Связанный список — это структура хранения информации (контейнер), которая может содержать переменное количество элементов данных, часто называемых узлами, и позволяет манипулировать этими данными. В отличие от статического массива, элементы связанного списка можно создавать динамически. Это дает возможность создавать переменное количество элементов списка, причем указанное количество может быть неизвестно на этапе компиляции. Так как элементы связанных списков создаются в разные моменты времени, они не обязательно будут находиться в смежных областях оперативной памяти. Поэтому элементы списка должны быть связаны друг с другом таким образом, чтобы каждый элемент содержал указатель на следующий за ним элемент (
next
). Вставка или удаление элементов списка выполняется простым изменением указателей на следующий элемент. Структура связанного списка показана на рис. А.1.
Рис. A.1. Односвязный список
В. некоторых связанных списках содержится указатель не только на следующий, но и на предыдущий элемент (
prev
). Эти списки называются двухсвязными (doubly linked), потому что они связаны как вперед, так и назад. Связанные списки, аналогичные тем, что показаны на рис. А.1, называются односвязными (singly linked). Двухсвязный список показан на рис. А.2.
Рис. А.2. Двухсвязный список
Последний элемент связанного списка не имеет следующего за ним элемента, и значение указателя
next
последнего элемента обычно устанавливается равным специальному значению, обычно NULL
, чтобы показать, что этот элемент списка является последним. в определенных случаях последний элемент списка не указывает на специальное значение, а указывает на первый элемент этого же списка. Такой список называется кольцевым связанным списком (circular linked list), поскольку связи образуют топологию кольца. Кольцевые связанные списки могут быть как односвязными, так и двухсвязными. В двухсвязных кольцевых списках указатель prev первого элемента указывает на последний элемент списка. На рис. А.3 и А.4 показаны соответственно односвязные и двухсвязные кольцевые списки.
Рис. A.3. Односвязный кольцевой список
Рис. А.4. Двухсвязный кольцевой список
Стандартной реализацией связанных списков в ядре Linux является двухсвязный кольцевой список. Такие связанные списки обеспечивают наибольшую гибкость работы.
Перемещение по связанному списку выполняется последовательно (линейно). После того как просмотрен текущий элемент, выполнятся разыменование его указателя
next
, что позволяет обратиться к следующему за ним элементу и т.д. Это самый простой и наиболее подходящий метод перемещения но связанному списку. Если важна возможность произвольного доступа к любому элементу контейнера, то связанные списки не используются. Связанные списки используются, когда важна возможность динамического добавления и удаления элементов, а также возможность последовательного прохождения по всем элементам списка.
Часто первый элемент списка представлен с помощью специального указателя, который называется головным элементом или головой (head), что дает возможность быстро и легко обращаться к первому элементу. В некольцевом связанном списке последний элемент отличается тем, что его указатель равен значению
NULL
. В кольцевом связанном списке последний элемент отличается тем, что указывает на головной элемент. Таким образом прохождение списка можно выполнить линейно, начиная с первого элемента и заканчивая последним. В двухсвязном списке прохождение можно также выполнить и в противоположном направлении, начиная с последнего и заканчивая первым элементом. Конечно, если задан определенный элемент списка, то можно перейти по списку вперед и назад на заданное количество элементов. При этом нет необходимости проходить весь список.
В ядре Linux для прохождения по связанным спискам используется унифицированный подход. При прохождении связанного списка, если не важен порядок прохода, эту операцию не обязательно начинать с головного элемента, на самом деле вообще не важно, с какого элемента списка начинать прохождение! Важно только, чтобы при таком прохождении были пройдены все узлы. В большинстве случаев нет необходимости вводить концепции первого и последнего элементов. Если в кольцевом связанном списке содержится коллекция несортированных данных, то любой элемент можно назвать головным. Для прохождения всего связанного списка необходимо взять любой элемент и следовать за указателями, пока снова не вернемся к тому элементу, с которого начали обход списка. Это избавляет от необходимости вводить специальный головной элемент. Кроме того, упрощаются процедуры работы со связанными списками. Каждая подпрограмма должна просто принимать указатель на один элемент — любой элемент списка. Разработчики ядра даже немножко гордятся такой остроумной реализацией.
Связанные списки в ядре, так же как и в любой сложной программе, встречаются часто. Например, в ядре связанный список используется для хранения списка задач (структура
task_struct
каждого процесса является элементом связанного списка).
Раньше в ядре было несколько реализаций связанных списков. Тем не менее в таких случаях необходима единая реализация с целью убрать разный код, который выполняет одинаковые действия. Во время разработки серии ядер 2.1 была предложена единая реализация связанных списков в ядре. Сегодня во всех подсистемах ядра используется официальная реализация. Для новых разработок необходимо использовать только существующий интерфейс и не нужно изобретать велосипед.
Код работы со связанными списками определен в файле
, a основная структура данных имеет очень простой вид.
struct list_head {
struct list_head *next, *prev;
};
Обратите внимание на характерное имя структуры
list_head
. Такое название выбрано, чтобы подчеркнуть, что списку не нужно головного элемента. Наоборот, обход списка можно начинать с любого элемента, и каждый элемент может быть головным. В связи с этим все элементы списка называются головными (list head). Указатель next
указывает на следующий элемент списка, а указатель prev
— на предыдущий элемент списка. Если текущий элемент списка является последним, то его указатель next указывает на первый узел. Если же текущим элементом является первый, то его указатель prev
указывает на последний узел списка. Благодаря элегантной реализации связанных списков без концепции головного элемента, можно вообще не вводить понятия первого и последнего элементов.
Структура
list_head
сама по себе бесполезна. Ее необходимо включать в другие структуры данных.
struct my_struct {
struct list_head list;
unsigned long dog;
void *cat;
};
Перед использованием элементы связанных списков должны быть инициализированы. Так как элементы связанных списков обычно создаются динамически (иначе, вероятно, не нужно использовать связанный список), то эти элементы, как правило, инициализируются во время выполнения.
struct my_struct *p;
/* выделить память для структуры my_struct ... */
p->dog = 0;
p->cat = NULL;
INIT_LIST_HEAD(&p->list);
Если структура данных создается статически во время компиляции и на нее есть непосредственная ссылка, то инициализацию можно выполнить следующим образом.
struct my_struct mine = {
.list = LIST_HEAD_INIT(mine.list),
.dog = 0,
.cat = NULL
};
Для того чтобы создать и инициализировать связанный список, можно использовать следующее объявление.
static LIST_HEAD(fox);
Эта команда позволяет статически создать связанный список с именем
fox
.
Нет необходимости явно выполнять какие-либо операции со служебными полями элементов связанного списка. Вместо этого необходимо просто включить структуру узла связанного списка в вашу структуру данных, чтобы можно было легко манипулировать данными и выполнять прохождение по связанному списку.
Для работы со связанными списками ядро предоставляет семейство функций. Все они принимают указатели на одну или более структур
list_head
. Все функции выполнены как функции с подстановкой тела (inline) на языке С, и их все можно найти в файле
.
Интересно, что время выполнения всех этих функций масштабируется как O(1)[97]. Это значит, что они выполняются в течение постоянного интервала времени независимо от количества элементов списка, для которого они вызываются. Например, время добавления элемента в связанный список из 3 и 3000 элементов будет одинаковым. Это, возможно, и не вызывает удивления, но тем не менее, приятно.
Для добавления элемента в связанный список можно использовать следующую функцию.
list_add(struct list_head *new, struct list head *head);
Эта функция добавляет узел
new
в заданный связанный список сразу после элемента head
. Поскольку связанный список является кольцевым и для него не существует понятий первого и последнего узлов, в качестве параметра head
можно использовать указатель на любой элемент списка. Если в качестве рассмотренного параметра всегда передавать указатель на последний элемент, то эту функцию можно использовать для организации стека.
Для добавления элемента в конец связанного списка служит следующая функция.
list_add_tail(struct list_head *new,
struct list_head *head);
Эта функция добавляет новый элемент new в связанный список сразу перед элементом, на который указывает параметр
head
. Поскольку связанный список является кольцевым, то, как и в случае функции list_add()
, в качестве параметра head
можно передавать указатель на любой элемент списка. Эту функцию можно использовать для реализации очереди, если передавать указатель на первый элемент.
Для удаления узла списка служит следующая функция.
list_del(struct list_head *entry);
Эта функция позволяет удалить из списка элемент, на который указывает параметр
entry
. Обратите внимание, что эта функция не освобождает память, выделенную под структуру данных, содержащую узел списка, на который указывает параметр entry
. Данная функция просто удаляет узел из списка. После вызова этой функции обычно необходимо удалить структуру данных, в которой находится узел list_head
.
Для удаления узла из списка и повторной инициализации этого узла служит следующая функция.
list_del_init(struct list head *entry);
Эта. функция аналогична функции
list_del()
, за исключением того, что она дополнительно инициализирует указанную структуру list_head
из тех соображений, что эта структура данных больше не нужна в качестве элемента текущего списка и ее повторно можно использовать.
Для перемещения узла из одного списка в другой предназначена следующая функция.
list_move(struct list_head *list, struct list_head *head);
Эта функция удаляет элемент
list
из одного связанного списка и добавляет его в другой связанный список после элемента head
.
Для перемещения элемента из одного связанного списка в конец другого служит следующая функция.
list_move_tail(struct list_head *list,
struct list_head *head);
Эта функция выполняет то же самое, что и функция
list_move()
, но вставляет элемент перед элементом head
.
Для проверки того, пуст ли список, служит функция.
list_empty(struct list_head *head);
Эта функция возвращает ненулевое значение, если связанный список пуст, и нулевое значение в противном случае.
Для объединения двух не перекрывающихся связанных списков служит следующая функция.
list_splice(struct list_head *list,
struct list_head *head);
Эта функция вставляет список, на который указывает параметр
list
, в другой список после параметра head.
Для объединения двух не перекрывающихся списков и повторной инициализации старого головного элемента служит следующая функция.
list splice_init(struct list head *list, struct list head *head);
Эта функция аналогична функции
list_splice()
, за исключением того, что параметр list
, представляющий список, из которого удаляются элементы, повторно инициализируется.
Если вам уже доступны указатели
next
и prev
, то можно сэкономить пару процессорных тактов (в частности, время выполнения операций разыменования указателей) путем вызова внутренних функций работы со связанными списками. Все ранее рассмотренные функции в сущности не делают ничего, кроме получения указателей next
и prev
и вызовов внутренних функций. Внутренние функции имеют те же имена, что и их оболочки, но перед именем используется два символа подчеркивания. Вместо того чтобы вызвать функцию list_del(list)
, можно вызвать функцию __list_del(prev, next)
. Это имеет смысл, только когда указанные указатели уже известны. В противном случае просто получится некрасивый код. Для подробной информации об этих интерфейсах можно обратиться к файлу
.
Теперь мы уже знаем, как объявлять, инициализировать и работать со связанными списками в ядре. Это все хорошо, но не имеет никакого смысла, если нет возможности работать С данными, которые хранятся в списках! Связанный список — это просто контейнер, в котором хранятся важные данные. Необходимо иметь способ перемещения по списку и доступа к данным. К счастью, ядро предоставляет набор полезных интерфейсов для перемещения по связанным спискам и обращения к структурам данных, которые хранятся в этих списках.
Обратите внимание, что, в отличие от подпрограмм управления списками, операции перебора элементов списка из
n
узлов масштабируются как O(n).
Наиболее простой способ выполнять итерации по элементам связанного списка — это использовать макрос
list_for_each()
. Этот макрос принимает два параметра — указатели на структуры list_head
. Первый параметр указывает на текущий элемент списка, а второй — на любой элемент списка, для которого необходимо обойти все узлы. На каждой итерации цикла первый параметр макроса указывает на текущий элемент списка, пока не будут пройдены все элементы, как в следующем примере.
struct list_head *p;
list_for_each(p, list) {
/* p указывает на каждый элемент списка list */
}
Это пока все еще бесполезно! Указатель на структуру узла списка — это не то, что нам нужно. Нам нужен указатель на структуру данных, в которой содержится структура узла. В показанном ранее примере структуры данных
my_struct
необходимо получить указатель на каждый экземпляр структуры my_struct
, а не на их поля list
. Макрос list_entry()
возвращает структуру данных, которая содержит соответствующий элемент list_head
. Этот макрос принимает три параметра: указатель на текущий узел, тип структуры данных, в которую включен узел списка, и имя поля структуры данных, в которой хранится этот узел.
struct list_head *p;
struct my_struct *my;
list_for_each(p, mine->list) {
my = list_entry(p, struct my_struct, list);
/*
* указатель my указывает на все структуры данных,
* в которые включено поле list
*/
}
Макрос
list_for_each()
раскрывается в обычный цикл for
. Предыдущий пример раскрывается следующим образом.
for (p = mine->list->next; p != mine->list; p = p->next)
Кроме этого, макрос
list_for_each()
также выполняет предварительную загрузку (prefetch) данных в память, если процессор поддерживает такую возможность, чтобы все данные следующих элементов списка гарантированно находились в памяти. Когда нет необходимости выполнять предварительную загрузку, можно использовать макрос __list_for_each()
, который работает в точности, как цикл for
. Если нет гарантии, что список содержит очень мало элементов или пустой, то всегда необходимо использовать версию с предварительной загрузкой. Никогда нельзя программировать цикл вручную, необходимо всегда использовать макрос.
Если необходимо выполнить прохождение по спискам в обратном порядке, то следует использовать макрос
list_for_each_prev()
, который использует для прохождения указатель prev
, а не указатель next
.
Обратите внимание, что при прохождении связанного списка ничто не мешает удалять элементы из этого списка. Обычно, чтобы предотвратить конкурентный доступ, следует использовать блокировки. Макрос
list_for_each_safe()
использует временные переменные, чтобы сделать прохождение списка безопасным при одновременном удалении элементов.
struct list_head *p, *n;
struct my_struct *my;
list_for_each_safe(p, n, &mine->list) {
my = list_entry(p, struct my_struct, list);
/*
* указатель my указывает на каждый экземпляр
* структуры my_struct в списке
*/
}
Обратите внимание, что этот макрос защищен только от операций удаления узлов списка. Для защиты отдельных элементов списка от конкурентного доступа необходимо использовать блокировки.