Генная терапия

В эпоху Второй Биотической Революции они проявили максимализм и оптимизм, типичный в истории науки. Подобные надежды возлагали на каждую эпохальную технологию… Идеалы здоровья, гармонии, духовно-телесной красоты широко воплощались в жизнь; конституции гарантировали каждому право обладания наиболее ценными психосоматическими свойствами. Очень скоро любые врожденные деформации и увечья, уродство и глупость стали не более чем пережитками.

Станислав Лем. Звездные дневники Ийона Тихого

— Ликвидация генетических дефектов возможна

— Вирусно-генетические пилюли

— ДНК в жировых шубках

— Возможны ли инъекции генов?

Причины — в генах

Современное содержание термина «терапия» давно не соответствует значению древнегреческого слова терапейя — ухаживание, уход. Терапевтическое вмешательство в наши дни предполагает поиск и ликвидацию причин заболевания. За последние несколько столетий медицина сделала в этом направлении решающий рывок от носового платка как средства для ликвидации последствий простуды до вакцин и производимого биотехнологическим путем интерферона для уничтожения ее истинных виновников — вирусов гриппа. В начале двадцать первого века мы стоим на пороге новой эры в медицине, когда станет возможным эффективно лечить не только приобретаемые, но и врожденные недуги такие как фиброз легких, мышечную дистрофию, приводящую к раннему склерозу семейную гиперхолестеролемию, серповидно-клеточную анемию, гемофилию и наследственный диабет. Речь идет о разработке и внедрении в практику методов генной терапии, способной корректировать, а в идеале и полностью ликвидировать дефекты в молекулах дезоксирибонуклеиновой кислоты (ДНК), определяющих все наследственные свойства организмов.

Именно такие дефекты, кстати, являются причиной и ненаследственных раковых заболеваний. В результате мутаций, которые могут быть вызваны повышенными дозами радиации, избытком ультрафиолета или действием особых канцерогенных веществ, в ДНК клетки возникают те или иные повреждения. Если эти участки (гены) кодируют важные для жизнедеятельности клетки белки, последствия такого повреждения могут быть драматическими. В лучшем случае клетка окажется неспособной выполнять необходимую работу, а в худшем — начнет при этом еще и бесконтрольно размножаться, что послужит началом образования опухоли. Составляющие ее клетки будут нести какой-либо поврежденный мутантный ген. В остальных же к метках тела этот ген будет работать нормально. В случае врожденных, теистических заболеваний все клетки тела, включая и половые несут дефект в определенном гене, поскольку его копия была поручена от одного или даже обоих родителей еще при оплодотворении.


Классический пример врожденного генетического заболевания — фенилкетонурия. Повреждение одного единственного гена приводит к неспособности организма перерабатывать продукты разложения одной из 20 аминокислот — фенилаланина. В результате продукты ее распада накапливаются в избыточном количестве, что может принести в раннем возрасте к задержке умственного развития ребенка. До сих пор врачи предписывали больным с таким пороком определенную диезу, снижающую количество вредных метаболитов. В идеале же следует «вырезать» дефектный ген и «вставить» на его место нормальный, неповрежденный. На первый взгляд такая задача представляется абсолютно нереальной. Фенилкетонурия, как уже говорились, — заболевание врожденное, а это означает, что все клетки такого пациента, включая клетки кончика его носа, аппендицита и сердца, несут поврежденный ген. Общее же количество клеток взрослого человека оценивается в несколько десятков миллиардов, и каждая из них содержит десятки тысяч генов.

Умелые помощники

Ясно, что задача подобной глобальной генной коррекции — дело неблизкого будущего. Пока же биологи задаются целью поскромнее. Не вырезая дефектный ген, ввести нормальный хотя бы в некоторые клетки тела. Такая процедура уже в наши дни является объективной реальностью. Своеобразными почтовыми агентами, способными доставить миниатюрный генный груз по назначению, являются вирусы. Как известно, в процессе своего размножения они нападают на и вводят в них свою собственную ДНК, заставляя их таким образом производить новые вирусные частицы. Более того, группа ретровирусов этим не ограничивается. Ее ДНК проникает в ядро, где и встраивается в ДНК клетки-хозяина. Таким образом сама природа создала уникальный механизм, который можно использовать в генно-терапевтических целях. Для этого необходимо вставить нужный, «терапевтический» ген в геном вируса (эта процедура уже не представляет проблемы для молекулярных биологов) Затем надо ввести тем или иным способом нафаршированные нужными генами вирусы в тело человека и положиться далее на естественное течение процессов. Правда, хорошо бы при этом заранее вырезать некоторые гены вируса, чтобы препятствовать его собственному размножению в организме человека. Иначе, вместо терапевтического эффекта, пациент заработает какую-либо вирусную инфекцию. Достаточно сказать, что к группе ретровирусов относится печально известный ВИЧ, вызывающий у человека синдром приобретенного иммунодефицита (СПИД).

Разумеется, вирусы ВИЧ в качестве таких генно-терапевтических векторов пока никто использовать не собирается, а вот другие ретровирусы в лабораторных условиях уже с 80-х годов вполне успешно доносят нужные гены до соответствующих клеток-мишеней. Правда, и у столь умелых помощников, как ретровирусы, есть свои недостатки. Например, они не способны встраивать свело ДНК в неделящиеся клетки, а следовательно, нервные или мышечные клетки остаются пока недоступными для генной терапии, использующей ретровирусы в качестве векторов. Впрочем, бывают и подающие надежды исключения. Тот же спидоносный ВИЧ, например, вполне успешно атакует клетки мозга, а нейроны взрослого человека, как известно, не делятся. Следовательно, изучив в будущем причину такой способности, можно научить подобному трюку иные вирусы, которые уже используются в качестве генных носителей.


Молекулярно-генетическая «дрессировка» вирусов, способных работать в качестве генетических векторов, только начинается. В США такой вид терапии исследуется и практикуется менее 10 лет. Для разработки столь сложных новых методов лечения это ничтожный срок. И тем не менее определенные успехи уже налицо. Например, удается нащупать экспериментальные подходы, позволяющие принудить вирусы атаковать только определенные, нужные клетки.

Группа исследователей во главе с профессором педиатрии, директором программы генной терапии в Сан-Диего Теодором Фридманом сумела «выдрессировать» таким образом вирус, вызывающий у мышей рак крови — лейкемию. С поморью генно-инженерных методов белок оболочки этого вируса, ответственный за связывание с клетками мыши, был заменен на поверхностный белок вируса стоматита человека. Теперь «мышиный» вирус может атаковать эпителиальные клетки человека, способные акцептировать вирус герпеса. При этом точно известно, что для человека вирус мышиной лейкемии абсолютно безопасен, и, следовательно, он может быть использован в качестве вектора-носителя для доставки нужных генов при генной терапии.

Биологи из Калифорнийского университета в Сан-Франциско присоединили к этому мышиному вирусу один из гормонов человека. В результате вирус стал садиться на человеческие клетки, у которых есть рецепторы к данному гормону. Действуя подобным образом, можно заставить любые вирусы-векторы работать в качестве своеобразных почтовых голубей, способных доносить свой миниатюрный и бесценный генетический груз точно к нужным клеткам тела.

Липоплексы Фелгнера

Вирусы, даже соответствующим образом прирученные и измененные, представляю гея для многих исследователей либо слишком ненадежными, либо просто опасными соратники в деле осуществления генно-терапевтических хитростей. Достаточно сказать, что встраивая свою ДНК в ядро клетки-хозяина, они могут случайным братом разрывать важные для функционирования клетки гены. К тому же, практически все вирусы распознает иммунная система пациента. Ясно, что атаки с ее стороны могут свести на нет все предварительные ухищрения молекулярных биологов, тщательно готовивших вирусно-генетическую «пилюлю». Не удивительно поэтому, что некоторые исследователи уже довольно давно пытаются вводить ДНК в клетки без помощи вирусов.

Еще в 50-х годах XX века Джон Холланд в Калифорнийском университете показал, что клетки могут поглощать ДНК, выделенную из вирусов и экспрессировать затем некоторые вирусные белки. Следовательно, такой трюк в принципе возможен. Единственное препятствие к совершенствованию подобной процедуры биологи видели в следующем. Молекула ДНК в растворе несет на себе отрицательный заряд. Внешние мембраны большинства клеток также заряжены отрицательно. Следовательно, по законам электростатики ДНК должна отталкиваться от клеточных мембран. Раз так, то для повышения проходимости ДНК через мембраны к этой макромолекуле надо пристегнуть положительно заряженный довесок. Исследователи так и стали поступать, добавляя к подготовленным для введения фрагментам ДНК положительно заряженные фосфат кальция или органический полимер декстран.

Результаты подобных ухищрений радовали, ДНК бодро лезла в клетки, и норой даже, к радости ученых, самостоятельно встраивалась в хромосомы клеток-мишеней. Таким образом, например, еще на заре разработки первых генно-терапевтических методик в клетки человека был введен ген тимидинкиназы, выделенный из вируса герпеса.


В 70-х годах XX века молекулярные биологи научились встраивать нужные гены в небольшие кольцевые молекулы ДНК, обнаруженные у бактерий — так называемые плазмиды. Эти колечки самой природой были устроены так, что могли очень легко присоединяться к основной нити ДНК бактерий или же внедряться в ДНК хромосом высших организмов. С разработкой плазмидной технологии дело введения нужных генов в культивируемые вне организма клетки высших животных и человека было поставлено на поток. Одним из пионеров применения подобных методик был Поль Берг из Стэнфордского университета. Совместно с Деметриосом Пападопулосом ему удавалось помещать плазмиды в сферические жировые оболочки — так называемые липосомы (греч. lipos — жир, soma — тело). При этом составляющие их липидные молекулы были практически такими же, как и в мембранах клеток. В результате липосомы могли сливаться с мембранами клеток-мишеней, вываливая внутрь свое плазмидное содержимое. Аналогичные методики введения генов в липосомной упаковке разрабатывал и Клод Николау из Гарвардской медицинской школы.

В принципе, ничего особо сложного в такой технологии не было. Дело в том, что липосомы образуются спонтанно в суспензии липидов, что еще в 60-е годы было показано Алеком Бенгхемом, работавшим в то время в Кембридже. Вы сами можете легко в этом убедиться, хорошенько встряхнув наполненную водой бутылку, которой до того было налито растительное масло. Конечно, образовавшиеся в воде капли жира не крошечные липосомы, но принцип их появления тот же. Объяснить этот феномен несложно. Молекулы липидов похожи на змей о двух хвостах — они состоят из несущей заряд головки и двух незаряженных длинных углеродных цепочек. Головки гидрофильны — то есть смачивают водой, а хвосты гидрофобны — отталкивают от себя воду. Именно поэтому в водных растворах молекулы жира образуют капли, стенки которых составлены из двух слоев липидов, обращенных друг к другу гидрофобными хвостами (а куда их еще девать?). Полю Бергу было достаточно поместить в водный раствор липиды, из которых состоят мембраны клеток, добавив нужные отрезки ДНК, затем хорошенько потрясти (не вручную, конечно) получившуюся смесь, и липосомы с ДНК-овой начинкой появлялись сами собой!

У новой методики был только один недостаток — липосомы оказывались слишком маленькими для крупных плазмид. Размер липидных миникапель колеблется от 1/10 до 1/25 микрона, в то время как большие плазмиды достигают в длину двух микрон. Устранить это препятствие решился Филип Фелгнер, работавший в Сан Диего (Калифорния). Он создал модифицированные липиды, несущие на своем гидрофильной головке положительный заряд. В результате полученные молекулы легко взаимодействовали с отрицательно заряженными молекулами ДНК, одевая их в своеобразную липидную шубку. Более того, обволакиваемые жирком ДНК спонтанно соединялись при этом в группы, которые, в конце концов, оказывались внутри мембраноподобной оболочки. В результате возникали образования несколько более сложные, чем липосомы. Фелгнер назвал свое детище липоплексами и, со свойственным американцам практицизмом, наладил коммерческое производство модифицированных липидов.

Дело того стоило, поскольку именно с помощью липоплексов Фелгнера в клетки опухолей человека удалось ввести ген HLA-B7, который кодирует белок, помогающий иммунной системе распознавать раковые клетки с такой меткой и уничтожать их. Подобная процедура была произведена на 60 пациентах со злокачественными меланомами (рак кожи), и в трети случаев происходило уменьшение и даже рассасывание опухолей! Положительные эффекты липоплексных инъекций ДНК с геном HLA-B7 ожидаются также в случае неоперабельных раковых опухолей кишечника, почек и молочных желез. В виде аэрозолей липоплексы с «терапевтической» ДНК можно также вводить непосредственно в легкие в случае врожденных фиброзных заболеваний.

Следующий шаг, который предполагает предпринять Филип Фелгнер и его коллеги, — присоединить к поверхности его любимых липоплексов белки, способные специфически связываться с метками на поверхности определенных клеток. Если такой прием удастся, липоплексы начнут напоминать вирусы, которые поражают только определенные клетки-мишени.

Голая ДНК

В процессе гонки за новыми сенсационными результатами генной терапии, исследователи, бережно паковавшие ДНК то в ретровирусы, то в липосомы, то в липоплексы, несколько подзабыли давнишние результаты Джона Холланда, доказавшего, что и «голая» ДНК (nacked DNA) может проникать в клетки сама по себе. Этот феномен неожиданно дал о себе знать, когда сотрудник Фелгнера Роберт Малоун исследовал различные варианты искусственно полученных липидов в надежде выбрать наиболее надежный вариант для создания липоплексов. В качестве контроля в своих опытах он использовал голую ДНК без каких-либо добавок. К его удивлению инъекции такой ДНК непосредственно в мышцы лабораторных животных приводили к появлению там белков, которые эта ДНК кодировала.

Отрезки ДНК являются слишком огромными молекулами, чтобы беспрепятственно проникать сквозь клеточную мембрану как это делают молекулы спирта или небольшие ионы. Хотя механизм захвата клеткой голой ДНК до сих пор остается непонятным, это не помешало биологам немедленно заняться исследованиями новой возможности вводить ДНК в клетки вообще без всяких лишних методических ухищрений. Например, было показано, что инъекции в мышиные мышцы плазмид, содержащих ген, кодирующий гормон эритропоэтин, значительно стимулирует у этим грызунов процесс кроветворения. Возможно, такая технология в применении к человеку окажется дешевле введения самого эритроноэтина (что порой практикуется в определенных медицинских случаях).

Не исключено, что методика введения чистой ДНК послужит для создания в самом ближайшем будущем широкого спектра принципиально нового поколения вакцин. При классической вакцинации в организм вводятся убитые вирусы, бактерии или же отдельные их белки, что позволяет иммунной системе заранее познакомиться с возможными интервентами и приготовиться к отражению их атаки в будущем. В случае ДНК-вакцин пациент будет получат не сам белок, а лишь зашифрованную в плазмидной ДНК информацию о нем.


Такой метод не фантастика, а уже состоявшаяся реальность. Например сотрудница Филипа Фелгнера Сюзан Паркер вводила мышам плазмиды с генами вируса гриппа. Затем таким мышам давали летальную дозу вирусов, от которой контрольные длиннохвостые пациенты неукоснительно дохли. Опытные же грызуны благополучно выживали. Более того. Введение мышам плазмиды с геном белка оболочки вируса иммунодефицита человека (ВИЧ) стимулирует у них иммунитет и образование соответствующих антител. В лабораторных экспериментах мышиные Т-лимфоциты атаковали клетки с белками ВИЧ на поверхности. Разумеется, результаты подобных опытов нельзя впрямую переносить на человека, но возможность получения таким образом вакцины против СПИДа в перспективе проглядывает вполне отчетливо. Возможности нового управления в иммунологии столь заманчивы, что всемирно известная биохимическая компания Merck уже приступила к клиническим испытаниям для создания ДНК-вакцин против герпеса, малярии и СПИДа. На очереди туберкулез, папиллома, гепатит, борьба с хламидиями…

Приоритетные направления

Из всего выше сказанного ясно, что у исследователей в руках существует уже достаточно разнообразных методов введения ДНК в клетки человека. На каких же приоритетных направлениях генной терапии они используются в первую очередь? На первом месте стоят пока не врожденные заболевания, а раковые опухоли. Только в 1997 г. в США было зарегистрировано 1 миллион 380 тысяч новых случаев рака. Не удивительно поэтому, что половина всех клинических исследований, проводящихся с применением генной терапии, направлена на борьбу с онкологическими заболеваниями.


Нередко иммунная система человека не в состоянии идентифицировать возникающие раковые клетки как чужеродные и, следовательно, подлежащие немедленному уничтожению. Эффективным приемом противоопухолевой терапии может быть «привлечение внимания» лимфоцитов и макрофагов к таким трансформированным онкогенным клеткам. Для этого их выделяют у пациента и вводят в них ген интерлейкина — вещества, стимулирующего активность клеток иммунной системы. Вместе с ним можно также «вставить» в раковую клетку ген так называемого фактора GMCSF — вещества, которое вызывает повышенное внимание макрофагов и гранулоцитов. Макрофаги же чаще всего являются клетками, которые первыми «докладывают» иммунной системе о появлении в организме непрошенных интервентов. Далее онкогенные клетки с введенными в них генами доставляют на место. В результате иммунная система начинает распознавать их и уничтожать, заодно расправляясь и с их опухолеродными соседями. Более того, по данным группы Майкла Блезе (клиника генной терапии национального института исследований генома человека), занимавшегося подобными экспериментами, активированные таким образом лимфоциты начинают циркулировать с током крови по всему телу, нападая и на иные ненормальные клетки.


Помочь иммунной системе человека более тщательно отслеживать и убивать клетки опухолей можно иным способом. Для этого раковые клетки человека вводят мышам. Лабораторные грызуны прекрасно их распознают и образуют соответствующие антитела. К сожалению, непосредственно мышиные противораковые антитела вводить человеку бесполезно — они будут расценены иммунной системой как чужеродные белки и быстро уничтожены. Зато с помощью методов генной терапии можно проделать вот какой трюк: выделить мышиный ген, кодирующий антиопухолевое антитело и наиболее важную его часть «пришить» к гену рецепторов человеческих лимфоцитов, ответственных за поиск и уничтожение раковых клеток. После такой генно-терапевтической помощи лимфоциты человека начинают поиск потенциально опасных клеток не в пример тщательнее контрольных.


Как уже говорилось, раковые клетки возникают в результате необратимого повреждения ДНК. Существует специальный механизм, стопорящий деление поврежденных клеток. Такая блокировка (биологи говорят «супрессия») находится под контролем гена р53. Он не позволяет клетке приступить к очередному делению до тех пор, пока все повреждения в ДНК не будут восстановлены. Если же восстановить ее целостность по каким-либо причинам не удается, в клетке включается механизм запрограммированной гибели (апоптоз), и она совершает самоубийство. Ясно, что мутации самого гена р53 очень часто приводят к раку, поскольку поврежденные клетки уже ничто не останавливает. Так вот, введение этого гена непосредственно в уже возникшую опухоль или даже просто в кровяное русло часто приводит к заметным терапевтическим эффектам!


Другие возможные подходы на пути противораковой генной терапии состоят в следующем. При образовании некоторых опухолей составляющие их клетки начинают демонстрировать на своей поверхности специфические белки. Так ведут себя, к примеру, клетки меланом — рака кожи. Следовательно, можно заняться так называемой превентивной иммунизацией — заранее ввести пациенту голую ДНК с генами, кодирующими эти белки. Наконец, разрабатывается так называемая «суицидная» генная терапия, когда в раковые клетки вводят гены, делающие их суперчувствительными к определенным веществам. В нашем рассказе уже упоминался выделенный из вируса герпеса ген тимидинкиназы. Его недавно удалось ввести в раковые клетки мозга человека. Тимидинкиназа превращает нетоксичное для человека вещество ганцикловир в способное поражать делящиеся раковые клетки соединение. Следовательно, все клетки опухоли, получившие такой ген, будут неизбежно уничтожены. Более того, даже из одной «прооперированной» генно-терапевтическим способом раковой клетки тимидинкиназа может мигрировать по межклеточным каналам в соседние, обделенные этим геном раковые клетки.


Подобные результаты впечатляют. Правда, надо отдавать себе отчет, что многие из описанных экспериментов находятся на стадии лишь лабораторных разработок. Многие пациенты, подвергающиеся таким все же еще не слишком отработанным методикам лечения, находятся на терминальных стадиях рака (им терять уже нечего), поэтому возникает проблема адекватного контроля. Подбор же добровольцев для его осуществления — задача сама по себе непростая.


Параллельно с антираковыми разработками, основанными на генно-терапевтических методиках, исследователи занимаются попытками корректировать и различные другие заболевания, включая амиотрофический латеральный склероз и поражающие нервную систему болезни Паркинсона и Альцгеймера. На этом фоне идея пилюли от старческого склероза или досадного дрожания рук уже не кажется полной фантастикой.

Евгеника будущего

Однако как все же быть с врожденными генетическими заболеваниями, когда неисправный ген работает в каждой клетке тела? Безусловно, коррекция всех таких генов в геле пациента представляется делом далекого будущего. Однако уже в наши дни может быть разработана и применена методика, предотвращающая появление наследственных аномалий в случаях, когда с точки зрения классической генетики такое событие кажется неизбежном. Действительно, представим себе ситуацию, когда оба родителя имеют по единственной копии какого-либо дефектного гена. Совершенно очевидно, что любой их ребенок также будет обладать данным дефектным геном, поскольку нормальной копии от родителей он получить не может.


Уже в первой половине XX века некоторые генетики задумывались над подобными проблемами. Для обозначения области науки, изучающей возможности улучшения генетической природы человека был придуман даже специальный термин — евгеника (от древнегреческого «эу» — хороший, подлинный, настоящий). До появления генно-терапевтических методик, по сути, единственной действенной рекомендацией, которую могли предложить евгенисты, был подбор супружеских пар, основанный на научных рекомендациях. К сожалению, практика показывает, что в столь деликатной сфере человеческих отношений доводы разума часто оказываются далеко не на первом месте. Теперь же, ни в коем случае не оказывая давление на свободное волеизъявление партнеров, биологи могут подкорректировать результаты их взаимного выбора.


Процедура пренатальной генной коррекции в теории выглядит следующим образом. Оплодотворение выделенной и тела будущей матери яйцеклетки происходит in vitro — вне организма В результате нескольких делений образуется группа клеток будущего зародыша. В них тем или иным способом вводят нормальный ген. Определив, в какие именно клетки он успешно внедрился, отбирают одну подобную «прооперированную» клетку и вводят ее в матку женщины, предварительно соответствующим образом гормонально подготовленную для успешного проведения подобной процедуры. В результате на свет появится ребенок, все клетки которого будут нести копию нормального гена, отсутствовавшего у его родителей.

На пути практической реализации описанной схемы без сомнения возникнет множество трудностей. Главная из них состоит в том, что уже после нескольких делений клетки зародыша теряют свой универсальный потенциал и не могут стать прародительницами нового зародыша. Такая возможность принципе существует, что доказывают успешные опыты по клонированию животных, но длится она очень недолго. Именно в этот промежуток времени биологам-евгенистам надо будет успеть проделать все свои генно-терапевтические процедуры. Однако если их удастся успешно осуществлять, человечество получит мощный метод ликвидации хотя бы части отрицательного генетического груза, который оно уже успело накопить в процессе борьбы с врожденными дефектами, которые в животном мире отсекаются жестокой рукой естественного отбора.

Загрузка...