II. Спичечные задачи

Коробок спичек — не только крошечная палата мер, но и своего рода ящик с сюрпризами, заключающий в себе обширный выбор забавных, а подчас и довольно замысловатых задач и головоломок. Boт один из многочисленных образчиков подобных задач; для начала избираем очень легкую задачку.


Из четырех квадратов три

Задача 1-я

Перед вами (рис. 3) фигура, составленная из 12 спичек и содержащая 4 равных квадрата. Задача состоит в том, чтобы, переложив 4 спички этой фигуры, получить новую фигуру, состоящую всего из 3-х равных квадратов. В новую фигуру должны, значит, входить те же 12 спичек, но иначе расположенные. Переместить нужно непременно 4 спички — не больше и не меньше.



Решение

Решение ясно из прилагаемого рис. 4, на котором пунктирными линиями обозначено первоначальное положение спичек.




Квадрат из спичек

Задача 2-я

Эта задача замысловатее предыдущей. Возьмите 4 спички и расположите их таким образом, чтобы они образовали 4 прямых угла. Я нарочно не указываю здесь этого первоначального расположения спичек в его отыскании и заключается суть головоломки. Когда это сделано, переложите одну спичку так, чтобы при новом расположении спички ограничивали квадрат.


Решение

Задачу эту можно решать разнообразными способами, и в этом ее особая занимательность. Можно, например, за первоначальное положение взять то, которое указано на рис. 5 (налево): в этой фигуре четыре прямых угла, обозначенных цифрами 1, 2, 3, 4. Переложить надо, конечно, среднюю спичку, этой фигуры замкнув квадрат.



Другие примеры начального расположения спичек указаны на рис. 6, 7 и 8. Какую спичку и как надо переложить, — ясно из рисунков.



Вероятно, читателям удастся отыскать еще и другие способы решения этой задачи, но едва ли посчастливится им напасть на то совершенно неожиданное решение, которое изображено на рис. 9 и 10.



Первоначальное расположение спичек берется такое, как на рис. 9. Для получения же квадрата верхняя спичка чуть отодвигается вверх (рис. 10): получается крошечный квадратик, "ограниченный 4-мя спичками".

Это оригинальное решение вполне правильно и удовлетворяет условиям задачи: ведь не требовалось, чтобы квадрат получился непременно большой!


Еще спичечные задачи

Рассмотренные сейчас две задачи дают представление о характере тех головоломок, которые можно извлечь из спичечного коробка. Число задачек этого рода так велико, что лет двадцать тому назад один немецкий автор (Тромгольд) собрал в отдельную книгу свыше 200 самых разнообразных спичечных головоломок. В свое время книжечка эта имелась и в русском переводе (С. Тромгольд. "Игры со спичками". Одесса. 1907). Так как в наше время ее уже, к сожалению, нет в продаже, то позволяю себе привести здесь из нее десятка два задач, по образцу которых читатель, без сомнения, сможет уже и сам составить длинный ряд других. Многие из них легки, но попадаются и очень замысловатые.

Чтобы не лишать читателя удовольствия доискаться решения самостоятельно, победоносно выйдя из хитро расставленных для него затруднений, ответы напечатаны не сразу после задач, а собраны вместе в конце всей главки[3].

Начнем с более легких:

Задача 3-я

а) Переложить 2 спички так, чтобы получилось 7 равных квадратов.

в) Из полученной фигуры вынуть две спички так. чтобы осталось 5 квадратов.



Задача 4-я

Вынуть 8 спичек так, чтобы из оставшихся образовалось 4 равных квадрата (есть 2 решения).


Задача 5-я

Вынуть 4 спички так, чтобы образовалось 5 равных или 5 неравных квадратов.


Задача 6-я

Вынуть (рис. 12) 6 спичек так, чтобы из оставшихся образовалось 3 квадрата.




Задача 7-я

Переложить 5 спичек так, чтобы получилось 2 квадрата.



Задача 8-я

Отобрать 10 спичек так, чтобы осталось 4 равных квадрата (есть 5 решений).



Задача 9-я

Из 12 спичек составить 3 равных четыреугольника и 2 равных треугольника.


Задача 10-я

Отобрать (рис. 13) 6 спичек, так, чтобы осталось 4 равных квадрата


Задача 11-я

Отобрать (рис. 13) 7 спичек так, чтобы осталось 4 равных квадрата.


Задача 12-я

Из 9 целых спичек составить 5 квадратов.


Рассмотрим теперь ряд задач потруднее:


Задача 13-я

Из 18 спичек составить 1 треугольник и 6 четыреугольннков двух размеров, по три каждого размера.


Задача 14-я

Из 10 спичек составлены 3 равных четыреугольника. Одна спичка удаляется, а из остальных 9 спичек требуется составить 3 новых равных четыреугольника.



Задача 15-я

Из 12 спичек составить двенадцатиугольник с прямыми углами.


Задача 16-я

Вынуть 5 спичек так, чтобы осталось 5 треугольников (есть 2 решения).


Задача 17-я

Составить из 18 спичек 6 равных четыреугольников и один треугольник, в два раза меньший по площади.



Задача 18-я

Переложить 6 спичек так, чтобы получилось 6 равных, симметрично расположенных четыреугольников.




Задача 19-я

Как образовать 10-ю спичками 2 правильных пятиугольника и 5 равных треугольников?


Самая замысловатая из задач этого рода, пожалуй, следующая — в своем роде знаменитая — спичечная головоломка:


Задача 20-я

Из 6-ти спичек составить 4 одинаковых треугольника, стороны которых равны одной спичке.


Решения задач 3—20




20. Надо составить пирамиду с треугольным основанием и треугольными же боковыми гранями (рис. 37)



Загрузка...