В предыдущих разделах основной задачей автора было обеспечение доступности изложения. Не использовались никакие математические средства, кроме знакомых каждому по средней школе простейших алгебраических уравнений. При этом, естественно, не удавалось разъяснить некоторые тонкие вопросы: почему, например, аварии, причиной которых является встреча с «особым» объектом, обладают особенными чертами, описанными в параграфе 8 и позволяющими правильно определить причину аварии. Остались, возможно, не до конца понятными (а может быть и загадочными) некоторые другие вопросы.
В настоящей второй части мы разъясним эти загадки, но для понимания их от читателя потребуется — в отличие от первой части — знание математики в объеме технического вуза и, в частности, знакомство с простейшими линейными дифференциальными уравнениями с постоянными коэффициентами и методами расчета устойчивости их решений.
Рассмотрим электропривод постоянного тока, математической моделью которого является простое дифференциальное уравнение первого порядка:
(9)
где ω — частота вращения, і — ток якоря, который в регулируемых приводах является управляющим воздействием, Мс — момент сопротивления исполнительного механизма, m — механическая постоянная времени электропривода, численно равная времени его разгона от нулевой частоты вращения до номинальной при номинальном токе якоря и нулевом моменте сопротивления.
Обозначим через χ1, х2 и х3 отклонения частоты вращения, тока якоря и момента сопротивления Мc от их номинальных значений, а коэффициент к примем равным к = 2. Получим уравнение электропривода «в отклонениях»:
тх1 = -2х1 +х2 + х3 (10)
Если момент сопротивления используемого механизма является стационарным случайным процессом со спектром
(11)
то для простейшего случая α = 1 переменная х3 и ее производная х4 будут удовлетворять уравнениям:
(12)
Система трех дифференциальных уравнений (10)—(12) является математической моделью электропривода как объекта управления. Колебания частоты вращения можно уменьшить за счет регулятора с обратной связью. Пусть в этом регуляторе управляющее воздействие х2 формируется в функции от остальных переменных по закону:
х2 = -X1 - 2х3 —х4 (13)
Тогда система четырех уравнений (10), (12), (13) является математической моделью замкнутой системы управления. Уравнения (10)—(12) типичны для многих электроприводов, а формируя управляющее воздействие в виде (13) мы следуем известным рекомендациям А. М. Летова. Для удобства дальнейших расчетов мы округлили параметры электропривода до целых чисел, но в целом система уравнений (10), (12), (13) отражает вполне типичную практическую ситуацию.
Исследуем устойчивость этой системы и влияние на устойчивость изменений параметра m -механической постоянной времени электропривода. Если текущее время t, входящее в уравнения (10), (12), (13), измерять в долях механической постоянной времени, то номинальное значение параметра m будет равно единице, но в ходе эксплуатации электропривода возможен, разумеется «дрейф» этого параметра и отклонение его от значения m = 1.
Устойчивость замкнутой системы зависит от корней характеристического полинома (т. е. от «собственных значений» системы), а характеристический полином системы (10), (12), (13) равен легко вычисляемому определителю:
(14)
Мы убеждаемся, что характеристический полином замкнутой системы имеет три корня (три «собственных значения»):
(один из корней — кратный) и эти корни отрицательны для всех т в диапазоне
Таким образом, замкнутая система устойчива и сохраняет устойчивость не только при малых, но и при больших отклонениях параметра т от номинального значения т = 1.
Решения системы уравнений (10), (12), (13) имеют вид
(15)
где C1, C2, C3 — постоянные интегрирования. Для х2, х3, х4 формулы аналогичны. Мы убеждаемся, что отклонение х быстро затухает с течением времени. Система устойчива для любых т> 0 .
Однако момент сопротивления х3 и особенно его производную х4 очень трудно непосредственно измерить и ввести в канал обратной связи. Поэтому целесообразно исключить из уравнения объекта управления и регулятора переменные х и х путем эквивалентных преобразований. Проделав их, придем к уравнениям (где
является символом оператора дифференцирования):
[mD3 + (2 + 2 m)D2 + (4 + m)D + 2]x1 = (D +1)2 x2 (16)
[mD2 + (2 + 2m)D + 5]x1 = (D + 1)x2 (17)
Уравнение (16) является уравнением объекта управления, уравнение (17) — уравнением регулятора, который на этот раз для формирования управляющего воздействия х2 использует легко доступную для непосредственного измерения переменную х1.
Для исследования устойчивости системы (16)—(17) достаточно найти корни ее характеристического полинома.
И вот здесь исследователей подстерегала трудность, которая надолго задержала правильный ответ о причинах техногенных катастроф, связанных с «аналитически сконструированными» регуляторами, и укоротила жизнь А. М. Летова: если вычислять характеристический полином системы (16)—(17) по общим математическим правилам как определитель:
(18)
то он, как легко проверить, будет равен определителю (14) и мы снова должны будем сделать вывод о том, что замкнутая система устойчива и сохраняет устойчивость при «дрейфе» параметра m .
Однако этот вывод будет ошибочен! Дело в том, что объект управления (электропривод) и регулятор — это разные (хотя и расположенные рядом) устройства, поэтому «дрейф» их параметров может идти независимо друг от друга, образуя самые причудливые комбинации. Рассмотрим простейший (но возможный) случай: параметры регулятора остались равными номинальным значениям (соответствующим т — 1), а в объекте управления механическая постоянная времени немного изменилась. Для анализа устойчивости этого случая надо вычислить определитель:
(19)
Пусть m = 1 + ε, где ε - малое число и можно пренебречь членами с ε2, ε3 и др. Тогда сразу видно, что при ε > 0 замкнутая система неустойчива, в решении системы, кроме членов, отраженных формулой (15), появляется очень быстро растущий четвертый член вида
(20)
а при ε < 0 устойчивость сохраняется. Исключение переменных х и х из уравнения (10), (12), (13) при правильном учете реальных связей между «дрейфом» параметров в технической системе является примером эквивалентного преобразования, изменяющего свойство сохранения устойчивости при дрейфе параметров.
Формула (19) раскрывает еще одно опаснейшее и очень коварное свойство технических объектов, спроектированных по привычным методикам, без учета новых явлений, открытых в СПбГУ: при изготовлении любого технического устройства малые отклонения реальных параметров (а значит, и коэффициентов математической модели) от расчетных значений неизбежны, но знак этих отклонений не предсказуем. Вполне может оказаться, что реальная величина параметра будет меньше расчетной, т.е. окажется, что ε < 0. Тогда изготовленное устройство окажется устойчивым и нормально работающим. Оно будет иметь малый запас устойчивости — но на испытаниях реального устройства запас устойчивости проверить чаще всего невозможно (обычно рекомендуемое «покачивание параметров» редко помогает — о причинах этого подробно рассказано в [2]). Поэтому изготовленное устройство будет признано хорошим и может быть установлено, например, на самолете как одна из его многочисленных систем. Устройство будет исправно работать не предсказуемое заранее время — до тех пор, пока при неизбежном в ходе эксплуатации «дрейфе» параметров устройство потеряет устойчивость, «пойдет в разнос» и вызовет аварию, которая может перерасти в катастрофу, с гибелью пассажиров и экипажа.
Подобные аварии происходят не каждый день, а несколько реже только потому, что «особые» системы и устройства, для которых привычные методы расчета дают неверные данные о запасах устойчивости, встречаются не очень часто. Но мириться с авариями нельзя, а предотвращать их можно только проверкой технической документации самолетов на основе методов, разработанных в СПбГУ и «Военмехе».
Формулы (19) и (20) иллюстрируют основные черты аварий, произошедших именно по причине неполноты привычных методов расчета, о которых уже говорилось в параграфе 8: благодаря наличию быстро растущего члена (20) в переходном процессе, авария развивается очень быстро; если же она не привела к гибели самолета, то через некоторое время малый «дрейф» параметров может привести к тому, что малое ε > 0 превратится в малое ε < 0 и устройство снова будет работать нормально (хотя малый запас устойчивости сохранится). Мы убеждаемся, что это те самые особенности, которые проявились у аварий над Междуреченском и Бухарестом, о которых говорилось в параграфе 8.
Мы убеждаемся, что научное исследование разъясняет загадочные особенности аварий, ранее казавшиеся очень странными. Заметим, что при исключении части переменных (широко используемом при «аналитическом конструировании» регуляторов) выход системы на границу устойчивости происходит при любых значениях коэффициентов. Это объясняет, почему в 60-е годы аварии с «аналитически сконструированными» регуляторами происходили так часто. Затем структуру регуляторов изменили и аварии стали реже, но не прекратились совсем. Для полного прекращения опасных аварий, связанных с неполнотой привычных методов расчета, нужно использовать дополнительные проверки, описанные в книгах [1], [2], [7].
Математика считается точной и доказательной наукой, которая опирается на обоснованные определения и строгие доказательства. Поэтому ее теоремы считаются безусловно верными и не подлежащими сомнению. Предрассудкам (т. е. привычным, но ложным представлениям) в математике, конечно, не место. Однако проведем научное расследование.
Одной из важнейших теорем математики является теорема о непрерывной зависимости решений систем дифференциальных уравнений от их коэффициентов и параметров. Эта теорема лежит в основе всех инженерных расчетов. Действительно, если непрерывной зависимости решений от коэффициентов и параметров нет, то мы не можем быть уверены в том, что даже сколь угодно малые и поэтому неизбежные на практике отклонения действительных параметров рассчитываемого объекта от расчетных значений не приведут к коренным расхождениям между результатом расчета и реальностью, не можем быть уверены, например, в том, что здание, по расчету обязанное стоять долгие годы (как аквапарк «Трансвааль»), неожиданно не обрушится на головы посетителей. Поскольку данная теорема математиками считается доказанной, инженеры верят математикам и опираются на нее в своих расчетах как на незыблемую скалу.
Однако рассмотрим следующую систему двух дифференциальных уравнений
(21)
Эта система, как уже говорилось в предыдущем разделе, описывает процессы в системе, состоящей из электропривода постоянного тока и регулятора с постоянными коэффициентами. Характеристический полином этой системы равен определителю (19), а мы уже убедились в параграфе 10, что в точке т = 1 характер корней характеристического полинома и характер решений системы резко меняются. Если т = 1 + є , где ε — малое число и ε < 0 , то в решении присутствуют только экспоненциально убывающие члены, если же малое в > 0, то в решении появляются стремительно растущие члены вида (20). Непрерывной зависимости решений от параметра т у системы (21) нет. При т = 1 эта зависимость терпит разрыв. Отметим, что подобных систем дифференциальных уравнений, не имеющих непрерывной зависимости решений от коэффициентов и параметров, довольно много. Примеры приведены в книге [2].
Из этих примеров следует, что одна из важнейших математических теорем не верна. Может ли такое быть? Многие математики заявляли — нет, такого быть не может! Теорема приводится во многих авторитетных учебниках, не могут все они ошибаться.
Да, теорема о непрерывной зависимости решений от параметров приведена — и причем с доказательством — во многих университетских учебниках. Примеры:
1. В учебнике для университетов: Степанов В. В. Курс дифференциальных уравнений. М., ГИТТЛ, 1953, 468 с., эта теорема рассмотрена на стр. 298—307.
2. В учебнике: Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений. М., Высшая школа, 1967, 564 с., теорема рассмотрена на стр. 259—267.
3. В учебнике: Арнольд В. И. Обыкновенные дифференциальные уравнения. М., Наука, 1975, 239 с., теорема рассмотрена на стр. 186—204.
4. В учебнике: Матвеев Н. М. Обыкновенные дифференциальные уравнения, СПб., Специальная литература, 1996, 371 с., теорема рассмотрена на стр. 313—316.
Но — обратите особое внимание — во всех учебниках она доказана лишь для двух частных случаев: для системы из n уравнений первого порядка и для одного уравнения n -ого порядка. Для всех других многочисленных систем — как, например, для системы (21), которая состоит из уравнения третьего порядка для переменной X1 и уравнения первого порядка для х2 — теорема не доказана. Да, почти любую систему, состоящую из уравнений различных порядков, можно путем эквивалентных преобразований свести к системе из n уравнений первого порядка, для которой теорема доказана. Но для того, чтобы из этого вытекала верность теоремы для всех систем, необходимо доказать, что эквивалентные преобразования не меняют никаких свойств решений. А этого никто и никогда не доказывал (и не мог доказать — в книгах [1], [2] , [3] приводились все новые и новые примеры того, как эквивалентные преобразования меняли все новые и новые свойства решений — надо лишь внимательно исследовать; ищите и найдете).
Таким образом, мы убеждаемся, что одна из важнейших и известнейших математических теорем основана не на доказательстве, а на предрассудке — на привычном, но ложном убеждении большинства математиков в том, что эквивалентные преобразования якобы «ничего не меняют». Я опрашивал многих — и выпускников университетов, и их преподавателей: «как по-вашему — верна ли теорема о непрерывной зависимости для всех систем уравнений?» Все дружно отвечали: «да, верна. Верна потому, что для систем из n уравнений первого порядка в учебниках дано доказательство, а остальные системы приводятся к ним путем эквивалентных преобразований, которые «ничего не меняют»».
Мы убеждаемся, что предрассудки существуют и в математике, и предрассудки далеко не безобидные, поскольку они оказываются потом причиной многих техногенных катастроф с гибелью людей. И когда в книгах [1], [2], [3] опровергаются некоторые привычные положения и методики, то это не означает, что опровергаются какие-либо доказанные теоремы. Нет, они не опровергаются, а просто показывается необоснованность ставших привычными предрассудков. И в этом нет ничего страшного.
Наоборот, устранение предрассудков очень полезно для науки России для ее граждан, поскольку позволит избавиться от некоторых источников техногенных катастроф. Вероятность аварий и катастроф станет меньше.
А теперь идет самое интересное: посмотрите внимательно — как, каким образом формулируется теорема о непрерывной зависимости решений от параметров во всех перечисленных мною учебниках — от В. В. Степанова до В. И. Арнольда. Ни в одном из них не сказано: «теорема верна для всех систем уравнений, поскольку для систем из n уравнений первого порядка доказательство приведено, а остальные системы приводятся к ней эквивалентными преобразованиями». Это положение не высказано, оно «домысливается» преподавателями, а за ними — и студентами, слушающими лекции. Почему избран такой странный стиль изложения с необходимостью «домысливания»? Здесь можно высказать только догадку, или — как говорят «детективы» — версию. Вот эта версия: уважаемые авторы учебников понимали желательность дать доказательство этой важнейшей теоремы для всех систем — а не только состоящих из n уравнений первого порядка. Они пытались найти такое доказательство, но у них ничего не получилось. Теперь мы знаем, что получиться и не могло, поскольку в общем случае теорема (как показано в [2]) — не верна. Тогда они предпочли формулировку с необходимостью «домысливания», рассуждая (возможно) следующим образом: если теорема в дальнейшем будет доказана для всех систем, то «домысливание» окажется правильным и все будет в порядке. Если же теорема в общем виде будет опровергнута, то мы, авторы учебников, чисты: у нас сформулировано лишь верное утверждение о системах, состоящих из n уравнений первого порядка, а за «домысливание» мы не отвечаем.
Хотя это только «версия», но возможно, что так все и было (подробнее о данном вопросе — в [3] и в [12]).
В последние годы для различных расчетов все шире используются популярные пакеты прикладных программ — пакеты MATLAB, Mathcad и многие другие. В ходе исследования, проведенного в СПбГУ, в этих пакетах были обнаружены ошибки. Эти ошибки можно исправить, и их очень нужно исправить, поскольку на основе этих пакетов производятся миллионы расчетов, в том числе и очень ответственных расчетов, поэтому цена ошибки может быть велика, ценой может стать техногенная катастрофа. Рассмотрим эти ошибки.
1. При численном решении систем дифференциальных уравнений первым этапом решения во всех этих пакетах является приведение исходной системы к системе n уравнений первого порядка путем эквивалентных преобразований. На втором этапе отыскивается решение преобразованной системы. Данный подход имеет под собой серьезные основания — он позволяет самые разнообразные системы уравнений решать одной программой. Если же первый этап пропустить, то пришлось бы создавать множество программ — потребовались бы, например, отдельные программы для системы, состоящей из одного уравнения третьего порядка и одного — первого порядка и для системы, состоящей из двух уравнений второго порядка и вообще потребовалось бы множество программ. Порядок, принятый в популярных пакетах, гораздо удобнее — но он приводит к ошибкам при встрече с «особыми» системами, например — с системой (21) при т = 1.
Пакет MATLAB приведет эту систему к системе уравнений первого порядка, выдаст ее решение и не заметит, что это решение не имеет смысла, поскольку даже сколь угодно малое, а значит — неизбежное на практике отклонение параметра т от расчетного значения т = 1 приведет к коренному расхождению между результатами расчета и реальным поведением объекта, и это может стать причиной аварии и даже катастрофы.
Для того чтобы не получилось подобных ошибок с возможными трагическими последствиями, нужно популярные пакеты прикладных программ дополнить совсем небольшими вспомогательными программами, которые выделят и отсеют «особые» системы уравнений и выделят соответствующие этим системам опасные объекты. Эти опасные объекты следует перепроектировать, изменить их структуру или параметры — изменить так, чтобы математическая модель проектируемого и рассчитываемого объекта перестала быть «особой». Тогда и аварий не будет. Все эти вопросы — и ошибки в пакетах, и методы предотвращения ошибок в расчетах — более подробно рассмотрены в книге [7].
2. Многочисленные расчетные алгоритмы, использующие цепочки эквивалентных преобразований, реализуемые в популярных прикладных программах, могут привести к ошибкам, если хотя бы одно из использованных преобразований изменит чувствительность решений к малым погрешностям округления. Более подробно о возникающих ошибках и несложных методах их предотвращения рассказано в работах [7], [8].
Не меньшее значение имеет и задача вычисления собственных значений (или собственных чисел) различных матриц. К необходимости решать эту математическую задачу приводят многие важные практические проблемы — такие, как вычисление частот собственных колебаний различных технических объектов, проверка условий возможного опасного резонанса между внешними воздействиями и собственными колебаниями, проверка устойчивости и многие другие проблемы. Возникают эти проблемы и в строительной механике, и при проверке прочности и устойчивости различных деталей и устройств, и в автоматическом управлении.
Поэтому во всех пакетах прикладных программ имеются широко и часто используемые программы вычисления собственных значений (собственных чисел). Однако при встрече с «особыми» системами уравнений (которые являются математическими моделями «особых» объектов), эти программы ведут пользователя к ошибочным заключениям: для «особых» объектов вычисление собственных значений смысла не имеет, поскольку они могут коренным образом измениться при малых, неизбежных на практике, неточностях в исходных данных. Поэтому любое проектное решение, принятое на основе вычисленных для «особых» объектов их собственных значений, может стать причиной последующих аварий и катастроф.
Поэтому пакеты прикладных программ обязательно должны быть дополнены небольшими дополнительными программами, которые выделяли бы «особые» системы уравнений, «особые» объекты, и предупреждали бы об этом пользователей компьютера. Эта дополнительная программа может, например, высветить на мониторе компьютера предостерегающую надпись: «Вы ведете расчет «особого» объекта, поведение которого может сильно меняться при малых неточностях в исходных данных. Советуем изменить параметры или структуру объекта и повторить расчет».
Виды «особых» матриц, для которых собственные значения очень чувствительны к малым неточностям исходных данных, и методы выделения «особых» матриц и «особых» объектов описаны в книгах [2, 3, 7].
3. В пакетах прокладных программ широко используются разнообразные алгоритмы, § 12. Опасные ошибки, обнаруженные в популярных пакетах прикладных программ, используют цепочки эквивалентных преобразований математической модели рассчитываемого объекта. При этом не уделяется должного внимания тому, что если хотя бы одно из использованных преобразований изменит чувствительность решений к малым неточностям исходных данных, или к погрешностям округления, то все решение окажется ошибочным. Примеры и методы предотвращения подобных ошибок исследовались Б. Г. Чертковым и рассмотрены в публикациях [7, 8].
4. Пакеты прикладных программ обязательно включают в себя программы вычисления решений систем линейных алгебраических уравнений различных порядков, поскольку к необходимости решать такие системы приводят очень многие практические задачи.
Простейшие системы уравнений — такие, например, как система
1,02х + у = 1,04 (22)
Х + У = 1 (23)
легко решаются вручную, но в практических задачах часто приходится иметь дело с системами, состоящими из двадцати, сорока и более уравнений, и здесь уже без компьютера и хорошей программы не обойтись. Применяемые программы решения систем уравнений, входящие в пакеты, используют, как правило, преобразования уравнений. Поскольку эти преобразования, разумеется, эквивалентны, то они позволяют вычислить правильные, истинные значения решений. Но многие важные свойства решений и в том числе — чувствительность решений к неизбежной ограниченной точности исходных данных — использованные эквивалентные преобразования могут изменить. Все это удобно показать на простом примере системы уравнений (22)—(23), решениями которой являются числа х = 2, у = -1 (что легко проверить подстановкой х = 2, у = — 1 в уравнения (22)—(23)).
Систему (22)—(23) — как и любые другие — удобно решать путем эквивалентных преобразований. Достаточно вычесть из уравнения (22) уравнение (23). Получим уравнение
0,02х = 0,04 (24)
не содержащее уже переменной у, которое вместе с уравнением (23) образует систему
Х + У = 1 (25)
0,02х = 0,04 (26)
Система (25)—(26) эквивалентна исходной системе (22)—(23), но решается гораздо проще: из (26) сразу следует х = 2, а подставив х = 2 в (25), получим у — — 1. Отметим, что тем же путем последовательного исключения переменных путем эквивалентных преобразований решают (следуя методу Гаусса) и системы, состоящие из большого числа уравнений. Просто число необходимых преобразований и вычислений очень быстро растет с ростом числа уравнений в системе, и поэтому для решения больших систем, часто встречающихся при проектировании, требуются компьютеры.
А теперь рассмотрим самое важное: решения х = 2, у = — 1 системы (22)—(23) верны, но на самом деле для практического использования не пригодны. Действительно, достаточно всего одному из коэффициентов системы (например, коэффициенту 1,02 при х) измениться менее, чем на 1%, от значения 1,02 перейти к значению 1,01, и изменившаяся система, принявшая теперь вид
1,01х + у = 1,041 (27)
х + у = 1
имеет решения х = 4, у = -3. Таким образом, изменение всего одного коэффициента менее, чем на одну сотую приводит к изменению решений вдвое и втрое. Поскольку в практических задачах исходные данные известны часто с точностью меньшей, чем одна сотая, то решения системы (22)—(23) для практики не пригодны. Их некритическое использование может привести к авариям и катастрофам.
Но ничего этого нельзя заметить при исследовании системы (25)—(26), которая эквивалентна исходной системе (22)—(23) и получена из нее путем эквивалентных преобразований. Система (25)—(26) мало чувствительна к малым изменениям своих коэффициентов.
Если каждый из них изменится на ± 0,01 то решения изменятся не более, чем на ± 4 %, а совсем не вдвое и втрое.
Таким образом, простая система (22)—(23) иллюстрирует главный и наиболее важный вывод: эквивалентные преобразования, широко (и часто некритично) применяемые при расчетах, не меняя самих решений как таковых, могут изменять многие важные свойства решений и, в частности — могут изменять их чувствительность к неизбежным на практике малым неточностям исходных данных, которые почти всегда получаются из опыта или измерения и поэтому имеют ограниченную точность.
Данному явлению можно дать и вполне наглядную иллюстрацию: уравнения (22)—(23) — это уравнения прямых на плоскости с осями 0x и 0у, а решения х = 2, у = — 1 — это координаты точки их пересечения. На рис. 1 показаны прямые, соответствующие уравнениям (22)—(23). Эти прямые пересекаются в точке X — 2, у ——1 под очень острым углом. Именно поэтому координаты их точки пересечения очень чувствительны к изменениям коэффициентов уравнений (22)—(23).
На рис. 2 показаны прямые, соответствующие уравнениям системы (25)—(26), которая, как уже говорилось, эквивалентна исходной системе (22)—(23). Мы убеждаемся, что точка пересечения прямых, как и должно быть, осталась прежней х = 2, у = —1, но угол между прямыми стал совсем другим, гораздо менее острым, и поэтому высокая чувствительность решений к малым неточностям в исходных данных кажется исчезнувшей.
Конечно, в простейшей системе из двух уравнений все ясно, но уже в системах из 5—7, а тем более из многих десятков уравнений уже совсем не ясно, к каким погрешностям решений приведет погрешность исходных данных, например, на ±1 %. Поэтому отсутствие во многих пакетах прикладных программ оценок погрешностей решений систем уравнений в зависимости от погрешностей исходных данных является недостатком, который может быть источником ошибок в расчетах, а значит — порожденных этими ошибками аварий и катастроф.
5. Для решения ряда практических задач используют, как известно, интегральные уравнения, и некоторые пакеты прикладных программ снабжены программами их решения. Методы решения интегральных уравнений были рассмотрены профессором В. С. Сизиковым в монографии [3], где им были обнаружены недостатки традиционных методов и программ, связанные с тем, что применяемые при решении эквивалентные преобразования интегральных уравнений в ряде случаев изменяют корректность решаемой задачи и тем самым приводят к ошибкам.
В монографии [3] описаны найденные В. С. Сизиковым усовершенствованные методы решения интегральных уравнений, позволяющие восстановить достоверность компьютерных вычислений решений интегральных уравнений. Эти методы применены в монографии [3] к правильной реконструкции смазанных и дефокусированных изображений, в т. ч. изображений медицинских объектов, полученных методами рентгеновской и ядерномагнитно-резонансной томографии.
Изложенные пять пунктов не исчерпывают всех примеров необходимости совершенствования методов вычислений, связанных с открытием в Санкт-Петербургском государственном университете новых свойств эквивалентных преобразований. Поскольку эквивалентные преобразования очень широко используются в математике и в самых различных областях инженерных расчетов, то нет сомнений в том, что в дальнейшем будут открыты новые возможности уточнения методов расчета и проектирования, еще более уменьшающие вероятность техногенных аварий и катастроф.
Наука может очень много сделать для обеспечения безопасности человеческой жизни. Нужно только шире использовать ее рекомендации. Но вот с использованием рекомендаций и предостережений науки дело обстоит далеко не просто. В последней, третьей части книги будет рассказано об очень непростой борьбе за безопасность в авиации — борьбе, которую вели сотрудники Санкт-Петербургского и Балтийского технического государственных университетов.