, которые могут существовать только в совокупности и которые принципиально невозможно разделить.

Весьма интересных результатов можно ожидать и от дальнейшего изучения нейтрино, играющего очень важную роль в слабых взаимодействиях.

Нуждается ли, по вашему мнению, современная теория элементарных частиц в каких-то принципиально новых идеях?

Экспериментальных данных в этой области сейчас очень много, немало и непонятного. Не исключено, что стараниями теоретиков удастся преодолеть существующие трудности и объяснить экспериментальный материал, не прибегая к каким-то принципиально новым представлениям. Но могут потребоваться и совершенно новые идеи, в том числе и весьма необычные.

Считаете ли вы, что развитие теории элементарных частиц ведет к открытию "все более странного мира"?

Это и в самом деле так. Теория элементарных частиц ведет все дальше от наглядных представлений, она обрастает все более сложными математическими и другими образами, у которых нет аналогий в непосредственно окружающем нас мире.

С другой стороны, новые, непривычные понятия - непривычные даже для физика - постепенно осваиваются, входят в обиход и незаметно становятся привычными. Один из физиков как-то привел показательный пример. Когда он был молодым, в Физическом институте Академии наук однажды обсуждался вопрос о потенциальном барьере для альфа-частиц. И докладчик, чтобы сделать для присутствующих это новое тогда понятие более наглядным, сравнил этот барьер со слоем Хэ-висайда, ионизированным слоем земной атмосферы, отражающим короткие радиоволны. А спустя несколько лет - это было уже в послевоенные годы - этому же физику пришлось стать свидетелем того, как один студент, объясняя другому, что такое слой Хэвисайда, сравнил его с потенциальным барьером для альфа-частиц.

Таким образом, по мере развития науки и освоения новых знаний происходит своеобразная переоценка ценностей. Совершается непрерывный процесс открытия и в то же время освоения "все более странного мира".

Если уж мы заговорили о "странном мире" элементарных частиц, то невольно возникает вопрос о так называемых сверхсветовых частицах, или тахионах. По этой проблеме в последние годы публикуется множество работ. Хотелось бы знать ваше мнение на этот счет.

Проблема, бесспорно, увлекательная. Само предположение о возможности существования сверхсветовых частиц не может не поражать воображение. Но если взглянуть на дело с чисто физической точки зрения, то окажется, что гипотеза.о существовании тахионов не противоречит специальной теории относительности. И даже не только не противоречит, а, наоборот, делает эту теорию более симметричной и внутренне согласованной, распространяя ее на мир, лежащий за световым барьером. Таким образом, гипотеза тахионов может быть верной или неверной, но она очень естественно вписывается в специальную теорию относительности, создавая цельную замкнутую картину. Разумеется, справедливость этой гипотезы может доказать только эксперимент.

Но, как известно, одним из основных положений специальной теории относительности является утверждение о предельном характере скорости света. Нет ли тут противоречия с предположением о существовании сверхсветовых частиц?

Я уже говорил, что идея тахионов теории относительности не противоречит. Это связано с тем, что запрет сверхсветовых скоростей не есть следствие, вытекающее из теории относительности, а лишь одна из аксиом, положенных в ее основание. Таким образом, специальная теория относительности в принципе не может запретить сверхсветовых процессов.

Согласно основному предположению, если тахионы действительно существуют, то они "обитают" за сверхсветовым барьером и не вступают ни в какое взаимодействие с "до-световыми" частицами нашего мира. Таким образом, речь идет о своеобразном распространении специальной теории относительности на гипотетические физические явления, протекающие по ту сторону сверхсветового порога. Мир тахионов, если он действительно существует, нигде не пересекается с миром досвето-вых скоростей. Эти миры, видимо, между собой не взаимодействуют.

В настоящее время физикам известны два типа частиц, между которыми не существует перехода, - "досветовые" и "световые", то есть частицы, движущиеся с досветовыми скоростями (протоны, нейтроны, электроны и т. п.) и со световыми скоростями (фотоны и нейтрино). Если бы оказалось, что тахионы действительно существуют, они составили бы третий тип частиц. Частица, принадлежащая к одному из этих типов, не может перейти в частицу другого типа ни при каких известных нам взаимодействиях. Я подчеркиваю: ни при каких известных нам взаимодействиях. На очень глубоком, еще не изученном современной физикой уровне это может быть и не так.

И все же возникает ощущение, что гипотеза сверхсветовых скоростей является чем-то вроде физической бессмыслицы?

Все дело в том, что вообще называть "физически бессмысленным". Соотношение или процесс, которые невозможны в круге привычных для нас явлений, могут реализоваться в другой области явлений. Иными словами, наши представления о возможном и невозможном носят относительный характер. Физически бессмысленными можно считать лишь такие теоретические выводы, которые вступают в противоречие с тем или иным известным фундаментальным законом природы в той области, где этот закон достаточно хорошо проверен. Гипотеза же тахионов, как мы видели, в подобные противоречия не вступает.

Но в таком случае при сверхсветовых сигналах должна нарушаться причинность: следствия могут опережать свои причины.

Да, действительно. Хотя гипотеза о сверхсветовых сигналах формально и не вступает в противоречие со специальной теорией относительности, предположение о существовании сверхсветовых частиц ставит ряд проблем принципиального характера. И главная из них связана с нашими современными представлениями о причинности.

Дело в том, что, согласно специальной теории относительности, два события А и В, происходящие в одной системе отсчета (скажем, на платформе железнодорожной станции), с точки зрения другой системы отсчета, движущейся относительно первой с некоторой скоростью (например, из окна подходящего к станции поезда), будут располагаться во времени несколько иначе.

В теории относительности вычислить, как меняется промежуток времени между двумя событиями при переходе от одной системы отсчета к другой, можно с помощью особых математических формул, которые носят название "преобразований Лоренца". Чем быстрее движется поезд, тем короче будет этот промежуток. Но хотя по мере приближения к скорости света промежуток между А и В будет становиться все короче и короче, последовательность событий останется одинаковой и для наблюдателя на платформе, и для пассажира поезда.

А если бы скорость поезда превосходила скорость света, то с помощью преобразований Лоренца мы обнаружили бы, что в этом случае промежуток времени между событиями А и В для наблюдателя в поезде сделался отрицательным. Другими словами, в этой системе отсчета события А и В меняются местами во времени - следствие возникает раньше причины. Предположение о существовании сверхсветовых частиц ведет к выводу, что в природе существуют процессы с неопределенным направлением развития, и можно выбрать такую систему отсчета, в которой причины и следствия поменяются своими местами.

Но в таком случае с помощью тахионного пучка можно было бы, так сказать, проникнуть в минувшее?

Да, можно было бы, скажем, создать телефон, направленный в прошлое. Или, например, выстрелить сейчас таким пучком и застрелить самого себя вчера, в 11 часов утра... Таким образом, возникают парадоксы. Кстати, если рассматривать область, где существуют только сверхсветовые взаимодействия, то в этой области никаких парадоксов нет. Они возникают лишь в тех случаях, когда сверхсветовые сигналы соседствуют с досветовы-ми. И если в подобной ситуации для микропроцессов нарушений причинности еще можно избежать, то для обычных макроскопических процессов они возникают с неизбежностью.

На языке современной физики это означает, что, допуская существование тахионов, мы приходим к нарушению принципа причинности - одного из фундаментальных положений современной науки. Наиболее общая его формулировка дана известным советским физиком академиком Н. Н. Боголюбовым: "Любое событие, происходящее в физической системе, может оказать влияние на эволюцию этой системы лишь в будущем и не может оказывать влияние на поведение системы в прошлом". В обычных условиях принцип причинности никогда не нарушается, по крайней мере нам такие случаи неизвестны.

Очевидно, можно сказать, что для процессов, протекающих со сверхсветовыми скоростями, противопоставление прошлого и будущего приобретает условный, относительный смысл?

Именно так... В процессах со сверхсветовыми сигналами временной порядок событий - какое из них происходит раньше, а какое позже - зависит от выбора системы координат. А направление потока информации, которое составляет основу причинно-следственной связи, при замене одной системы координат другой не меняется. Именно поэтому и происходит нарушение причинности. Кстати, при этом нарушается не только причинность. Для макроскопических явлений обратный во времени поток информации означает также нарушение такого фундаментального закона сохранения, как второй закон термодинамики - закон, запрещающий переход тепла от более холодных тел к более нагретым.

Вы не могли бы для наглядности привести пример какого-либо физического процесса, в котором при наличии сверхсветовых сигналов происходит нарушение причинности?

Представим себе, что в точке А расположен источник тахионов, в точке В - их приемник, а между ними находится щель, изменяя ширину которой мы можем менять интенсивность тахионного пучка, или, как говорят физики, его модулировать. Но так как тахионы движутся со сверхсветовой скоростью, то можно подобрать другую такую систему координат, в которой процесс будет протекать в обратном направлении, то есть тахионный пучок будет исходить из точки В. При этом он окажется модулированным еще до подхода к щели. Получается парадоксальная ситуация: щель как бы знает, как именно ей надо колебаться. В промежутке между точкой В и щелью факт модуляции тахионного пучка будет восприниматься как самопроизвольное, беспричинное, необъяснимое явление.

Существуют ли в таком случае какие-либо подходы к решению проблемы сверхсветовых частиц?

Некоторые зарубежные физики предлагают пересмотреть само понятие причинности - считать, что причина не обязательно должна опережать следствие, что это всего лишь некоторая связь, корреляция событий. Логически построить подобную схему, может быть, и можно, но такой подход противоречит физическому эксперименту. Во всяком случае, до расстояний 10-15 сантиметра никаких нарушений причинности в обычном понимании обнаружить не удалось. К тому же подход, о котором идет речь, неудовлетворителен и с методологической точки зрения: он отбрасывает самое главное - генетическую связь между событиями, то принципиальное обстоятельство, что одно событие порождает другое. В реальных физических процессах и экспериментах мы всегда предсказываем будущее по прошлому, а не наоборот.

Другое направление связано с попыткой пересмотреть специальную теорию относительности. Быть может, парадоксы возникают потому, говорят сторонники подобной точки зрения, что мы пытаемся применять соотношения этой теории за границами их применимости? В принципе подобная точка зрения неуязвима, ибо любая физическая теория имеет определенные границы применимости. Однако с практической точки зрения подобный подход ничего не дает. Если пойти по такому пути, то придется "выкинуть" всю современную физику.

Еще одна возможность состоит в признании того, что в природе существует некая "выделенная система координат" (выделенное не важно чем), в которой отсутствуют нарушения причинности. В такой системе специальная теория относительности заведомо неверна, и ее соотношения соблюдаются не обязательно. В принципе в природе подобная система отсчета, возможно, существует - это система, связанная с реликтовым излучением, возникшим на ранней стадии расширения Вселенной. Это единственный известный нам источник излучения во Вселенной, обладающий столь высокой изотропией и однородностью. Не исключено, что именно с этим обстоятельством могут быть связаны некоторые отклонения от теории относительности. В этом направлении, между прочим, открываются определенные возможности экспериментального поиска тахионов.

И все же наиболее интересный путь состоит в том, чтобы проанализировать сущность нарушений причинности, с которыми мы сталкиваемся при попытках ввести сверхсветовые сигналы, и попытаться выяснить, что они в действительности означают.

А как обстоит дело с экспериментальной точки зрения? Есть ли какие-либо экспериментальные указания на возможность существования тахионов и можно ли надеяться такие указания получить вообще?

Пока таких доказательств получить не удалось. Но, может быть, дело в том, что в подобных экспериментах не учитывались какие-то неизвестные нам пока свойства тахионов.

Одна из интересных возможностей - попытаться обнаружить тахионы по так называемому черенкозскому излучению. Теория утверждает, что при движении в вакууме сверхсветовые частицы должны излучать электромагнитные волны. Впрочем, если это и так, измерить подобное излучение будет весьма нелегко.

В последние годы много пишется и говорится о взаимосвязи между микропроцессами и явлениями космического порядка. Каково космологическое значение теории элементарных частиц в ее современном состоянии?

Взаимосвязь микро- и макропроцессов - одно из конкретных выражений диалектики природы, всеобщей взаимосвязи ее явлений.

Уже сейчас в ряде случаев трудно разделить, где космология, а где теория элементарных частиц. В центре внимания современной астрофизики находятся объекты, отличающиеся чрезвычайно высокой плотностью, а иногда и очень малыми размерами (вспомним об упоминавшихся выше микроскопических черных дырах с массой около 108 тонн). Подобные экстремальные состояния материи не могут быть описаны в рамках одной лишь общей теории относительности Эйнштейна, так как при столь больших плотностях неизбежно возникают специфические квантовые эффекты. Поэтому одной из важнейших задач современной физики является построение квантовой гравитационной теории, которая объединила бы общую теорию относительности и квантовую физику.

Чем, на ваш взгляд, поучительна теория элементарных частиц и история ее развития?

Эта область физики поучительна прежде всего тем, что здесь с особенной силой проявляется мощь научной теории. Ведь не случайно, например, кварки были изобретены, а не обнаружены в опыте. Поучительно и то, что в процессе развития этой теории то и дело возникает масса неожиданных понятий и образов, потрясающих привычные основы. Достаточно опять-таки напомнить о кварках. Тем самым наглядно и убедительно демонстрируется неправомерность любой абсолютизации научных знаний. Физика как наука никогда не исчерпаема.

Какие философские проблемы связаны с современной теорией элементарных, частиц?

Помимо выяснения сущности явления элементарности, о чем уже говорилось, одна из основных проблем, имеющих важное философское значение, состоит в выяснении того, что представляет собой пространство - время в физическом смысле. Еще одна важная проблема - обобщение существующего понятия причинности, которое в ряде случаев может оказаться недостаточным. Необходимо также понять, что означает несохранение направления времени при К-распадах.

Есть и еще ряд проблем методологического характера, так или иначе связанных с изучением элементарных частиц. Что значит - хорошая теория? Что значит - объяснить? Что значит - единая теория? Что предпочтительнее система уравнений или модель? И ряд других...

Существуют ли гравитационные волны!

На вопросы отвечает

доктор физико-математических наук

В. Б. Брагинский

Что дает основание для вывода о существовании гравитационных волн?

Вывод о возможности существования волн тяготения (гравитационных волн) - одно из следствий общей теории относительности Эйнштейна. До сих пор каких-либо оснований сомневаться в справедливости этой теории у нас не было. Целый ряд предсказанных ею космических и физических явлений, в том числе такой фундаментальный факт, как расширение Вселенной, получили наблюдательные и экспериментальные подтверждения. Поэтому мы вправе ожидать, что оправдаются и другие ее предсказания, в частности и относительно существования гравитационных волн.

Всем хорошо знакомы электромагнитные волны. Они образуются в тех случаях, когда возникают возмущения электрического или магнитного полей. Эти возмущения отрываются от источника и распространяются в пространстве со скоростью, равной скорости света. Аналогичное явление в принципе должно происходить и при возмущениях поля тяготения, гравитационного поля...

Всякое ли возмущение поля тяготения приводит к возникновению гравитационных волн?

Нет, как показал Эйнштейн, только при определенных условиях возмущение гравитационного поля может оторваться от источника и начать самостоятельную жизнь. В космосе их могут, например, порождать двойные звезды (две звезды, обращающиеся вокруг общего центра масс) или столкновения двух звезд. По-видимому, гравитационные волны могут возникать и при вспышках сверхновых звезд, а также при гравитационном коллапсе - в момент образования "черных дыр".

Какое научное значение имело бы открытие гравитационных волн?

Прежде всего, тем самым получила бы добавочное подтверждение общая теория относительности Эйнштейна. К тому же гравитационные волны от внеземных источников, если они будут обнаружены, могут стать чрезвычайно важным каналом для поступления астрофизической информации. В частности, с их помощью можно будет получать интереснейшие данные о гравитационном коллапсе звезд, о рассеянии материи космическими объектами, о динамике многих других космических процессов.

Они также способны принести уникальные сведения буквально о самых первых мгновениях расширения Вселенной.

Вы сказали: "Если удастся обнаружить". Как это следует понимать?

Все дело в том, что заключение о существовании гравитационных волн не является однозначным выводом из общей теории относительности. На пути от уравнений этой теории к интересующему нас выводу делаются различные допущения физического порядка. При этом одни ученые считают, что подобные допущения вполне оправданны, а другие разделяют прямо противоположную точку зрения. Лично я придерживаюсь того мнения, что гравитационные волны существуют. Но, разумеется, окончательным судьей в этом споре может быть только эксперимент.

В свое время в печати появлялись сообщения о том, что американскому физику Веберу удалось зарегистрировать гравитационные волны. Что бы вы могли сказать по этому поводу?

Вебер сконструировал специальные антенны для обнаружения всплесков гравитационных волн от внеземных источников. Чтобы исключить влияние каких-либо иных физических процессов, например сейсмических толчков, две установки были разнесены на 1000 километров одна от другой. Учитывались только те воздействия, которые фиксировались одновременно обоими детекторами. И уже в первых сериях наблюдений был зарегистрирован ряд таких совпадений. Сообщения об этом произвели настоящую сенсацию, в ряде стран стали спешно создаваться аналогичные устройства для повторения подобных наблюдений. Эта своеобразная "гонка", продолжавшаяся около двух с половиной лет, закончилась, однако, ничем. Никому результатов Ве-бера повторить ни разу не удалось. Видимо, он все-таки ошибся. Хочу, впрочем, подчеркнуть, что ошибка эта отнюдь не относится к категории тривиальных. Ведь речь идет о длительных, многомесячных измерениях весьма малой физической величины, измерениях, которые к тому же требуют абсолютной гарантии от каких бы то ни было помех.

В таком случае возникает естественный вопрос: что же регистрировали в действительности приборы Вебера?

Еще в 1972 г. сотрудники одного из советских научно-исследовательских институтов провели интересное исследование. Они вложили в электронно-вычислительную машину результаты наблюдений Вебера, а также данные о ходе ряда других природных явлений за тот же период, в том числе и о вариациях магнитного поля Земли, пятнах и вспышках на Солнце. Оказалось, что между всеми этими явлениями существует определенная взаимозависимость. Впоследствии аналогичную работу проделали американские ученые и пришли к такому же результату.

А как вы относитесь к предположению о том, что Веберу удалось зарегистрировать гравитационное излучение, исходящее из центра нашей Галактики?

Как я уже сказал, Вебер, видимо, вообще регистрировал не гравитационные волны. Что же касается гравитационного излучения из центра нашей Галактики, то в принципе те физические процессы, которые там происходят, вероятно, могут порождать гравитационное излучение. Но если бы оно действительно оказалось таким, каким его зарегистрирЬвал Вебер, то всего за 100 тысяч лет вся центральная часть нашей звездной системы должна была бы превратиться в гравитационное излучение. Совершенно очевидно, что подобный результат вступает в явное противоречие с многомиллиардным возрастом Галактики.

Каковы же перспективы дальнейших исследований в области изучения гравитационных волн?

В настоящее время в разных странах, в том числе и в Советском Союзе, ведутся интенсивные работы по созданию новых, более чувствительных приемников гравитационного излучения. Я думаю, в ближайшем будущем в этой области появятся новые результаты, которые значительно расширят наши знания о фундаментальных закономерностях мироздания.

ПОЯСНЕНИЕ НЕКОТОРЫХ СПЕЦИАЛЬНЫХ ТЕРМИНОВ

Античастицы. - В конце 20-х годов текущего столетия знаменитый английский физик Поль Дирак разработал теорию движения электронов в атомах. Из этой теории вытекало, что элементарные частицы могут отличаться не только массой, но и своими электрическими и магнитными свойствами. В частности, его теория предсказывала существование "антиэлектронов" - частиц с массой электрона, но обладающих положительным зарядом.

Прошло всего четыре года, и в 1932 г. при изучении космических лучей американский физик К- Андерсон обнаружил частицу, свойства которой совпадали со свойствами "антиэлектронов" Дирака. Новая частица получила название позитрона. В настоящее время физикам известны антинейтроны, антипротоны и многие другие античастицы. Любопытно, что частицы и античастицы не могут сосуществовать. При соприкосновении друг с другом они аннигилируют - взаимно уничтожаются с выделением большого количества энергии, пол-нoстью превращаясь в излучение.

Атом водорода. - Водород - простейший и в то же время самый распространенный химический элемент во Вселенной. Атом водорода состоит из положительно заряжённого ядра - протона и движущегося вокруг него электрона. Электрические заряды электрона и протона одинаковы, но противоположны по знаку. Масса протона в 1836 раз больше массы электрона. Масса атома водорода в граммах составляет 1,67*10-24 грамм.

Масса электрона - 9,1*10-28 грамм. Диаметр атома водорода не может быть точно определен, его граница размыта, приблизительно он равен 10-8 сантиметра. Эта единица, равная одной стомиллионной доле сантиметра, в честь шведского ученого Андерса Ангстрема названа ангстремом.

Радиус протона примерно в 100 тысяч раз меньше радиуса атома водорода. Он составляет 1,3*10-13 сантиметра. Длина 10-13 сантиметра принята за ядерную единицу длины. Она получила название ферми в честь знаменитого итальянского физика Энрико Ферми. Плотность вещества в протоне фантастически велика - около 200 миллионов тонн в кубическом сантиметре. Приблизительно такова же плотность вещества во всех атомных ядрах.

Дейтерий. - Кроме обычного водорода в природе существует еще так называемый тяжелый водород, или дейтерий, который был открыт в 1932 г. Электронная оболочка атома дейтерия, так же как и у водорода, состоит из одного электрона, но его ядро - дейтон - примерно вдвое тяжелее и состоит из двух частиц - протона и нейтрона.

Дейтерий применяется в современной ядерной технике как взрывчатое вещество. В будущем он будет использоваться как горючее в термоядерных энергетических установках. Запасы термоядерной энергии дейтерия, имеющиеся в воде земных океанов, примерно в 100 миллионов раз превосходят запасы энергии ископаемого топлива (угля, нефти, газа, торфа).

Инвариантность - неизменяемость. В математике и физике инвариантные величины - величины, не меняющие своего значения, при том или ином классе преобразования играют весьма важную роль.

В широком - философском - смысле инвариантность - это независимость от способа описания.

Камера Вильсона. - В конце прошлого столетия физик Ч. Вильсон, работая на горной обсерватории в Шотландии, обратил внимание на любопытные оптические явления, возникающие при освещении солнечными лучами облаков и тумана. Ученый решил воспроизвести подобное явление в лаборатории и провел несколько экспериментов, получая искусственные облака путем расширения паров. Эти опыты натолкнули Ч. Вильсона на плодотворную идею, которая и легла в основу знаменитой камеры для регистрации элементарных частиц, названной его именем. В камере Вильсона пролетающие частицы оставляют видимые следы из капелек воды в парах, образующихся в результате быстрого расширения. Эти следы можно фотографировать.

Масса и энергия. - Из теории относительности следует, что полное количество энергии, содержащейся в некотором количестве материи, равно произведению массы этой материи на квадрат скорости света в вакууме. Поэтому в физике высоких энергий массы измеряются в единицах энергии - так называемых миллионах электрон-вольт (мэв). В этих единицах массы электрона и позитрона равны примерно 0,5 мэв, а массы протона и нейтрона - 940 мэв. Иногда используется более крупная единица, равная одному миллиарду электрон-вольт (гэв), - гигаэлектрон-вольт. Масса одного грамма вещества выражается астрономическим числом - 6*1023 гэв.

Мезоны. - Изучая взаимодействия частиц, входящих в состав атомного ядра, японский физик Юкава пришел к выводу, что их взаимное притяжение является результатом непрекращающегося обмена особыми частицами - мезонами. Юкава предсказал также, что масса мезона должна примерно в 200 раз превосходить массу электрона. Впоследствии были открыты три мезона с близкими массами, но с разными электрическими зарядами: положительный, отрицательный и нейтральный. Эти ядерные мезоны получили название пи-мезонов. Кроме того, открыты еще два мю-мезона - положительный и отрицательный. Они возникают при распаде соответственно положительного и отрицательного пи-мезонов.

Нейтрон и нейтрино. - Нейтрон - частица с массой 1838,6 электронной массы - был открыт в 1932 г. английским ученым Д. Чедвиком. Вне атомного ядра нейтрон не стабилен. Средняя продолжительность его жизни 17 минут. Затем нейтрон распадается на протон, электрон и антинейтрино (распад).

В свое время физики обнаружили, что нейтрон может самопроизвольно распадаться на протон и электрон. Однако при этом обнаружилось странное нарушение закона сохранения энергии. Общая энергия продуктов реакции оказалась меньше, чем следовало из теоретических расчетов. Известный швейцарский физик В. Паули высказал предположение о том, что недостающую энергию уносит с собой неизвестная частица. Однако обнаружить эту частицу, названную по предложению Э. Ферми нейтрино (что одновременно означает "маленький" и "нейтральный"), удалось лишь сравнительно недавно.

Главная отличительная особенность нейтрино - удивительная способность беспрепятственно проходить сквозь громадные толщи вещества. Длина свободного пробега нейтрино в космосе сравнима с радиусом доступной современным исследователям области Вселенной.

Пузырьковая камера. - Одно из наиболее эффективных устройств для регистрации явлений, вызываемых частицами высоких энергий. Принцип ее работы сходен с принципом работы камеры Вильсона. Жидкость, наполняющая камеру, перегревается и приобретает способность легко вскипать. Благодаря этому вдоль пути, пройденного заряженной частицей, образуется видимый след, состоящий из пузырьков газа.

Поле. - Особая форма существования материи. Представим себе мощный радиопередатчик, излучающий электромагнитные волны. Где бы мы ни помещали антенну нашего приемника, они будут возбуждать в ней движение электронов, электрические токи, которые после соответствующего усиления и преобразования создают звук в динамике. Энергия, излучаемая передатчиком, заполнила определенную область пространства. Но энергия - это свойство материи, которое не может существовать отдельно, независимо от самой материи. Она всегда должна иметь материального носителя. В данном случае носителем энергии является электромагнитное поле. О материальной природе электромагнитного поля говорит и то обстоятельство, что оно способно оказывать на помещенные в него объекты не только электрическое, магнитное, но и прямое механическое воздействие. Так, электромагнитные (например, световые) волны производят определенное давление на преграды, а излучатели таких волн испытывают реактивный эффект, получая ускорение в противоположном направлении, как если бы выбрасывали обычные частицы вещества.

Типы взаимодействий. - Современной физике известны четыре типа взаимодействий между элементарными частицами.

Взаимодействие большой интенсивности, обусловленное обменом пи-мезонами и удерживающее в атомном ядре протоны и нейтроны, называется сильным взаимодействием.

Несколько слабее - электромагнитное взаимодействие, притяжение и отталкивание разноименных и одноименных зарядов.

Третий тип - слабые взаимодействия, возникающие при распадах и столкновениях частиц со средними и малыми массами.

Последний тип взаимодействия - притяжение масс, или гравитация. Однако в микромире гравитационные силы почти не играют никакой роли, так как они во много раз слабее других сил.

II. К истокам живого

Наука о живом

Живая природа всегда поражала человека своим многообразием, сложностью, целесообразностью, беспрерывным и быстрым изменением. От невидимого мира и микроорганизмов, бесчисленных простейших, лишайников, мхов, трав, кустарников и деревьев до мира животных - насекомых, рыб, земноводных, птиц, млекопитающих - такова цепь жизни, которая тянется к венцу природы - человеку, единственному из биологических существ, способному изучать и осмысливать закономерности природы.

На протяжении тысячелетий жизнь, ее зарождение и развитие, удивительная приспособляемость, наконец, сам человек с его разумом - все это казалось людям таинственным, необъяснимым, сверхъестественным. Загадка жизни всегда была прибежищем идеализма и религии. У всех религий имеется своя трактовка происхождения и сущности жизни.

Согласно христианско-иудейской Библии, бог создал все живые существа одним словом. В другом варианте библейской легенды он творит человека из "праха земного", вдувая ему в уста "дыхание жизни" (Бытие, гл. 2, ст. 7). В Коране сказано: "Хвала Аллаху!.. Он - тот, кто сотворил вас из глины..." (Сура 6, ст. 1 - 2). В другом месте этой священной книги мусульман утверждается: "О Боже, царь царства!.. Ты... выводишь живое из мертвого, и выводишь мертвое из живого..." (Сура 3, ст. 25 - 26).

Немало столетий прошло, пока человек накопил достаточно знаний для научного понимания мира живой природы. Для этого понадобилось развитие физики и химии, познание законов строения живых организмов, деятельности их органов и тканей, умение заглянуть внутрь организмов, проникнуть в мельчайшую их структуру. Пытливая мысль и эксперименты многих и многих поколений естествоиспытателей привели к заключению о постоянном развитии всего многообразия растительных и животных видов в процессе смены бесчисленных поколений белковых тел.

Какой сложной психологической перестройки потребовал такой взгляд даже от выдающихся умов! Еще в середине XVIII в. молодой Дени Дидро писал, что, склоняясь к неверию, возвращается к мысли о бытии бога, как только вспоминает о целесообразности живого: "Разве божество не запечатлено столь же ясно в глазу насекомого, как способность мыслить в произведениях великого Ньютона?" Но уже вскоре религиозному представлению о целесообразности живого был нанесен решающий удар - Чарльз Дарвин создал теорию происхождения видов путем естественного отбора. "Дарвин положил конец воззрению на виды животных и растений, как на ничем не связанные, случайные, "богом созданные" и неизменяемые, и впервые поставил биологию на вполне научную почву" [В. И. Ленин. Полн. собр. соч., т. 1, стр. 139], отмечал В. И. Ленин.

В наши дни мысль о последовательном развитии животного и растительного мира под воздействием естественных факторов, изменчивости и наследственности стала хрестоматийной. Современная биология идет гораздо дальше - в глубь живой материи, изучает самые сокровенные ее структуры. Сегодня это обширная область знаний, она включает много специальных направлений, изучающих жизнь во всех ее проявлениях, во всем бесконечном многообразии.

Еще совсем недавно биология не считалась достаточно точной наукой, нередко ее выводы, хотя и базировались на эксперименте, носили общий, весьма предположительный характер. Но уже Ф. Энгельс, констатировавший, что применение математики в биологии равно нулю [См. К. Маркс и Ф. Энгельс. Соч.. т. 20, стр. 587], высказал идею о формах движения материи, начиная от самой простейшей - механической и кончая наиболее сложными - биологической и социальной как неотъемлемых ее структурах. Согласно его точке зрения, биологическая форма движения - такое же естественное свойство материи, как и физическая или химическая. "Материя, - говорил Ф. Энгельс, - во всех своих превращениях остается вечно одной и той же... ни один из ее атрибутов никогда не может быть утрачен..." [Там же, стр. 363].

Так философия диалектического материализма, обобщая данные естествознания, раскрыла качество жизни как одно из свойств материального мира, не сводимое к низшим формам движения, но органически из них вытекающее при определенных условиях на тех или иных этапах развития Вселенной. Так было покончено с религиозной фетишизацией явления жизни, а биологические процессы оказались вовлеченными в круг феноменов, исследуемых с такой же точностью, как и в других естественных науках.

Эти теоретические предпосылки все в большей степени реализуются современной наукой. Сегодня уже совершенно точно известно: биологическая форма движения вырастает на плечах физико-химических взаимодействий, осуществляющихся в живом организме и свойственных только ему. И исследование этих процессов ведется методами, принятыми в физике и химии микромира при помощи самой совершенной электронной аппаратуры, с применением математики и электронно-вычислительных машин.

Использование этих методов и средств позволило перенести фронт исследования жизни в сферу самых "интимных" ее процессов. И если еще совсем недавно фронт познания биологической формы движения проходил по рубежу, главными вехами которого были проблемы происхождения видов, целесообразности, тайны психики, то сегодня материалистическая наука здесь уже подходит к рубежам, механизм познания которых позволит узнать самую суть живого, управлять жизнедеятельностью, даже синтезировать живую материю.

Но некоторые современные биологи делают попытки свести представления о живой системе к "простым" исходным элементам или структурам. Это приводит к механистическому подходу в изучении живого, при котором единство мира превращается в его единообразие. Известный французский биолог, сделавший ряд выдающихся открытий в молекулярной биологии, лауреат Нобелевской премии Ж-Мо-но в своей книге "Случайность и необходимость. Исследование натурфилософских проблем современной биологии" сравнивает клетку с машиной, отрицает эволюцию внутри структуры и эволюцию самих структур, считая, что основной базой в биологии служит не принцип эволюции, а генетический код, изолированный, неспособный получать информацию извне.

На почве метафизически ограниченного ме" ханистического мышления естествоиспытателей в их философских выводах возникает идеализм. Возрождение представлений о "жизненной силе", о "тенденции к самоусовершенствованию" (развитие живого нельзя объяснить только посредством мутаций, возможно, возникновение жизни обязано принципу "тенденции к самоусовершенствованию" - по мнению известного американского биолога А. Сент-Дьердьи) - это дань идеализму в современной биологии. Это теневая сторона успехов быстро развивающейся науки.

Применение методов физики, химии, кибернетики в исследованиях живых систем привело к появлению представления о "живых молекулах" первоначальных единицах живого, обнаруживающих особые "витальные свойства".

Это тоже возвращение к идеям о "жизненной силе", к витализму.

На протяжении веков в сознании естествоиспытателей воздвигался мировоззренческий и психологический барьер - убеждение, что между неорганическим и органическим миром существует непроходимая пропасть: мол, биологические закономерности или не имеют ничего общего с законами физики и химии, или содержат в себе нечто к ним несводимое, - "жизненную силу".

Успехи молекулярной биологии не оставляют места для таких представлений. Само появление этой науки стало возможным лишь в результате преодоления метафизической концепции, лежащей в основе и механицизма, и витализма. Согласно молекулярной биологии, качественно новый уровень организации материи - жизнь возникает не в результате добавления нематериальных факторов извне, а на основе уже предшествующих элементов, соединенных в новую целостность, благодаря новому типу противоречивых связей и отношений между этими элементами.

Современные разновидности идеализма в биологии отражают реальные противоречия и трудности процесса познания явлений жизни. Это - главная причина, почему под влиянием религиозных представлений или идеалистической философии находится ряд известных ученых-биологов - Г. Шрамм (ФРГ), А. Портман (Швейцария), Э. Синнот (США), не говоря уже о тех, кто является дипломированными теологами, совмещающими теологию с занятиями наукой, - И. Хаасе, Ф. Дессауэре (ФРГ), Д. Бландино (Италия).

В течение нескольких последних десятилетий в науке достигнуты рубежи, отметающие прежние представления о сущности жизни. С помощью молекулярной биологии исследователи перешли от изучения целых организмов, органов и тканей к изучению мира клетки, ее органелл - митохондрий, рибосом, отдельных молекул. Был сделан ряд выдающихся открытий, позволивших поднять науку о жизни до уровня точных наук. Эти открытия повлияли на систему всего биологического знания в целом и на ряд его отраслей, в частности на развитие генетики. Так как генетика - наука о наследственности и изменчивости, а эволюционная теория Ч. Дарвина изучает суммарное действие трех основных факторов эволюции - наследственности, изменчивости и естественного отбора, то становится видна внутренняя связь между эволюционной биологией и генетикой, вытекающая из общности предмета исследования. Таким образом, молекулярная биология способствовала дальнейшему развитию дарвиновского эволюционного учения,, то есть с развитием ее появился новый уровень познания эволюции.

Современная генетика понимает эволюцию как появление резких, полезных для вида, наследственных изменений - мутаций, подхваченных естественным отбором. В естественных условиях мутации редки, но необходимо учесть огромное количество живых организмов почти в каждом из видов и миллиарды лет, в течение которых эволюция происходила и происходит, причем совсем не в тех пределах, которые "придумал господь бог" при "сотворении мира".

Один из крупнейших естествоиспытателей, Джон Бернал, писал: "Благодаря успехам биохимии и молекулярной биологии удалось понять, что жизнь на Земле почти наверняка представляет собой единство. Не только все организмы генетически родственны друг другу, как это предположил Дарвин, но и самые молекулы, из которых они построены, представляют собой комбинации небольших молекул абиогенного происхождения - потомков тех первичных молекул, которые присутствовали в "первичном бульоне", или, что кажется более вероятным, тех полимеров, которые возникли из этих молекул на втором этапе, когда впервые появился решающий по своей важности процесс молекулярной репликации" [Дж. Бернал. Возникновение жизни. М., 1969, стр. 204].

Биохимическая универсальность молекул живой клетки позволяет им оставаться неизменными и создавать основу для бесконечной повторяемости от поколения к поколению, от вида к виду тех биохимических "начал" жизни, без которых ее невозможно представить.

В 1953 г. английскими исследователями Дж. Уотсоном и Ф. Криком была расшифрована структура двойной спирали ДНК и предложена гипотеза о ее информационной роли. В настоящее время известен весь "алфавит", кодирующий наследственную информацию. Раскрытие тайны генетического кода произошло так стремительно, что это достижение науки не имеет себе равных. Удалось искусственно синтезировать молекулу ДНК, синтезировать первый ген для транспортной РНК дрожжей, выделить чистый ген из молекул ДНК живой клетки.

Универсален механизм биосинтеза белка, нуклеиновых кислот и других соединений для всех организмов. Принципы организации процессов жизнедеятельности и их регуляции (несмотря на различие регуляторных систем у низших и высших организмов) на молекулярном уровне также универсальны.

Но принцип единства всего живого неотделим от принципа развития. Поэтому молекулярная биология неразрывно связана с проблемами эволюции и с диалектикой, общей наукой о развитии. Вместе с тем успехи молекулярной биологии привели к выводу, что существуют определенные границы в применении физико-химических методов и концепций в науке о живом, за пределами которых возникает необходимость в иных способах, найденных при исследовании надмолекулярных уровней организации живого. Многие естествоиспытатели, в том числе и Дж. Бернал, поддерживают точку зрения А. Сент-Дьердьи, что "для понимания мышцы необходимо спуститься на электронный уровень, законы которого регулируются квантовой механикой", и что предстоит еще открыть значительную область науки, находящуюся пока за рамками современной биохимии и биофизики.

В чем сущность биологической формы движения материи? Вопрос этот пока открыт, но из этого вовсе не следует, что для его решения необходимо искать помощи в области сверхъестественного.

Упорядоченность, организованность в процессах жизнедеятельности, наследование потомством свойств родителей, развитие организма из одной клетки и т. д. - все это религия активно использовала в прошлом и использует в настоящем для обоснования идеи о сверхъестественности жизни, о.божественном ее происхождении. Однако научные данные говорят о том, что синтез белков в клетке определен (несмотря на всю его сложность и организованность) физико-химическими факторами, и никакого сверхъестественного элемента здесь не обнаружено. Высокая упорядоченность достигается благодаря взаимодействию электронных оболочек атомов и молекул.

Загрузка...