Практическая реализация радиоэлектронных устройств не менее важна, чем этап их проектирования. Функционирование устройства зависит от самых разных факторов, таких как эффективное экранирование и охлаждение, рациональное размещение компонентов и т. д. Кроме того, следует иметь в виду, что потребность в ремонте или совершенствовании устройства может возникнуть через несколько лет после начала его эксплуатации, когда разработчик уже многое забыл. Возможно также, что ремонтом будут заниматься другие люди. Поэтому после завершения наладки устройства необходимо составить его полную схему. В будущем это окажет неоценимую помощь.
Материал этой главы знакомит читателей с некоторыми принципами конструирования и приемами сборки радиоэлектронных устройств. Эти сведения могут пригодиться как любителям, так и профессионалам.
3.1.1. Выбор и подготовка паяльника
Вместо того чтобы покупать паяльник профессионального класса с регулировкой температуры, можно приобрести один обычный небольшой паяльник хорошего качества с подставкой и второй — более мощный. Первый инструмент будет предназначаться для мелких работ (например, для пайки печатных плат), а второй — для более серьезных (демонтаж крупных компонентов, лужение и т. д.). Таким образом, каждый паяльник будет использоваться строго по назначению при рациональном расходовании ресурса.
Перед началом пайки новый паяльник нужно подготовить: придать необходимую форму рабочей части его жала и облудить ее. Для этого конец жала рекомендуется вначале отковать, а затем обработать напильником или наждачной бумагой. Наклеп замедляет растворение меди в припое и образование раковин на жале, которые препятствуют стеканию припоя в место пайки, ухудшают тепловой контакт с ним и, следовательно, увеличивают время пайки.
Жало паяльника на конце должно быть всегда облужено. Если оно покрыто окалиной, работать трудно — припой будет плавиться, но к поверхности жала не пристанет. Перед облуживанием паяльник разогревают и очищают рабочую поверхность жала канифолью. Перегрев инструмента перед чисткой канифолью недопустим. Покрывать жало слоем канифоли нужно сразу же, как только оно нагреется до температуры плавления канифоли. Если же паяльник перегрелся и зачищенная часть покрылась слоем оксида меди, то его необходимо остудить и опять обработать напильником. Затем следует растереть жало, покрытое слоем расплавленного припоя, о подставку паяльника (если она деревянная) или о поверхность небольшой дощечки, пока на нем не появится пленка припоя. Отличных результатов достигают, используя специальную пасту (например, ТТС-1) для быстрой и эффективной очистки и лужения насадок паяльников.
Если жало покрывается окалиной слишком быстро, значит, паяльник перегрелся. Снизить температуру жала можно, выдвинув его немного из корпуса паяльника или уменьшив напряжение на паяльнике регулятором мощности.
3.1.2. Начинаем паять
Качество пайки во многом определяет нормальную и надежную работу аппаратуры. Со стороны кажется, что очень просто сразу взяться за паяльник и, вооружившись нужным количеством припоя и флюса, приступить к пайке. Однако эта простота достигается выполнением некоторых требований. Для получения прочного паяного соединения необходимо, чтобы место пайки было тщательно очищено от грязи, жиров, продуктов коррозии и оксидных пленок. Поэтому перед пайкой поверхности соединяемых деталей целесообразно зачистить (например, шлифовальной шкуркой, металлической щеткой и т. п.) и облудить. Прочная и красивая пайка получается не сразу, а только после практического овладения секретами радиомонтажа.
Если припоя для пайки требуется немного, то его переносят залуженным концом паяльника. Хорошо прогрев место спая (добившись растекания припоя), отнимают паяльник. Остывая, припой скрепляет детали. При нормальном прогреве место спая получается светлым и блестящим.
При работе недостаточно нагретым паяльником припой на соединяемых поверхностях быстро остывает и превращается в кашеобразную массу. Место спая матовое, шероховатое. В результате пайка получается непрочной и через какое-то время соединение нарушится. Такую пайку называют «холодной».
3.1.3. Выбор припоя и флюса
Для начала следует правильно выбрать припой и флюс. От этого в первую очередь зависит качество и надежность пайки. Рекомендуется применять припой с низкой температурой плавления ПОС-61 (температура плавления 190 °C), ПОСК-50 (145 °C), ПОСВ-30 (130 °C) и др. Чтобы припой лучше растекался, место пайки прогревают в течение 2–3 с. В качестве флюса лучше использовать канифольный лак, а не твердую канифоль. При пайке печатных проводников желательно пользоваться жидким флюсом, который наносят на место пайки с помощью кисточки или дозатора, не допуская его попадания на другие радиодетали.
3.1.4. Облуживание выводов
Чтобы пайка была прочнее, выводы деталей до установки на плату рекомендуется облудить. Делать это следует непосредственно перед самой пайкой. Вывод зачищают монтажным ножом, кладут на кусочек канифоли или смачивают жидкой канифолью), прикладывают паяльник и покрывают вывод слоем канифоли. Затем большую часть вывода (но не ближе 10 мм от корпуса детали) опускают в расплавленный кусочек припоя и, поворачивая деталь, облуживают. Потемневшие выводы радиоэлементов следует зачистить до блеска, лудить их необязательно. Выводы деталей до установки на плату загибают таким образом, чтобы была видна маркировка. Это пригодится, когда вы будете настраивать устройство и разбираться в ошибках монтажа.
3.1.5. Красивая пайка
Чтобы спаять выводы двух деталей, их плотно прижимают друг к другу. Жалом паяльника берут капельку припоя, опускают жало в канифоль (либо заранее наносят на место пайки жидкую канифоль) и тут же прикладывают его к выводам. Прогрев место пайки, нужно равномерно распределить по нему припой. Чтобы пайка выглядела изящнее, количество припоя должно быть минимальным. Продолжительность этой операции должна составлять 3–5 с. Паяльник убирают, и до полного застывания припоя (примерно 5–8 с) детали нельзя шевелить, это может повредить пайку, и она будет некачественной. Остатки канифоли в месте пайки удаляют спиртом, бензином или ацетоном.
3.1.6. Пайка выводов
Чаще всего приходится припаивать выводы деталей и концы соединительных проводников к медным заклепкам или монтажным шпилькам, установленным на плате, токопроводящим дорожкам печатной платы, различным металлическим лепесткам. На рисунках показаны примеры пайки. Припаивая, например, проводник к пустотелой заклепке (рис. 3.1а), его конец пропускают в отверстие заклепки, отгибают, удаляют излишек провода кусачками, а затем пропаивают провод с заклепкой так, чтобы припой полностью заполнил отверстие заклепки. Так же припаивают скрученные концы двух проводников (рис. 3.1б) или выводы двух деталей (рис. 3.1 в).
Рис. 3.1. Припаивание к пустотелой заклепке одного проводника (а), двух скрученных проводников (б) и выводов двух деталей (в)
3.1.7. Пайка деталей на плату
Бывает, что на плате установлены монтажные шпильки из толстого медного провода, тогда конец вывода детали загибают вокруг шпильки колечком (рис. 3.2а), а затем припаивают к шпильке. Если к той же шпильке припаивают второй вывод или соединительный проводник, его конец также изгибают колечком. При пайке вывода детали в отверстии печатной платы край детали должен выступать над соединительной дорожкой из фольги на 2–3 мм (рис. 3.26). Лишнюю часть вывода можно удалить и после пайки. Сам вывод желательно предварительно изогнуть с помощью круглогубцев (рис. 3.2в).
Рис. 3.2. Пайка деталей на печатную плату
Обратите внимание, что губки круглогубцев необходимо располагать ближе к корпусу детали, а вывод сгибать с противоположной стороны. Выполнение этого требования предотвратит обрыв вывода детали в точке крепления к корпусу. Чтобы не перегреть деталь во время пайки вывода, следует пользоваться теплоотводом, роль которого могут выполнять пинцет, круглогубцы или плоскогубцы, которыми удерживают вывод детали.
3.1.8. Удлинитель жала
Если требуется паять детали на миниатюрной плате в условиях плотного монтажа, а под рукой нет паяльника с тонким жалом, то из медной проволоки диаметром 2–3 мм можно самостоятельно изготовить простое приспособление — удлинитель жала паяльника (рис. 3.3). Конец удлинителя зачищают и облуживают так же, как и жало паяльника.
Рис. 3.3. Удлинитель жала паяльника
3.1.9. Пайка алюминия и его сплавов
В настоящее время в электробытовой технике широко используется алюминий, как, например, алюминиевые электрические провода в трансформаторах-стабилизаторах напряжения и т. п. Поскольку алюминий и его сплавы, соприкасаясь с воздухом, быстро окисляются, обычные методы пайки не дают удовлетворительных результатов. В промышленности и ремонтной практике для пайки монтажных элементов из алюминия и его сплавов, а также соединения их с медью и другими металлами применяют припои марок П150А, П250А и П300А. Пайку производят обычным паяльником, жало которого прогрето до температуры 350 °C, с применением флюса, представляющего собой смесь олеиновой кислоты и йодида лития. Ниже описываются различные способы пайки алюминия оловянно-свинцовыми припоями ПОС-61, ПОС-50, ПОС-90.
Первый способ. Для спаивания двух алюминиевых проводов их предварительно залуживают. Для этого конец провода покрывают канифолью, кладут на шлифовальную шкурку (со средним зерном) и горячим залуженным паяльником, прижимают к шлифовальной шкурке, при этом паяльник от провода не отнимают и на залуженный конец все время добавляют канифоль. Чтобы хорошо залудить провод, все операции приходится повторять много раз. Затем пайка идет обычным порядком. Лучшие результаты получаются, если вместо канифоли применяется минеральное масло для швейных машин или щелочное масло (например, для чистки оружия после стрельбы).
Второй способ. Зачищенное и обезжиренное место пайки покрывают с помощью паяльника тонким слоем канифоли, а затем сразу же натирают таблеткой анальгина. После этого надо залудить поверхность припоем ПОС-50, прижимая к ней с небольшим усилием жало слегка перегретого паяльника. С залуженного места ацетоном смывают остатки флюса, еще раз осторожно прогревают и снова, смывают флюс. Пайку деталей производят обычным образом.
Учтите, что такое соединение нельзя использовать в условиях повышенной влажности, так как эти металлы не являются совместимыми и образуют гальванические пары.
3.1.10. Токопроводящий клей
В некоторых случаях, когда электрический контакт необходим, а пайка затруднительна, а то и вообще невозможна, для соединения деталей удобно использовать токопроводящий клей, который можно приобрести в любом радиомагазине. Этот клей может быть использован там, где требуется прочное соединение с достаточной электрической проводимостью. Им можно, например, приклеивать графитные электроды к алюминиевым мембранам в телефонных капсюлях, выводы к пьезоэлектрическим кристаллам, различные металлические детали и т. п.
Можно самостоятельно приготовить электропроводящий клей, не включающий в себя дефицитные компоненты (порошковое серебро и полимерные связующие). Для этого необходимы медные опилки, графитовый порошок самого тонкого помола и связующее вещество, например лак или клей.
Медные опилки легко получить, обработав кусок меди мелким напильником. Графит можно настрогать ножом с угольной щетки любого коллекторного электродвигателя или с графитового стержня круглого элемента питания. Связующее вещество должно быть по возможности более жидким. Сначала смешивают две части медного порошка и одну часть графита (по массе), затем добавляют связующее до тех пор, пока не будет достигнута требуемая консистенция, — и клей готов. В качестве связующего вещества очень эффективен кедровый лак для художественных работ. Он достаточно жидкий и при высыхании не изолирует проводящие частицы одну от другой. Можно использовать и другой масляный лак или клей, предварительно разбавив его растворителем. Прежде чем применять проводящую массу, следует на каком-либо образце испытать прочность клеевого шва и его проводимость. Если связующим выбран лак, прочность шва будет не очень высока.
В следующем рецепте используется смесь клея «Момент» и графитового порошка, полученного после обработки коллекторной графитовой щетки надфилем с мелкой насечкой. Концентрацию порошка лучше всего подобрать опытным путем. При этом следует помнить, что чем больше графита, тем меньше контактное сопротивление, но тем гуще получится смесь и труднее будет ее наносить. Если электрическое сопротивление склейки не превышает 30 кОм, клей можно считать годным.
3.1.11. Электросварка деталей
Иногда требуется гальванически соединить какие-либо детали без нагревания. Например, чтобы собрать батарею из дисковых аккумуляторов, необходимо снабдить их соединительными выводами-перемычками. В подобных случаях можно применить «точечную» электросварку.
Для этого нужно собрать маломощное сварочное устройство, состоящее из соединенных параллельно пяти дросселей от арматуры люминесцентных осветительных ламп мощностью 40 Вт. К одному выводу этой батареи дросселей подключен изолированный проводник с зажимом «крокодил» на конце, а к другому — такой же проводник, второй конец которого соединен с одним из штырей сетевой вилки. Все соединения проводников должны быть надежно изолированы. Ко второму штырю сетевой вилки прикреплен проводник, свободный конец которого очищен от изоляции на длину 20–25 мм. Проводники должны быть как можно короче, с сечением по меди не менее 0,75 мм2.
Для работы понадобится также плавкая перемычка — отрезок длиной 50-100 мм неизолированного медного провода (можно луженого) диаметром около 0,3 мм. Перемычка при выполнении каждого сварочного соединения перегорает, и ее нужно заменять. Работать следует крайне осторожно, пользуясь защитными очками и хлопчатобумажными перчатками.
Сварка производится следующим образом. Деталь, к которой надо присоединить вывод, надежно фиксируют в зажиме, укладывают на пластину из негорючего изоляционного материала (например, асбеста) и прижимают массивным предметом. Один конец проволочной перемычки плотно наматывают (7-10 витков) на оголенный участок сетевого проводника, а второй — на привариваемый к детали вывод, которым может служить отрезок медного провода диаметром 0,5–0,6 мм.
Соблюдая все меры электробезопасности, зажим «крокодил» соединяют с деталью как можно ближе к месту сварки. Вилку устройства включают в сеть и, используя плоскогубцы с изолированной ручкой, вторым выводом касаются детали. Перемычка мгновенно сгорает, а вывод приваривается к детали. Если в вашей квартире около электросчетчика установлены плавкие предохранители (пробки), то они могут перегореть. Поэтому их лучше заменить автоматическими. Работа будет более безопасной, если на сгораемую перемычку надеть тонкую ПВХ трубку.
3.1.12. Выбор инструмента
Как правило, любители могут обойтись без дорогостоящих инструментов, используемых в профессиональных радиомастерских. Иногда разумнее купить две недорогие модели, которые отвечали бы различным требованиям. В частности, на рынке имеется широкий выбор небольших высококачественных кусачек. Но они быстро выходят из строя при перекусывании прочного провода сечением 4 мм2. Для выполнения таких действий можно использовать более мощные недорогие кусачки, непригодные для выполнения тонких операций.
3.1.13. Отвертка для настройки
Переменные резисторы и конденсаторы имеют цилиндрическую ось со шлицом для выполнения регулировки с помощью обычной отвертки. В процессе регулировки довольно сложно удерживать кромку отвертки в нужном положении, одновременно наблюдая за изменением сигнала на экране осциллографа; крестообразная отвертка была-бы в данном случае значительно удобнее.
Существует специальная настроечная отвертка, имеющая на конце пластмассовый колпачок, который одевается на регулировочную ось и не позволяет отвертке выскальзывать из шлица. Подобный инструмент несложно изготовить, если плотно надеть отрезок хлорвиниловой трубки подходящего диаметра на обычную отвертку (рис. 3.4).
Рис. 3.4. Отвертка для настройки
Необходимо следить за тем, чтобы отвертка, используемая для регулировки переменного конденсатора, не была намагничена (это не столь важно при настройке переменного резистора). Иначе можно сбить регулировку и даже нарушить работу схемы. В этом случае следует выбирать отвертку из немагнитного материала (например, из алюминия или латуни) или диэлектрическую (из пластика).
3.2.1. Протягивание провода через отверстие
Нередко провод необходимо протянуть через довольно узкое отверстие в крышке розетки или соединителя. Задача станет намного легче, если предварительно слегка натереть провод мылом или жидкостью для мытья посуды. Это следует сделать до зачистки провода, чтобы смазка не проникла внутрь кабеля. После завершения операции смазку надо сразу удалить, даже если придется еще раз протягивать провод при повторном монтаже.
3.2.2. Выбор сечения провода
При выборе провода надо учитывать в первую очередь напряжение, при котором они будут работать, и ток нагрузки. Для устройств, работающих со значительными токами, очень важно выбрать сечение провода. При решении этой задачи можно воспользоваться параметрами, представленными в табл. 3.1, где приведено рекомендуемое сечение провода в зависимости от его длины и максимального тока.
При выборе по длительно допустимому току его величину (в амперах) можно определить, умножив номинальную мощность электроприемника (в киловаттах) на 4,5. Это приблизительное значение тока нагрузки можно принять, так как нельзя подобрать провод, имеющий абсолютно такой же длительно допускаемый ток, какой получается при точном расчете. Сечение провода также выбирается с запасом.
Перегрузка провода током приводит, прежде всего, к обгоранию изоляции у мест присоединения проводов к аппаратам или к электроприемникам. Возможно обгорание не только изоляции проводов, но и деталей корпусов, к которым крепятся токоведущие части, или панелей зажимов приборов. Устранить это явление можно только заменой провода. При перегрузке током могут загореться и сами провода.
3.2.3. Выбор типа провода
Надежная работа провода зависит также от его правильного выбора по условиям внешней среды. Каждый тип провода предназначен для определенных способов прокладки, которые следует учитывать. Как правило, изолированные провода не прокладываются незащищенными. При контакте с водой обычно выходят из строя провода с резиновой изоляцией в хлопчатобумажной оплетке. Кроме воды на резиновую изоляцию влияют нефтепродукты, что приводит к ее разбуханию и утрате всех необходимых свойств. Поэтому при возможности подобного воздействия лучше применять провода с пластмассовой изоляцией.
Отрицательная температура приводит к отвердеванию изоляции, особенно пластмассовой, что приводит к ее растрескиванию и отколу при изгибе проводов. Это нужно учитывать при выборе проводов для передвижных механизмов.
3.2.4. Возможные повреждения провода
Надежность провода обусловлена его рабочим состоянием после монтажа, а также условиями окружающей среды при эксплуатации. Во время монтажа провода могут быть повреждены при неосторожном обращении. При изготовлении провода наматываются на катушки или в моток. При отматывании провода с жесткой изоляцией собираются в кольца, и если их растянуть, не расправляя, то будет перегиб или излом. Провод в этом месте будет ненадежным, поэтому его применять нельзя. Могут быть и другие повреждения изоляции и токоведущих жил при монтаже.
Через поврежденную изоляцию к токоведущим жилам может проникать влага, содержащая агрессивные примеси, или воздух с агрессивными газами, что приводит к коррозии металла провода. В таких случаях лучше всего заменить провод, а если он большой длины, то приходится вставлять новый участок. Если провод недоступен для замены, то его следует отсоединить, а новый проложить в доступном месте.
Следует учитывать возможность повреждения проводов грызунами, которые перегрызают любую изоляцию. Насекомые также не все безобидны. Мухи и тараканы, забираясь между контактами и в зазоры, могут нарушать работу аппаратов. Для предотвращения этого места ввода проводов в корпуса приборов нужно уплотнять или замазывать различными составами.
3.2.5. Облуживание провода
Провод облуживают каждый раз перед тем, как вставить его в отверстие для пайки или для крепления с помощью винтового зажима. После облуживания зачищенный конец провода не распадется на отдельные жилы, соединение будет иметь достаточную механическую прочность и минимальное электрическое сопротивление. Напомним, что для качественного облуживания многожильного провода нужно снять изоляцию на достаточную длину, тщательного скрутить отдельные жилы, нанести припой, а затем аккуратно обрезать конец облуженного провода под углом.
3.2.6. Сращивание проводов
Часто нужно удлинить провод или соединить несколько проводов внутри одного корпуса. Сращивание можно выполнить разными способами.
Можно сначала скрутить провода, а затем спаять их. Если необходимо соединить несколько проводов, то их можно скрутить по два, затем еще раз по два и т. д. В любом случае место сращивания нужно защитить с помощью изоляционной ленты или отрезка хлорвиниловой трубки, фиксируемой посредством бандажа. При необходимости провода вблизи места соединения прикрепляют к специальной опоре или печатной плате.
Если при монтаже нужно срастить два проводника, совсем не обязательно скручивать их концы. Проще сложить их на длине 6–8 мм и с, паять. При этом соединение будет менее надежным, чем при скрутке. Но если соединение не будет подвергаться механическим воздействиям, то этот вариант вполне допустим. Когда же надо соединить проводники под прямым углом, конец одного проводника можно согнуть, прижать к другому проводнику и спаять. При соединении нескольких деталей или проводников с общим проводом места пайки следует располагать на некотором расстоянии друг от друга, чтобы при замене какой-либо детали в дальнейшем не страдали пайки остальных.
3.2.7. Опасность некачественного соединения
Плохо выполненное соединение может привести к тому, что ток, проходящий через него, вызовет искрение в ненадежных зажимах и, как следствие, перегорание проводников. Детали слабого зажима нагреваются и окисляются, что еще больше увеличивает сопротивление и нагрев.
Нагрев присоединительных зажимов аппарата может быть и из-за того, что применены провода меньшего сечения, чем нужно, которые, нагреваясь, нагревают сам зажим. Причина может быть также в неправильно или небрежно выполненном зажиме. Нагрев концов проводов может быть также в месте контакта провода с наконечником и при нормальной величине тока. В таком случае опрессовка наконечника не помогает и наконечник нужно отрезать от провода и поставить другой, а если его нет, то временно провод можно присоединить без наконечника, согнув кольцом, что будет надежнее, чем с нагревающимся наконечником.
Увеличение сопротивления в зажимах заземляющих проводников ведет не только к повышению напряжения прикосновения, но и к пожарной опасности из-за нагрева зажима и его искрения. Следует учитывать возможность перегрева аппаратов и от нагрева рабочих контактов и мест их крепления из-за повышения сопротивления в месте касания контактов. Это сопротивление может быть повышено при неплотном касании контактов и, как следствие, от их окисления. От нагрева может произойти не только перегорание и замыкание токоведущих частей, но частичное или полное сгорание пластмассовых деталей и корпусов аппаратов, что способно привести к пожару.
3.2.8. Соединение проводов высокого сопротивления
Для соединения проводов из сплавов высокого сопротивления (нихром, константан, никелин, манганин и др.) есть несколько простейших способов сварки без применения специального инструмента. Концы свариваемых проводов зачищают, скручивают и пропускают через них ток такой силы (для этого лучше использовать автотрансформатор), чтобы место соединения накалилось докрасна. На это место пинцетом кладут кусочек ляписа (нитрата серебра), который расплавляется и сваривает концы проводов.
Если диаметр свариваемой проволоки из сплава высокого сопротивления не превышает 0,15-0,2 мм, то на ее концы наматывают тонкую медную проволоку (диаметром 0,1–0,15 мм), причем с реостатной проволоки изоляцию можно не удалять. Затем соединенные таким образом проволочки накаляют на пламени горелки. Медь при этом начинает плавиться и прочно соединяет оба реостатных провода. Оставшиеся концы медной проволоки отрезают, а место сварки изолируют, если нужно. Этот способ можно применять и для соединения медных проводов с проводами из сплавов высокого сопротивления.
3.2.9. Изготовление жгута
При прокладывании монтажных проводов, соединяющих различные элементы схемы, отдельные провода удобно скрепить в жгуты. С этой целью используются специальные стяжные хомутики или кольца. Иногда провода связывают вощеной нитью. Можно просто сплести провода между собой по три. Полученные «косички» удобно, в свою очередь, переплести между собой, чтобы собрать все нужные провода в один жгут.
3.2.10. Медные обмоточные провода
Для обмоток трансформаторов, дросселей, электромагнитных реле, катушек колебательных контуров применяют медные обмоточные провода. Диаметр провода определяется плотностью тока, сопротивлением обмоток, соображениями удобства намотки и надежностью. Очень тонкие провода (диаметром менее 0,07 мм) не так надежны, значительно дороже и усложняют намотку.
Вид изоляции провода выбирают в зависимости от рабочей температуры обмотки, требуемой электрической прочности, допускаемого коэффициента заполнения окна провода. В приборах и трансформаторах полупроводниковой аппаратуры, предназначенных для работы в нормальных условиях, обычно используют провода в эмалевой изоляции (марки ПЭЛ, ПЭВ и др.). При высоких требованиях к надежности аппаратуры рекомендуются провода с двуслойной изоляцией (ПЭВ-2, ПЭВТЛ-2, ПЭЛР-2 и др.). Провода с комбинированной изоляцией применяются при повышенных механических нагрузках в процессе намотки или эксплуатации аппаратуры. Провода марки ПЭВТЛ отличаются сравнительно высокой стойкостью к нагреванию и большим сопротивлением изоляции. Их можно залуживать, погружая в расплавленный припой, а также при помощи паяльника без предварительной зачистки и применения флюсов.
Для изготовления бескаркасных обмоток используются провода марки ПЭВД с дополнительным термопластичным покрытием из лаков на поливинилацетатной основе. Но помните, что при нагреве до температуры 160–170 °C в течение 3–4 ч витки склеиваются.
Провода могут иметь покрытие (изоляцию) из эмали, волокнистых материалов или комбинированное. Эмаль обладает лучшими электроизоляционными свойствами, чем волокнистые материалы, кроме того, диаметр эмалевых проводов намного меньше. Электроизоляционные свойства капронового волокна и натурального шелка несколько выше, чем хлопчатобумажного волокна. Капроновое волокно превосходит натуральный шелк по стойкости к истиранию и воздействию растворителей (бензин, бензол, минеральные масла и т. п.).
3.2.11. Высокочастотные обмоточные провода
Высокочастотные обмоточные провода (литцендраты) предназначены для изготовления высокочастотных катушек индуктивности с большой добротностью. Эти провода представляют собой пучок эмалевых проволок диаметром 0,05; 0,07; 0,1 или 0,2 мм, перевитых особым способом. Весь пучок обычно покрывают волокнистой изоляцией. Благодаря определенному расположению проволок в пучке ослабляется поверхностный эффект (вытеснение тока к поверхности провода под воздействием магнитного поля, возникающего при протекании тока) и, следовательно, уменьшается сопротивление провода токам высокой частоты. Провода марок ЛЭП и ЛЭПКО перед лужением не требуют зачистки и применения каких-либо травильных составов.
3.2.12. Диаметр провода
Если нужно определить диаметр провода, а под рукой нет микрометра, то можно поступить следующим образом. Надо на круглый стержень, например на карандаш, плотно намотать несколько десятков витков провода и линейкой измерить длину намотки. Диаметр провода (приблизительно) получим, если разделим длину намотки в миллиметрах на количество витков. Чем больше витков, тем точнее будет результат.
3.3.1. Трубка ПХВ
Полихлорвиниловые трубки (ПХВ), например, ХВТ-5, могут заменять изоляционную ленту для защиты отдельных проводов или жгутов проводов при их вводе в корпуса аппаратов, двигателей, в металлические трубы. Цифра, стоящая после буквенного индекса означает внутренний диаметр трубки в миллиметрах. Их еще называют кембриками.
Стоит взять за привычку сохранять отрезки хлорвиниловой изоляции, которые остаются после зачистки проводов и кабелей. В результате у вас появится запас трубочек разных диаметров и цветов, которые можно использовать для изоляции соединений вместо относительно дорогой термоусадочной трубки. Чтобы такая изоляция не сдвигалась с нужного места, достаточно нескольких капель клея (или зажимного хомутика для трубки большого диаметра).
3.3.2. Термоусадочная трубка
Термоусадочная трубка используется так же, как и трубка ПХВ. Ее отличительной особенностью является то, что она при нагревании способна сжиматься и плотно изолировать соединение. Термоусадочная трубка обеспечивает идеальную изоляцию и повышенную надежность мест соединения, а также их хороший внешний вид. Однако приходится довольно точно подбирать диаметр трубки, в противном случае обжим будет слишком слабым. Приобретение специального пистолета для нагревания горячим воздухом оправдано только при интенсивном использовании данного инструмента. Вместо него можно применить фен или пистолет для снятия краски. Паяльник следует использовать только для нагревания трубки небольшого диаметра. Соблюдая осторожность, можно осуществить прогревание с помощью зажигалки, но надо следить, чтобы на светлой трубке не оставалось черных следов копоти.
3.4.1. Коаксиальные соединители для аудиоаппаратуры
Малогабаритные коаксиальные разъемы для аудиоаппаратуры («джеки»), разделенные по длине на сегменты, хорошо знакомы радиолюбителям. Они широко используются, например, в портативных радиоприемниках и магнитофонах для подключения наушников или микрофона. Выпускаются соединители различных типов и размеров (диаметры штыря 2,5; 3,5 и 6,35 мм, моно или стерео). Они очень удобны, но их можно применять только для маломощных нагрузок. Недопустимо использование таких соединителей для подключения к устройству внешнего источника питания из-за риска короткого замыкания в момент, когда штырь вставляют в гнездо. В случае необходимости при подобном подключении нужно пользоваться моделью инвертированного типа, где штырь располагается на приборе, а гнездо — на конце соединительного шнура.
Следует также помнить, что один из выводов гнезда, смонтированного на шасси, соединен с корпусом прибора. Поэтому, если к корпусу уже присоединен разъем или радиатор охлаждения с другим потенциалом, может произойти короткое замыкание.
3.4.2. Байонетные коаксиальные соединители
Сборка кабеля, снабженного байонетным соединителем BNC (СР-50) штыревого типа, является весьма трудоемкой операцией. В зависимости от модели эти соединители крепятся к проводникам путем пайки или обжима. Для сборки необходимо оголить кабель на точно заданную длину и смонтировать большое количество деталей. Если не предполагается работа с устройствами ВЧ диапазона, значительно проще припаять к кабелю штыревую часть обычного коаксиального разъема типа RCA (тюльпан) и использовать переходник на байонетный соединитель (рис. 3.5). Такой комплект обойдется дешевле, чем сам соединитель, а изготовленный кабель можно будет подключать к разъемам двух типов.
Рис. 3.5. Коаксиальное соединение: переходник (а) и коаксиальный штырь (б)
3.4.3. Наконечники для шнуров
Существует множество типов и размеров наконечников для шнуров, обеспечивающих выполнение надежных разъемных соединений (такие наконечники широко используются, например, в электропроводке автомобилей). Как правило, наконечники крепятся к многожильному проводу путем обжима с помощью специальных инструментов, иногда довольно дорогих. Однако можно избежать этой операции, заменив ее пайкой. Провод оголяют на нужную длину и облуживают. Затем наконечник заливают припоем (рис. 3.6).
Рис. 3.6. Монтаж наконечника
Поддерживая припой в разогретом состоянии, аккуратно вставляют провод так, чтобы его отдельные жилы не отгибались. После этого наконечник оставляют охлаждаться естественным образом (на него не следует дуть), а затем проверяют прочность соединения, с усилием натягивая провод.
Если пайка прошла успешно, на наконечник надвигают отрезок изолирующей хлорвиниловой трубки подходящего диаметра (его следует надеть на провод перед пайкой). Лишний припой, который иногда мешает надеть трубку, можно удалить с помощью напильника.
3.4.4. Монтаж соединителя ленточного кабеля
Осуществление большого числа соединений между материнской платой и периферийными устройствами персонального компьютера (например, дисководами) существенно упрощается благодаря применению плоских ленточных кабелей со стандартным расстоянием между жилами, равным 1,27 мм. Соединительные элементы, расположенные на концах или в средней части кабеля, обычно монтируются с помощью специального дорогостоящего инструмента. Нетрудно выполнить эту операцию, используя тиски с широкими губками. Следует соблюдать осторожность при размещении кабеля в соединителе, поскольку можно вставить контакты между проводниками и вызвать их замыкание. Губки тисков должны быть покрыты мягкими прокладками, чтобы не повредить соединители. Сжатие губок производится до легкого щелчка, свидетельствующего о том, что обе части соединителя зафиксировались в нужном положении. Следует помнить, что в случае неудачи повторить эту операцию невозможно, то есть у вас нет права на ошибку.
3.4.5. Телефонные соединители
Иногда телефонные соединители типа RJ на 4,6 или 8 контактов нужно использовать для других целей. Такие соединительные элементы имеют ряд достоинств. Они недорого стоят, занимают мало места и надежно фиксируются. Однако для монтажа розеточной части соединителей требуется специальный инструмент — обжимные клещи. Такие клещи дорого стоят и обычно предназначаются только для одной модели розеток, поэтому их понадобится столько же, сколько имеется типов розеток. К счастью, можно выполнить монтаж простым способом с помощью тупой стороны лезвия ножа. Провода вставляются один за другим, а затем производится фиксация колпачка с помощью тисков. Возможно, предварительно потребуется провести несколько пробных операций. Для этого следует приобрести дополнительные розетки.
3.5.1. Блок переключателей
Для кодирования адреса или программирования двоичного слова на печатной плате часто используют набор миниатюрных выключателей, собранных в корпусе типа DIP. Такой корпус легко устанавливать, а маркировка выключателей позволяет без труда определять, включены они или выключены. Основной недостаток блока — его высокая цена. Можно без труда заменить эти выключатели розеточной частью разъема с двумя рядами гнезд, вставив в нужные места съемные перемычки, которые замыкают два контакта, расположенные друг против друга. Подобный элемент занимает даже меньше места, чем блок выключателей, а маркировка состояний отчетливо видна (по наличию перемычек). Цена такого переключателя незначительна, особенно если используются разъемы плат, вышедших из строя.
3.5.2. Монтаж: выключателя
Независимо от типа выключателя, размещенного на передней или задней панели, и от наличия светового индикатора всегда желательно соблюдать наиболее распространенное положение: «включено» — вверх, «выключено» — вниз. Этому стандарту соответствуют выключатели ламп в помещениях, клавиши включения компьютера или принтера и т. д. Прежде чем искать причину неисправности (например, неправильное подключение), следует всегда убедиться в том, что выключатель находится в нужном положении.
3.5.3. Клавишные выключатели
Во многих устройствах для управления применяются клавиши с четырьмя выводами, соединенными попарно для облегчения операции матрицирования. Корпус клавишного выключателя неквадратной формы может иметь два варианта размещения выводов (рис. 3.7). Поэтому перед разработкой печатной платы нужно приобрести клавиши определенного типа или предусмотреть различные варианты соединений.
Рис. 3.7. Размещение выводов клавишного выключателя
3.6.1. Использование разноцветных проводов
Для подключения к схеме некоторых компонентов, в частности поворотных переключателей и многоконтактных соединителей, потребуется большое число проводов. Провода, припаянные к подобному компоненту, обычно сплетаются или соединяются в жгут с использованием стяжных хомутиков, колец и т. п. В этом случае для проводов, присоединяемых к определенным контактам, удобно применять стандартный цветовой код (табл. 3.2), применяемый при маркировке резисторов и конденсаторов. Например, к первому выводу нужно всегда подводить коричневый провод, ко второму — красный и т. д. Если компонент имеет более десяти выводов, для второго десятка удобно использовать те же цвета, что и для соответствующих выводов первого. Подобная методика существенно облегчает проверку соединений на стадиях монтажа и наладки устройства, а также при его ремонте.
3.6.2. Порядок монтажа печатной платы
Сборку печатной платы начинают с установки элементов, требующих механического крепления. При этом приходится иногда расширять отверстия и пазы, а делать это с уже размещенными деталями неудобно. Устанавливаемые радиодетали не должны иметь на корпусе царапин, трещин, вмятин или каких-то других механических повреждений. Даже если при тестировании они функционируют исправно, это еще не значит, что их работа продлится долго. На плате детали располагают так, чтобы они не касались друг друга.
Начинающим радиолюбителям полезно помнить о том, что монтаж печатной платы следует начинать с самых «низких» компонентов, переходя затем к более крупным и заканчивая деталями, которые монтируются вертикально. При такой последовательности монтажа крупные компоненты не помешают нужным образом установить для пайки более мелкие (рис. 3.8а). Например, можно начать с размещения на плате всех перемычек, затем прижать к плате лист пенопласта и перевернуть ее для выполнения пайки (рис. 3.86). Вслед за этим можно приступать к монтажу небольших резисторов, диодов и т. д. С целью временного закрепления компонентов перед пайкой можно слегка отогнуть их выводы в разные стороны, не допуская при этом закорачивания близко расположенных контактных площадок (рис. 3.8в).
Рис. 3.8. Монтаж компонентов на плате: неправильный (а, в) и правильный (б)
3.6.3. Монтаж мощных компонентов
Мощные транзисторы, симисторы и тиристоры в корпусе ТО220 (и ему подобных) могут нагреваться до значительных температур. Поэтому в большинстве случаев для надежной работы этих приборов необходимо обеспечить требуемые условия теплоотвода. Если речь идет об одном компоненте, рассеивающем сравнительно невысокую мощность, достаточно небольшого радиатора. Для улучшения теплового контакта на основание корпуса прибора наносится теплопроводная паста типа КТП-8. Между корпусом и радиатором необходимо установить диэлектрическую теплоизоляционную прокладку.
Сложнее осуществить охлаждение нескольких мощных компонентов, которые необходимо изолировать друг от друга и от радиатора, обеспечив при этом хорошую теплопроводность. Классическое решение проблемы — использование для монтажа набора изоляционных деталей, включающего тонкие слюдяные шайбы, изоляционные втулки и резьбовые крепежные элементы (иногда выполненные из нейлона). Монтаж приборов требует аккуратности, перед включением следует тщательно проверить изоляцию.
Помимо этого остается проблема электрического контакта с основанием корпуса прибора, когда оно соединено с одним из электродов. Как правило, в этом случае под основание подкладывают тонкую шайбу с лепестком, к которому припаивают (или присоединяют посредством специального наконечника) монтажный провод. Необходимо изучить техническую документацию, чтобы уточнить, какой электрод соединен с корпусом (кстати, у транзисторов это не всегда коллектор).
Существует и другая, менее распространенная технология изоляции для корпусов ТО220. Компонент прижимают к радиатору, подложив слюду или предварительно надев на него отрезок изоляционной трубки. Механическая сборка при этом заметно упрощается, а изоляция оказывается вполне надежной. Имеются небольшие пластмассовые распорки, предназначенные специально для такого монтажа (они мало распространены в Европе). Вместо них можно использовать небольшой брусок из изолирующего материала, который служит для монтажа двух идентичных компонентов (рис. 3.9).
Рис. 3.9. Крепление двух корпусов ТО220
Следует отметить, что соединительный провод можно припаять непосредственно к основанию корпуса ТО220. Предварительно место пайки нужно зачистить и облудить, избегая лишнего нагрева.
3.6.4. Облегчение проверки схемы
Большинство электронных устройств в процессе их создания и эксплуатации подвергаются наладке, тестированию или ремонту. Такие операции требуют подключения измерительных приборов к различным точкам схемы. Поэтому желательно монтировать компоненты так, чтобы контрольные точки были легко доступны.
Рассмотрим, например, наладку многокаскадного усилителя, когда анализ сигнала на его выходе, обычно расположенном на краю платы и доступном для контакта месте, не дает достаточной информации о состоянии каскадов. Для успешного тестирования необходимо последовательно подключать щуп осциллографа к входам или выходам различных каскадов (рис. 3.10а). В серийных устройствах для этой цели специально предусматривают участки металлизации с удобным доступом, которые обозначаются на плате и в схеме как ТР1, ТР2 и т. д. Такие точки полезно предусмотреть и в любительской аппаратуре.
При проектировании и монтаже устройства необходимо учитывать, что вертикально расположенные компоненты (например, резисторы) затрудняют доступ сверху к некоторым точкам схемы, На рис. 3.10б показан пример неудачного размещения резистора, когда нужная контрольная точка недоступна, и дан вариант более удобного монтажа того же элемента (рис. 3.10в).
Рис. 3.10. Контрольная точка на электрической схеме (а), неправильное (б) и правильное (в) размещение контрольной точки на печатной плате
3.6.5. Ориентация компонентов печатной платы
В процессе наладки и ремонта устройства приходится неоднократно проверять маркировку компонентов, размещенных на печатной плате. К сожалению, даже в аппаратуре промышленного производства компоненты не всегда располагают самым удобным образом. Необходимо взять за правило размещать элементы схемы таким образом, чтобы было удобно считывать их номиналы и маркировку при одном положении платы, которое реализуется при вскрытии корпуса устройства. В идеальном варианте маркировка всех элементов должна соответствовать ориентации маркировки интегральных схем, но, увы, это не всегда возможно.
3.6.6. Пайка компонентов
Во время пайки необходимо следить за тем, чтобы жало паяльника не касалось печатных проводников, поскольку это, как правило, приводит к выгоранию проводника. Для пайки транзисторов желательно иметь низковольтный паяльник на 6 или 12 В, присоединяемый через понижающий трансформатор, мощностью около 40 Вт. Можно пользоваться и обычным паяльником, но нужно сначала «го нагреть, а потом отключить и паять.
Выводы транзистора, если позволяет его конструкция, нужно оставлять не короче 15 мм, изгибать их не ближе 10 мм от корпуса, изгиб должен быть плавным. Температура нагрева контактного слоя транзистора не должна превышать 75 °C, поэтому для отвода тепла при пайке выводы у корпуса нужно держать плоскогубцами или пинцетом. Паяльник необходимо располагать по возможности дальше от транзистора, а пайку заканчивать быстрее. Жало паяльника нужно зачистить и покрыть припоем, который должен быть легкоплавким. Желательно применение пистолетных паяльников, которые включаются только во время пайки.
Окончив пайку, выступающие выводы деталей укорачивают и растворителем смывают остатки канифоли, что позволяет проконтролировать качество монтажа: на плате не должно оставаться капель припоя и междорожечных замыканий. Смонтированную плату желательно отмыть спиртом, пользуясь небольшой жесткой кистью, а затем покрыть канифольным лаком. Такое покрытие, как ни странно, весьма влагостойко и сохранит «паяемость» платы долгие годы, что удобно при ремонте и доработке устройства.
В связи с тем что сила сцепления печатного проводника с изоляционной платой невелика, не рекомендуется проверять прочность пайки, подергивая припаянную деталь, так как при этом можно оторвать ее вместе с проводником. Если печатный проводник отслаивается, его приклеивают к основе платы клеем БФ-2. Для этого проводник со стороны, обращенной к плате, и саму плату тщательно очищают от канифоли и оксидов (вначале спиртом или ацетоном, затем мелкой шкуркой) и смазывают тонким слоем клея. Примерно через 10 мин клей наносят вторично (только на плату) и прижимают проводник к плате жалом паяльника, нагретым до температуры 120–150 °C.
3.6.7. Монтаж ЖКИ
Часто вызывает трудность подключение жидкокристаллического индикатора с напыленными на стекло выводами, но без резиновой контактной гребенки. Это проще, чем кажется.
Для начала нужно заготовить необходимое количество облуженных отрезков провода диаметром 0,1–0,2 мм. Контактную поверхность индикатора протрите спиртом и хорошо высушите. На напыленные контактные площадки индикатора наложите проволочные выводы, нанесите по капле дящего клея и выдержите при комнатной температуре 1,5–2 суток. Желательно, чтобы выводы плотнее прилегали к контактным площадкам. Затем узкой отверткой тщательно удалите под увеличительным стеклом возможные замыкания. Это и будут проволочные выводы, которые затем можно паять.
3.6.8. Монтаж ИС
Монтаж интегральных микросхем представляет наибольшую трудность. Их стоимость достаточно высока, а вывести их из строя очень легко. Микросхемы следует паять за кончики выводов, вставляя выводы в монтажные отверстия не до упора, а лишь до выхода со стороны пайки на 0,5–0,8 мм, это облегчит их демонтаж в случае ремонта и уменьшит вероятность замыканий в двусторонних платах. Под микросхемы в металлических корпусах следует подложить бумажные прокладки и приклеить их к плате канифольным лаком.
Во время пайки нельзя перегревать корпус микросхемы. Поэтому следует использовать припой с температурой плавления не более 260 °C, мощность паяльника не должна превышать 40 Вт, длительность пайки одного вывода — не более 5 с, а промежуток времени между пайками выводов одной микросхемы должен быть не менее полминуты. Если ведется монтаж нескольких микросхем, то сначала паяют первый вывод первой микросхемы, затем первый вывод второй и т. д., далее второй вывод первой микросхемы, второй вывод второй и т. д. Благодаря такому приему микросхемы успевают остывать между пайками.
Микросхемы КМОП могут быть выведены из строя разрядом статического электричества, который, как правило, скапливается на одежде. Чтобы этого не случилось, жало паяльника и руки радиомонтажника необходимо заземлять. Монтаж микросхемы может быть выполнен печатным способом, проводами или комбинированно. Печатный способ монтажа следует применять в том случае, если вы уверены, что схема работоспособна, а также при изготовлении нескольких одинаковых устройств на одинаковых платах. При пайке проводами удобнее использовать провода в тугоплавкой изоляции: многожильный типа МГТФ 0,07-0,12 мм2 или одножильный луженый 0,25-0,35 мм2. Сначала на вывод микросхемы в 1–1,5 витка наматывают провод, а затем производят пайку. Этот метод хорош тем, что позволяет неоднократно перепаивать провода, а такая необходимость может возникнуть при наладке устройства.
При комбинированном способе монтажа выводы микросхемы припаивают к контактным площадкам, а в отверстия контактных площадок впаивают проволочные проводники.
Неиспользуемые выводы микросхем ТТЛ следует объединять в группы по 10 штук и подключать к положительной шине питания через резистор 1–1,5 кОм; неиспользуемые выводы микросхем КМОП можно непосредственно подсоединять к плюсовой шине.
3.6.9. Помехозащищенность схем с ИС
Чтобы обеспечить достаточную помехозащищенность, между шинами питания следует устанавливать конденсаторы типов КМ-6, К10-7, К10-17 емкостью 0,1–0,047 мкФ из расчета один конденсатор на два-три корпуса микросхем. Особое внимание при этом необходимо уделять устройствам, имеющим в своем составе микросхемы памяти, триггеры, счетчики и т. п.
3.6.10. Использование витой пары
Соединительные провода в длину не должны превышать 20–30 см. Если же требуется передать сигнал на большее расстояние, используют так называемые витые пары. Скручивают два провода, по одному из них подается сигнал, а второй заземляют (соединяют с общим проводом) с обоих концов. Целесообразно также концы сигнального провода подключить к плюсовой шине через резисторы 1 кОм (для ТТЛ микросхем) или 100 кОм (для КМОП микросхем). Длина проводов витой пары может составлять 1,5–2 м.
3.6.11. Защита фотодиода от помех
Нормальное функционирование ИК приемника системы дистанционного управления требует защиты зоны приема от постороннего излучения. Солнечный свет, как и свет ламп накаливания, содержит излучение ИК диапазона. Для защиты фотодиода можно закрепить на передней панели специальный фильтр номер 87С фирмы Kodak (или аналогичный). В некоторых случаях удается использовать испорченный диапозитив при условии его предварительной проверки. Помимо основной задачи фильтр выполняет функцию механической защиты приемного отверстия.
3.7.1. Камера для экспонирования
Можно самостоятельно сделать камеру для экспонирования платы, изготавливаемой методом фотолитографии. При этом рекомендуется разместить в камере одну или две люминесцентные лампы (помимо ламп ультрафиолетового излучения). Люминесцентные лампы удобно использовать для визуальной проверки непрозрачности и качества выполнения фотошаблона перед экспонированием. Их можно смонтировать в глубине камеры, чтобы не создавать лишних теней. Следует поставить специальный выключатель, позволяющий включать лампы независимо. При выполнении различных операций можно также заменять лампы, но это менее удобно. Заметим, что нельзя рассматривать фотошаблон при свете ультрафиолетовых ламп, поскольку это вредно для глаз.
3.7.2. Подготовка топологии печатной платы
Прежде чем приступить к разработке рисунка печатной схемы, необходимо запомнить, что расположение компонентов может определяться как заданными параметрами, так и критичностью размещения некоторых элементов (это позволит предотвратить побочные эффекты, например, помехи). Чаще всего рисунок проводников представляет собой такую интерпретацию принципиальной схемы, которая с учетом электрических характеристик имеет хорошие механические свойства и достаточна проста. Маркировка компонентов и выходных контактов на рисунке платы должна соответствовать маркировке электрической схемы, это значительно упрощает сборку и последующую проверку устройства.
Проектировать печатные платы наиболее удобно в масштабе 2:1 на миллиметровке или другой бумаге, на которой нанесена сетка с шагом 5 мм. При проектировании в масштабе 1:1 рисунок получается мелким, плохо читаемым, и поэтому при дальнейшей работе над печатной платой неизбежны ошибки. Масштаб 4:1 — другая крайность: с большим чертежом неудобно работать. Сначала нарисуйте контуры платы. Лучше, если ее габариты будут соответствовать размерам какого-либо готового корпуса.
Все отверстия под выводы деталей в печатной плате целесообразно размещать в узлах сетки, что соответствует шагу 2,5 мм на реальной плате (далее по тексту указаны реальные размеры). С таким шагом расположены выводы у большинства микросхем в пластмассовом корпусе, у многих транзисторов и других электрорадиокомпонентов. Меньшее расстояние между отверстиями следует выбирать лишь в тех случаях, когда это крайне необходимо.
В отверстия с шагом 2,5 мм, находящиеся на сторонах квадрата 7,5x7,5 мм, удобно монтировать микросхему в круглом металлостеклянном корпусе. Для установки микросхемы в пластмассовом корпусе с двумя рядами жестких выводов (корпус типа DIP) в плате необходимо просверлить два ряда отверстий. Шаг отверстий — 2,5 мм (строго говоря, 2,54 мм), расстояние между рядами кратно 2,5 мм. Следует заметить, что микросхемы с жесткими выводами требуют большей точности разметки и сверления отверстий.
Микросхемы в корпусе типа FLAT имеют гибкие выводы и припаиваются непосредственно к проводникам печатной платы. Следует учесть, что расстояние между выводами у них в два раза меньше и составляет 1,27 мм. Если размеры печатной платы заданы, необходимо начертить ее контур и крепежные отверстия. Вокруг отверстий выделяют запретную для проводников зону с радиусом, несколько превышающим половину диаметра металлических крепежных элементов. Далее следует примерно расставить наиболее крупные детали — реле, переключатели (если их впаивают в печатную плату)и разъемы, большие детали и т. д. Их размещение обычно зависит от общей конструкции устройства, определяемой размерами имеющегося корпуса или свободного места в нем. Часто, особенно при разработке портативных приборов, размеры корпуса определяют по результатам разводки печатной платы.
Цифровые микросхемы предварительно расставляют на плате рядами с межрядными промежутками 7,5 мм. Если микросхем не более пяти, все печатные проводники обычно удается разместить на одной стороне платы и обойтись небольшим числом проволочных перемычек, впаиваемых со стороны деталей. Не пытайтесь расположить на односторонней печатной плате большее количество цифровых микросхем, это значительно затруднит разводку и потребует использования чрезмерно большого числа перемычек. В этих случаях разумнее перейти к двусторонней печатной плате.
Условимся называть ту сторону платы, где размещены печатные проводники, стороной проводников, а обратную — стороной деталей, даже если на ней вместе с деталями проложена часть проводников. Особый случай представляют платы, у которых и проводники, и детали размещены на одной стороне, причем детали припаяны к проводникам без отверстий. Необходимо знать, что внести изменения в печатный монтаж, когда сторона проводников и сторона деталей едины, очень сложно. Платы такой конструкции применяют редко.
Микросхемы размещают так, чтобы все соединения на плате были по возможности короче, а число перемычек — минимальным. В процессе разводки проводников расположение микросхем относительно друг друга придется менять не один раз. Рисунок печатных проводников аналоговых устройств любой сложности обычно удается развести на одной стороне платы.
Далее можно начинать собственно разводку. Полезно заранее измерить и записать размеры мест, занимаемых используемыми элементами. Резисторы МЛТ-0,125 устанавливают рядом, соблюдая расстояние между их осями 2,5 мм, а между отверстиями под выводы одного резистора — 10 мм.
Так же размечают места для чередующихся резисторов МЛТ- 0,125 и МЛТ-0,25 или двух резисторов МЛТ-0,25, если при монтаже их слегка отогнуть один от другого (три таких резистора поставить вплотную к плате уже не удастся). На таком же расстоянии между выводами и осями элементов устанавливают большинство малогабаритных диодов и конденсаторов КМ-5 и КМ-6, вплоть до КМ-66 емкостью 2,2 мкФ. Не следует размещать бок о бок две толстые (более 2,5 мм) детали, их необходимо чередовать с тонкими. Если нужно, расстояние между контактными площадками той или иной детали увеличивают.
Линии соединения элементов выполняются в соответствии с электрической схемой по кратчайшему пути при минимальной длине соединительных проводников. Входные и выходные цепи схемы должны быть разнесены друг от друга по возможности дальше, что исключит наводки и самовозбуждение схем усилителей. Удачно разместить элементы с первой попытки, как правило, не получается, и приходится изменять рисунок (иногда несколько раз) для подбора оптимальной компоновки деталей.
После размещения всех элементов необходимо еще раз проверить соответствие топологии платы электрической схеме и устранить все выявленные ошибки (они будут!). Чем тщательнее выполняется этот этап работы, тем меньше будет проблем при настройке уже собранного устройства.
Если резисторы, диоды и другие детали с осевыми выводами располагать вертикально, можно существенно уменьшить ее площадь, однако рисунок печатных проводников усложнится.
При изготовлении рисунка всегда нужно помнить о достаточных зазорах между проводниками и учитывать свойства поверхности платы. Очень важно оставлять между проводниками максимально возможное расстояние, особенно если они находятся под высоким напряжением или схема должна обладать большим внутренним сопротивлением. Следовательно, в некоторых случаях нужно уделять особое внимание взаимному расположению проводников. Так, цепи с большим внутренним сопротивлением нужно размещать как можно дальше от цепей питания или от других сигнальных цепей. В противном случае могут ухудшиться соотношение сигнал/шум, появиться индуктивные наводки или возникнуть нежелательные обратные связи.
При разводке также следует ограничить количество проводников между контактными площадками, предназначенными для подпайки выводов радиоэлементов. В большинстве используемых в радиолюбительских конструкциях деталей диаметр отверстий под выводы может быть равен 0,8 мм. Ограничения на число проводников для типичных вариантов расположения контактных площадок с отверстиями такого диаметра приведены на рис. 3.11 (сетка соответствует шагу 2,5 мм на плате).
Между контактными площадками отверстий с межцентровым расстоянием 2,5 мм установить проводник практически нельзя. Однако это возможно, если у одного или обоих отверстий такая площадка отсутствует (например, у неиспользуемых выводов микросхемы или у выводов любых деталей, припаиваемых на другой стороне платы). Такой вариант показан в верхней части рис. 3.11 (в центре). Вполне можно проложить проводник между контактной площадкой, центр которой лежит в 2,5 мм от края, платы, и этим краем (рис. 3.11, справа).
Рис. 3.11. Типичные варианты расположения контактных площадок, отверстий и проводников на печатной плате
3.7.3. Предварительная разводка проводников
Предварительную разводку проводников удобно выполнять мягким карандашом на листе гладкой бумаги. Сторону печатных проводников рисуют сплошными линиями, обратную сторону — штриховыми. По окончании разводки и корректировки чертежа под него кладут копировальную бумагу красящим слоем вверх и красной или зеленой шариковой ручкой обводят контуры платы, а также проводники и отверстия, относящиеся к стороне деталей. В результате на обратной стороне листа получится рисунок проводников для стороны деталей.
3.7.4. Предотвращение помех
При реализации печатной схемы часто появляется множество побочных эффектов, например возникают помехи. Детали необходимо размещать так, чтобы они не имели между собой паразитных связей, то есть взаимодействий магнитных и электрических полей различных элементов схемы. Например, часто встречается паразитная связь коллектора транзистора входного каскада с контуром магнитной антенны, которая приводит к самовозбуждению усилителя высокой частоты. Чтобы ее исключить, транзистор располагают на расстоянии 2–3 см от антенны или отгораживают экраном. Таким же образом можно избавиться и от других паразитных связей.
Не следует размещать рядом магнитную антенну, динамик и выходной трансформатор. Их магнитные поля могут оказать взаимное влияние, вследствие чего возникнут наводки. В этом случае необходимо правильно сориентировать детали, то есть принять во внимание конфигурацию их полей.
При использовании микросхем нужно максимально разносить входные и выходные цепи. Монтаж входных цепей ИС следует проводить в непосредственной близости от нее.
Если при проектировании частей схемы придерживались правила использования отдельного заземляющего провода, подключаемого к «земле» в одной точке, то также возникнут помехи.
В том случае, когда рисунок проводников выполняется геометрически правильными линиями, можно ожидать следующих проблем-: утечки, высокого напряжения, больших помех, нежелательных связей, потери сигнала из-за емкостных эффектов. Минимальная ширина проводников должна быть не менее 1–1,5 мм. Чтобы при пайке не появилось мостиков из припоя, минимальный зазор между проводниками должен быть более 1–1,5 мм.
При проектировании полупроводниковых схем печатные проводники, как правило, прокладываются по прямым линиям и прямым углам с незначительным их скруглением, что предотвращает возникновение коронного разряда из-за концентрации электрических полей.
3.7.5. Монтаж ИС с гибкими выводами
Микросхемы, выводы которых расположены параллельно корпусу (серии 133, К134 и др.), можно смонтировать, предусмотрев соответствующие контактные площадки с шагом 1,27 мм, однако это заметно затрудняет и разводку, и изготовление платы. Гораздо целесообразнее чередовать подпайку выводов микросхемы к прямоугольным площадкам со стороны деталей и круглым площадкам через отверстия на противоположной стороне (рис. 3.12); ширина выводов микросхемы показана не в масштабе.
Рис. 3.12. Контактные площадки для микросхем в пленарных корпусах
В качестве примера взята двусторонняя плата. Подобные микросхемы, имеющие длинные выводы (например, серии 100), можно монтировать так же, как и ИС в пластмассовых корпусах, изгибая выводы и пропуская их в отверстия платы. Контактные площадки в этом случае располагают в шахматном порядке (рис. 3.13).
Рис. 3.13. Контактные площадки для микросхем с длинными выводами
При разработке двусторонней платы надо стремиться к тому, чтобы на стороне деталей осталось меньшее число соединений. Это облегчит исправление возможных ошибок, налаживание устройства и, если необходимо, его модернизацию. Под корпусами микросхем размещают лишь общий провод и провод питания, но подключать их нужно только к выводам питания микросхем. Контактные площадки к входам микросхем, подсоединяемым к цепи питания или общему проводу, прокладывают на стороне проводников, причем так, чтобы их можно было легко перерезать при налаживании или усовершенствовании устройства. Если же устройство настолько сложно, что на стороне деталей приходится прокладывать и проводники сигнальных цепей, позаботьтесь о том, чтобы любой из них был доступен для подсоединения к нему и исключения его из цепи.
3.7.6. Установка контактных стоек
Обычно узел, собранный на печатной плате, подключают к другим узлам устройства гибкими проводниками. Чтобы не испортить печатные проводники при многократных перепайках, желательно предусмотреть на плате в точках соединений контактные стойки (удобно использовать штыревые контакты диаметром 1 или 1,5 мм от разъемов 2РМ). Стойки вставляют в отверстия, просверленные точно по диаметру, и пропаивают. На двусторонней печатной плате контактные площадки для распайки каждой стойки должны быть на обеих сторонах.
3.7.7. Двусторонняя плата
Аналоговые устройства, работающие со слабыми сигналами, и цифровые на быстродействующих микросхемах (например, серий КР531, КР1531, К500, КР1554) независимо от их рабочей частоты целесообразно собирать на платах с двусторонним фольгированием. Причем фольга той стороны платы, где располагают детали, будет играть роль общего провода и экрана. Фольгу общего провода не следует использовать в качестве проводника для большого тока (например, от выходных каскадов, динамической головки, выпрямителя блока питания и т. д.).
При разработке двусторонних печатных плат нужно постараться обойтись без специальных перемычек между сторонами платы, используя для этого контактные площадки соответствующих выводов монтируемых деталей; выводы в этих случаях пропаивают с обеих сторон платы. На сложных платах иногда удобнее некоторые детали подпаивать непосредственно к печатным проводникам. Контактные площадки в этом случае делают шире — 3–4 мм. На таком участке фольги допускается припаивание только одного навесного компонента. Если в качестве общего провода используется сплошной слой фольги, отверстия под выводы, не подключаемые к нему, следует раззенковать со стороны деталей. Печатные дорожки питания делают шире, нежели другие проводники.
Однако не стоит браться за изготовление двусторонней печатной платы любительскими средствами, не имея соответствующего опыта. Нужное оборудование стоит очень дорого, а осуществить металлизацию отверстий практически невозможно. При необходимости лучше обратиться в организацию, которая специализируется на производстве подобных плат.
3.7.8. Использование макетной платы
При проектировании рисунка печатной платы удобно использовать стандартную макетную плату с отверстиями, расположенными в узлах сетки с фиксированным шагом. Временное размещение компонентов на такой плате позволяет точно проверить занимаемое ими место и зрительно представить окончательный результат. Это снижает риск появления ошибок и улучшает внешний вид будущей схемы. В этой работе удобно также использовать небольшую пластину-шаблон из стеклотекстолита или другого материала, в которой с шагом 2,5 мм насверлены рядами отверстия диаметром 1–1,1 мм, и по ней планировать возможное взаимное расположение элементов.
3.7.9. Временная макетная плата
Для изготовления прототипа, макета или единичного экземпляра электронного устройства можно обойтись без выполнения рисунка печатной платы. Когда речь идет о небольшом числе компонентов или о временной схеме, удобно использовать плату с отверстиями (без металлизации), в которые просто вставляют компоненты, соединяя их перемычками.
Для более сложных вариантов подойдет макетная плата с квадратными контактными площадками, размещенными в узлах сетки со стандартным шагом (рис. 3.14).
Рис. 3.14. Макетная плата с квадратными контактными площадками
Каждый компонент припаивается, а контактные площадки соединяются между собой в нужных местах капельками припоя. Использование паяльника с тонким жалом существенно упрощает монтажные операции. В окончательном виде устройство будет эквивалентно схеме, собранной на односторонней печатной плате. Некоторую трудность вызывает, например, соединение двух несмежных выводов одной интегральной схемы. На такую плату можно смонтировать все компоненты со стандартным шагом выводов, включая микроконтроллеры. При формировании перемычек и дорожек следует ориентироваться на величину токов, которые будут по ним проходить.
3.7.10. Размещение КГ на плате
При проектировании кварцевого генератора, служащего тактовым генератором микропроцессора, желательно принять меры для защиты устройства от электромагнитных помех. С этой целью рекомендуется сохранить вокруг генератора значительные участки металлизации и соединить их с общей точкой схемы. Соединения между компонентами генератора должны быть максимально расширены для снижения наводок и паразитных индуктивностей дорожек. Как правило, производители кварцевых резонаторов указывают способ рационального размещения компонентов на плате в соответствующей документации.
3.7.11. Травление печатных плат
Оборудование, с помощью которого можно нанести рисунок на печатную плату, довольно разнообразно. Достаточно эффективные установки для травления сравнительно дешевы. Удобны, например, камеры вертикального типа с перемешиванием раствора при помощи пузырьков воздуха и с нагревателями для аквариумов. Такие камеры экономно расходуют хлорное железо, их удобно чистить.
3.7.12. Изготовление фотошаблона
Любителям доступны два варианта технологии изготовления печатной платы. При первом слой краски наносится непосредственно на фольгированную поверхность. Для получения нужного рисунка незакрашенные участки фольги удаляются с помощью травления в хлорном железе. При втором методе используется техника фотолитографии: сначала необходимо изготовить фотошаблон, качество которого определяет окончательный результат. Современные компьютерные технологии позволяют существенно упростить этот этап. Существующие на сегодняшний день принтеры (струйные и лазерные) обеспечивают великолепное разрешение при печати на различных носителях.
Любитель, который занимается проектированием плат от случая к случаю, может обойтись и без дорогостоящего специализированного программного обеспечения. Рисунки нужного качества можно выполнить с помощью более простых и доступных программ. Они обеспечивают черчение по сетке с заданным шагом, создание нужных элементов (контактных площадок и др.), их соединение между собой, а также функции вращения и зеркального отображения элементов рисунка. Печать, как правило, выполняется на специальной прозрачной пленке. Опыт показывает, что плотность печати на таком фотошаблоне обычно недостаточно высока. В этом случае, используя созданный чертеж, можно изготовить негатив на фотопленке, который легко экспонируется и проявляется (рис. 3.15).
Рис. 3.15. Экспонирование фотопленки
3.7.13. Перемычки на печатной плате
Радиоаппаратура массового производства (видеомагнитофоны, проигрыватели лазерных дисков или магнитных кассет и т. д.) обычно оснащена односторонними печатными платами, изготовленными из гетинакса, что существенно сокращает затраты на производство. Этот устаревший тип печатной платы часто совмещается со сложными современными компонентами, имеющими выводы с шагом 1,27 мм. В подобных схемах обычно используется большое число перемычек.
Если в плате должны быть перемычки, при ее проектировании следует соблюдать несколько простых правил. Во-первых, перемычки всегда следует располагать параллельно одной из сторон платы, даже если это приведет к удлинению проводящих дорожек. Во-вторых, если две соединяемые точки слишком удалены друг от друга, лучше использовать несколько коротких перемычек, чем одну длинную (рис. 3.16а).
Рис. 3.16. Установка перемычек на печатной плате
В результате удастся получить плату более эстетичного вида; кроме того, изготовить очень длинную прямую перемычку довольно сложно. Наконец, стоит попытаться сгруппировать вместе несколько перемычек, придавая им одинаковые длины, даже если для этого придется изменить трассы дорожек (рис. 3.16б). Следует сохранять отрезки проволоки, образующиеся при укорачивании выводов компонентов, они могут пригодиться для изготовления перемычек.
3.7.14. Распиливание платы с нанесенным рисунком
При наличии хорошей пилки с мелким зубом не составит большого труда распилить перед травлением стеклотекстолитовую плату, на которую нанесен нужный рисунок. Следует прочертить линию по слою металлизации и пилить именно с этой стороны. Так легче избежать повреждения тонкого слоя краски. При распиливании также желательно подложить под заготовку платы кусок ткани, чтобы предохранить сторону, где будут размещаться компоненты, от появления царапин.
3.8.1. Формирование батареи аккумуляторов
Радиоуправляемые модели и другие электронные устройства часто получают питание от аккумуляторной батареи напряжением 7,2 или 9,6 В. Такой блок состоит из 6 или 8 элементов по 1,2 В, соединенных последовательно и помещенных в специальный корпус. При отсутствии подходящего корпуса его упрощенный вариант легко изготовить из отрезка велосипедной камеры, в который плотно вставлены спаянные друг с другом элементы (рис. 3.17). Хотя внешний вид такой конструкции оставляет желать лучшего, она не требует практически никаких расходов и вполне пригодна как временная мера.
Рис. 3.17. Батарея аккумуляторов
3.8.2. Соединительный элемент для батарейки 9 В
Малогабаритная девятивольтовая батарейка (типа «Крона») широко используется для питания портативных электронных устройств с незначительным потреблением энергии. Она подключается при помощи специального разъема. Прежде чем выбрасывать отслужившую батарейку, снимите с нее верхнюю пластину. Припаяйте к контактам пластины два провода, аккуратно изолируйте места пайки — и вы получите готовый соединительный элемент, который может пригодиться в будущем.
3.9.1. Выбор корпуса
Выбор корпуса для разрабатываемого устройства диктуется размерами последнего, назначением, требованиями эстетики, стоимостью и, наконец, наличием нужной модели в каталогах изготовителей или поставщиков. Если устройство выполняется согласно рекомендациям, почерпнутым из специальной литературы, можно довериться выбору автора. В противном случае стоит, оставив в стороне эстетическую сторону вопроса, сделать временный корпус из оргалита по размерам, указанным в каталоге. Это даст более точные представления о законченности схемы, ее внешнем виде и о свободном пространстве в корпусе. В дальнейшем будет легче внести нужные изменения.
3.9.2. Экранирование устройств
Иногда нужно обеспечить качественное экранирование устройства или его узла, чувствительного к наводкам (например, предусилителя приемника ИК излучения). Проблема решается довольно просто, если корпус устройства выполнен из металла и его можно заземлить (следует помнить о возможности появления ненулевого потенциала на гнездах соединителей и др.). В противном случае можно спаять экранирующий корпус из фольгированного стеклотекстолита или гетинакса (рис. 3.18а). Вскрывать такой корпус довольно сложно, поэтому размещаемый в нем узел следует заранее тщательно проверить.
Для небольшой сборки корпус можно изготовить из отрезка медной трубы, которая с одного конца запаивается обрезком фольгированного стеклотекстолита, а с другой закрывается заглушкой (рис. 3.18б).
Рис. 3.18. Варианты экранов из фольгированного стеклотекстолита (а) и отрезка медной трубы (б)
3.9.3. Крепление печатных плат
Как правило, на печатной плате имеется нескольких крепежных отверстий. Впоследствии соответствующие отверстия необходимо разметить на дне корпуса или на другой несущей поверхности. Нередко вместо точной разметки осей отверстий предпочитают брать печатную плату и размечать места сверления по ней или прямо сверлить отверстия в корпусе сквозь отверстия в плате. Хотя такой подход ускоряет решение задачи, точность разметки падает. Случается, что, когда расставлены крепежные стойки, печатную плату поставить на место уже невозможно. Чтобы избежать подобной ситуации, нужно вначале просверлить печатную плату и корпус сверлом диаметром 3 мм, а затем расширить отверстия в плате до 3,2 или 3,5 мм. Это облегчит сборку, а качество практически не пострадает.
3.9.4. Стойка для крепления платы
Для крепления печатной платы на некотором расстоянии от корпуса и от других плат используются стойки из различных материалов. Если под рукой нет стоек подходящего размера, можно воспользоваться длинными винтами диаметром 3 мм (такие винты обычно наиболее удобны) с гайками для крепления плат на нужном расстоянии от корпуса (рис. 3.19). Со стороны металлизации печатной платы лучше использовать гайки из нейлона (или подложить под металлическую гайку изолирующую шайбу), чтобы изолировать винты от дорожек, проходящих вблизи крепежных отверстий.
Рис. 3.19. Стойка для крепления платы
3.9.5. Оформление лицевой панели
При оформлении лицевой панели современных приборов теперь уже не используют выступающие кнопки и поворотные переключатели, которые крепились на алюминиевом листе с надписями, нанесенными черной краской. Предпочтение отдается плоским поверхностям, за которые не выступают компоненты, служащие для управления и индикации (рис. 3.20). Эти компоненты размещаются группами в соответствии с выполняемыми функциями.
Рис. 3.20. Вариант оформления лицевой панели
Панель обычно выполняется из листового металла или пластмассы и имеет светлый фон с разноцветными надписями. Изготовление подобных панелей существенно облегчается при использовании современных цветных принтеров. Печать на прозрачных листах, которые используются для проекторов, позволяет быстро и качественно изготовить рисунок панели с необходимыми надписями. Другой способ изготовления рисунка — выполнение цветной ксерокопии с бумажного оригинала на прозрачную пленку. Пленку можно наложить на непрозрачную основу, в которой сделаны отверстия для индикаторов. Пленку с рисунком имеет смысл закрыть сверху прозрачной самоклеющейся пленкой, а все элементы закрепить по краям скотчем.
Печатная плата с индикаторами и сенсорными кнопками должна располагаться непосредственно за лицевой панелью. Для ее крепления используются винты с потайными головками, утопленными в панель под пленкой с рисунком. Монтаж компонентов следует выполнять после временного прикрепления печатной платы к лицевой панели и тщательной разметки необходимых отверстий. Размеры отверстий в местах установки кнопок должны выбираться с запасом. Желательно не поднимать компоненты над платой и располагать ее так, чтобы расстояние до лицевой панели определялось высотой кнопки.
Некоторые элементы, занимающие много места (например, кварцевые генераторы), можно разместить в «лежачем» положении или с противоположной стороны платы.
Необходимо определить способы монтажа до выполнения рисунка печатной платы. Рядом с каждой кнопкой следует расположить по крайней мере одну опору, чтобы плата не деформировалась при нажатии.
3.9.6. Сетка для громкоговорителя
Установка громкоговорителя за лицевой панелью и обеспечение его нормального звучания — довольно сложная задача. Выполнить ее можно двумя способами: либо просверлить большое число отверстий, расположив их, например, в форме звезды, либо сделать одно большое отверстие и закрыть его сеткой. Первое решение ухудшает внешний вид громкоговорителя, особенно если хотя бы одно отверстие расположено не на своем месте. Во втором случае сверление не требует высокой точности, поскольку окончательную подгонку отверстия можно выполнить с помощью напильника.
Сложнее приобрести или изготовить сетку, которая нужна для завершения конструкции и для защиты мембраны громкоговорителя. Есть простое и экономное решение задачи: можно использовать макетную плату из гетинакса, в которой половину отверстий в шахматном порядке расширяют с помощью сверла диаметром 2,5 или 3 мм (рис. 3.21). После удаления заусенцев сетку следует покрасить черной матовой или блестящей краской.
Рис. 3.21. Вариант сетки для динамика
3.9.7. Укорачивание корпуса прибора
При сборке портативного устройства, размещаемого в каркасе небольшой толщины, нередко возникает проблема монтажа полупроводникового прибора, имеющего значительную высоту корпуса, когда из-за нехватки места его невозможно разместить в горизонтальном положении. Это относится, например, к транзисторам в корпусе ТО220, которые встречаются чаще, чем приборы в небольшом корпусе (ТО92). В то же время в малогабаритных устройствах с питанием от батарейки рассеиваемая мощность обычно невелика. В таком случае вполне допустимо аккуратно отпилить верхнюю часть корпуса с отверстием (рис. 3.22) или удалить ее с помощью кусачек.
Рис. 3.22. Укорачивание корпуса ТО220
3.9.8. Сверление отверстий в печатной плате
Отверстия в печатных платах для монтажа большинства компонентов должны иметь диаметр 0,8 мм, для интегральных схем — 0,6 мм. Поскольку стеклотекстолит является сравнительно прочным материалом, сверлить его довольно сложно.
Существует два типа сверл: стальные и из карбида вольфрама. Первые дешевле, но срок их службы ограничен. Вторые стоят в несколько раз дороже и позволяют проделать большое количество отверстий, однако при боковых нагрузках легко ломаются. Имеет смысл приобрести два набора стальных сверл: диаметром 0,6 и 0,8 мм. Сначала сверлом 0,6 мм сверлят все отверстия. На следующем этапе нужные отверстия расширяют сверлом диаметром 0,8 мм. При этом инструмент меньше изнашивается и служит дольше.
Использование упрощенного варианта сверлильного станка (довольно дешевого) в виде штатива с приводом, обеспечивающим вертикальную подачу сверла, окажет неоценимую помощь в работе и обеспечит высокое качество сверления. В таком варианте сверло не испытывает боковых нагрузок, что особенно важно для сверл из карбида вольфрама.
Знатоки электроники не всегда являются специалистами по механической обработке, поэтому полезно привести простое правило сверления отверстий в таких материалах, как листовое железо или стеклотекстолит. Сначала следует просверлить отверстия меньшего размера. Например, чтобы просверлить отверстие диаметром 6 мм, следует начать со сверла диаметром 2–3 мм. Чем больше конечный диаметр, тем больше потребуется промежуточных сверлений. Это обеспечивает получение отверстий точного размера круглой формы и легкое выполнение операции без повышенного износа сверл. В любом случае отверстие необходимо предварительно наметить с помощью кернера.
3.9.10. Сверление отверстий большого диаметра
Для увеличения диаметра отверстий можно применять специальные фрезы или развертки конической формы. Они бывают различных размеров и могут приводиться во вращение как с помощью дрели, так и вручную. Любители широко используют специальное приспособление («балеринку») для выполнения больших отверстий в панелях из пластмассы или алюминия. «Балеринка» содержит ось с втулкой и поперечную планку с закрепленным на конце резцом. Перемещая планку и фиксируя ее во втулке, можно в широких пределах изменять расстояние резца от оси, определяющее диаметр вырезаемого отверстия. Таким же образом получают отверстия любого нужного размера для монтажа электрических соединительных элементов, громкоговорителей и т. д. Обычно затраты на приобретение или изготовление такого инструмента быстро окупаются. Следует помнить, что пластмассы при механической обработке могут плавиться, поэтому нужно применять дрель или сверлильный станок с малой скоростью вращения.