Глава 2. Серверные хранилища данных


Изначально системы хранения данных разрабатывались для мэйнфреймов и большинство из них были основаны на закрытых, частных технологиях. Для мини-компьютеров были созданы такие стандарты, как SCSI. С появлением персональных компьютеров серверные стандарты (SCSI и IDE) получили широкое распространенйе.

В этой главе рассматриваются системы хранения данных, подключенные к серверу (Direct Attached Storage – DAS), т.е. устройства, подключенные непосредственно к компьютеру под управлением Windows NT. В главе 1 описан стек ввода-вывода Windows NT в контексте подсистемы хранений данных. В этой главе внимание уделяется разработке стека ввода-вывода подсистемы хранения данных Windows NT для улучшения поддержки новых устройств Fibre Channel и SCSI. Подобные устройства воспринимаются Windows NT как подключенные непосредственно к компьютеру.

2.1 Интерфейс SCSI

Аббревиатура SCSI расшифровывается как Small Computer System Interface (интерфейс для малых компьютеров), что на данный момент кажется нелогичным, поскольку устройства SCSI обычно подключены к высокопроизводительным серверам и являются наилучшим выбором для использования в качестве подсистемы хранения для многопроцессорных центров хранения данных. Стандарты SCSI утверждаются техническим комитетом Т10 (http://www.tlO. org), подразделением Международного комитета INCITS (InterNational Committee for Information Technology Standards), который, в свою очередь, работает под эгидой Национального института стандартизации США (American National Standards Institute – ANSI; http://www. ansi.org).


2.1.1 Стандарты

Шина SCSI изначально разрабатывалась в качестве параллельной архитектуры отправки данных по 8- или 16-разрядной шине. Существовали и последовательные версии архитектуры SCSI, например SSA (Serial Storage Architecture) и 1394. До определенного времени эти архитектуры (особенно SSA) разрабатывались отдельно и лишь позднее были включены в проект стандарта SCSI-3. Оба стандарта – как SSA, так и 1394 – практически не используются на рынке корпоративных подсистем хранения данных, однако достаточно широко распространены на рынке потребительских устройств.

За годы своего существования стандарты SCSI были значительно усовершенствованы, появилось множество версий, которые различаются следующими параметрами:

ширина шины данных;

быстродействие шины данных;

количество устройств, которые могут быть подключены к одной шине;

электрические и механические характеристики шины;

максимальная длина шины;

тип архитектуры шины – последовательная или параллельная. Хотя SCSI исторически ассоциируется с параллельными шинами, компьютерная индустрия активно движется в сторону последовательной архитектуры, и стандарты SCSI не являются исключением.

Обратите внимание: SCSI представляет собой не единый стандарт, а определенный набор стандартов. В одних стандартах заложены механические и электрические характеристики, в других – наборы команд, которые должны быть реализованы устройствами. Эти стандарты реализуются и в других устройствах, например Fibre Channel.

В табл. 2.1 приведены различные стандарты SCSI и их характеристики.

Таблица 2.1. Стандарты и характеристики SCSI

Окончание табл. 2.1


Более старые стандарты, например SCSI-1, сегодня считаются морально устаревшими. Последний стандарт, SCSI-3, на самом деле представляет собой не единую спецификацию, а целое семейство спецификаций, развитие которых продолжается. Таким образом, SCSI следует рассматривать в качестве стандарта, определяющего набор команд и других спецификаций, относящихся к физической реализации этого интерфейса. Очевидно, что определенный стандарт можно взять в качестве основы для реализации нового носителя. Примером может служить тенденция к реализации набора команд SCSI для Fibre Channel и SSA. На данный момент к самым популярным устройствам относятся Ultra SCSI и SCSI-3.


2.1.2 Функциональные возможности и характеристики

Важным параметром считается баланс между расстоянием от устройства до адаптера шины и количеством устройств SCSI, которые можно подключить к шине. Чем больше количество устройств, подключенных к шине, тем

короче должна быть шина. Меньшее количество устройств позволяет удлинить шину. Кроме того, максимальная длина шины зависит от ее электрических характеристик. Обратите внимание, что эти рассуждения касаются исключительно интерфейса SCSI. Новые реализации, например iSCSI (см. главу 8), в значительной степени отменяют старые ограничения на расстояние, поскольку могут передавать команды и результаты их выполнения на большие расстояния, используя транспортный протокол IP.ч

Устройства SCSI последовательно подключаются к контроллеру. Каждое устройство, подключенное к шине, получает уникальный идентификатор. Идентификаторы SCSI не назначаются произвольно, так как используются для определения относительного приоритета устройства при конкуренции за пропускную способность шины данных между устройствами.

Устройства SCSI обратно совместимы друг с другом, а некоторые даже могут работать в нескольких режимах SCSI. Но в работе более новых устройств под управлением более старого контроллера существуют свои проблемы, которые выходят за пределы тем, рассматриваемых в этой книге. Те, кого интересует описание этих проблем, могут обратиться к списку литературы, приведенному в конце книги.

Высокая производительность устройства хранения данных не гарантирует аналогичной производительности и достаточной пропускной способности сервера. При оценке сервера важно анализировать скорость и пропускную способность не только подсистемы хранения данных, но внутренних шин сервера. Большинство высокопроизводительных серверов используют одновременно несколько адаптеров SCSI, которые подключены к разным шинам PCI. При такой конфигурации шина PCI не станет «узким местом» в общей производительности системы.


2.1.3 Терминология и команды

Для проведения необходимых операций ввода-вывода одно устройство, подключенное к шине SCSI, будет работать как инициатор, а другое – как целевое устройство. Например, на сервере под управлением Windows NT контроллер SCSI будет инициатором, а жесткий диск или накопитель на магнитной ленте – целевым устройством.

Хотя подобное использование устройства кажется необычным, большинство адаптеров шины SCSI поддерживают обе роли (в зависимости от того, реализована ли подобная функций в прошивке адаптера шины). Контроллер iSCSI относится к устройствам, одновременно представляющим собой как целевое устройство, так и инициатор. Компьютер может быть целевым устройством при экспорте локальных дисков и инициатором при использовании дисков удаленного контроллера iSCSI.

Инициатор отправляет команду целевому устройству, которое выполняет запрошенные операции, отправляя по завершении работы соответствующий ответ. Целевое устройство SCSI остается пассивным до получения команды от инициатора. После получения команды целевое устройство принимает на себя управление шиной перед ответом на команду, например перед отправкой запрошенных данных. Инициатор и все остальные устройства на общей шине совместно определяют хозяина шины.

При загрузке сервера Windows NT контроллер SCSI, который часто называют контроллером шины (об этом речь идет далее), выдает соответствующую команду каждому подключенному к шине и обнаруженному устройству SCSI. Это команда Report LUNs, благодаря которой целевое устройство возвращает список номеров логических элементов, управляемых устройством. (Логические элементы описываются в разделе 2.5.)

Не менее важными являются и команды Reserve/Release. При наличии нескольких инициаторов одному из них может потребоваться исключительный доступ к целевому устройству. Хорошим примером может служить получение эксклюзивного доступа к накопителю на магнитной ленте. Если два инициатора будут поочередно записывать данные на магнитную ленту, последняя будет содержать бесполезную информацию. Команды Reserve и Release позволяют обеспечить управление доступом.

Существует два типа команд интерфейса SCSI Reserve и Release. Один называется непостоянным резервированием, поскольку сброс параметров целевого устройства приводит к аннулированию резервирования. Другой тип – постоянным резервированием, поскольку резервирование сохраняется и после сброса параметров целевого устройства. Сброс параметров может потребоваться, если устройство-инициатор столкнется с проблемами после операции резервирования. Еще одна команда (стороннее резервирование) позволяет инициатору зарезервировать целевое устройство для другого устройства. Отмена резервирований должна осуществляться устройством, выполнившим их ранее, или же устройством, на правах которого выполнялось стороннее резервирование.

Команда Extended Сору позволяет инициатору отправить целевому устройству SCSI команду на копирование данных между двумя наборами устройств SCSI. Устройства, между которыми копируются данные, могут (не обязательно) отличаться от устройства, которое получило и обрабатывает команду Extended Сору. Дочерняя команда Receive Copy Results собирает сведения о завершении выполнения команды Extended Сору. Полученный результат может использоваться для определения характера выявленных ошибок команды Extended Сору.

В стандарте SCSI-3 определено и множество дополнительных команд, которые включают в себя блочно-ориентированные и графические команды, а также команды модификатора.

Операционная система Windows NT требует от приложений использованиясквозного интерфейса SCSI, с помощью которого команды передаются устройствам SCSI. На самом деле интерфейс задействуется и для отправки команд устройствам Fibre Channel, которые поддерживают такой же набор команд SCSI. Приложения используют программный интерфейс DeviceloControl с параметром IoControlCode, равным IOCTL_SCSI_PASS_ THROUGH или IOCTL_SCSI_PASS_THROUGH_DIRECT. В первую очередь приложению требуется получить дескриптор файла для устройства SCSI посредством функции CreateFile. Начиная с Windows 2000, компания Microsoft усилила схему безопасности, требуя от приложений указывать тип доступа (чтение/запись) в параметрах функции CreateFile и позволяя только ограниченному количеству учетных записей осуществлять запись. Таким образом, функция CreateFile вернет сообщение об ошибке для всех пользователей, которым системный администратор не разрешил запись данных.

Хотя этот интерфейс вполне работоспособен, при детальном рассмотрении архитектура кажется не вполне целостной. С одной стороны, в операционной системе реализован принцип «владею всем, что вижу» по отношению к таким ресурсам, как жесткие диски. С другой стороны, Windows даже не воспринимает резервирования и освобождения устройства хранения данных прикладным приложением. В рамках более эффективной архитектуры приложение будет запрашивать у операционной системы разрешение на проведение необходимой операции, после чего система будет или отказывать, если запрос не может быть выполнен, или выполнять запрошенную операцию, возвращая приложению соответствующие служебные данные. Будет ли развитие Windows двигаться в этом направлении, можно только догадываться.

2.2 Интерфейсы IDE, EIDE и АТА

Устройства с интерфейсом IDE являются самыми распространенными устройствами хранения данных в мире персональных компьютеров, особенно в потребительском сегменте рынка. Аббревиатура IDE расшифровывается как Integrated Drive Electronics (встроенный интерфейс накопителей). В свою очередь, АТА означает AT Attached, где под AT подразумевается классическая модель компьютера IBM PC AT. Обе аббревиатуры указывают на один и тот же стандарт подключения жестких дисков. Основная идея этого интерфейса заключается в интеграции контроллера в жесткий диск, благодаря чему IDE и называется встроенным интерфейсом. В стандарте IDE/АТА описаны характеристики 16-разрядной шины.

Стандарт IDE/АТА, как и. SCSI, пережил несколько модификаций. В оригинальном стандарте описывалось использование режима программируемого ввода-вывода (programmed input/output – РЮ), в котором центральный процессор играет важную роль при каждой операции ввода-вывода данных. В более поздних стандартах перешли к использованию прямого доступа к памяти (direct memory access – DMA), при котором ввод-вывод данных выполняется без участия центрального процессора.

Кабель IDE/АТА поддерживает подключение двух накопителей. Один из них является ведущим (master), а второй – ведомым (slave). В любой момент времени только один из дисков может быть активен. Более новый стандарт EIDE (Extended IDE) поддерживает четыре накопителя, так как один контроллер EIDE выступает в роли двух контроллеров IDE. Многозадачная операционная система, например Windows NT, может использовать возможности контроллера EIDE для одновременной передачи двух команд ввода- вывода на два «канала» IDE.

Ниже описаны особенности каждого из стандартов АТА.

АТА-1 требует использования программируемого, режима ввода-вывода.

АТА-2 был представлен институтом ANSI в 1996 году. В нем описано использование быстрых режимов РЮ и допускается применение прямого доступа к памяти (DMA). Кроме того, стандарт АТА-2 позволяет использовать технологию Plug and Play с помощью команды идентификации накопителя, возвращающей информацию о структурных особенностях диска.

АТА-3 был представлен в 1997 году и может рассматриваться в качестве минимальной модернизации стандарта АТА-2 для повышения надежности в быстрых режимах передачи данных. Главной особенностью стандарта АТА-3 стала поддержка технологии самоконтроля, анализа и отчетности SMART, отвечающей за контроль состояния жестких дисков. Технология SMART поддерживается накопителями SCSI и IDE.

В ATA-4/ATAPI была введена поддержка таких новых устройств, как дисководы для компакт-дисков и накопители Jazz. Аббревитура ATAPI расшифровывается как AT Attachment Packet Interface. В этом стандарте также описана поддержка Ultra DMA, позволяющая передавать данные с удвоенной скоростью по сравнению с обычным режимом DMA.

Устройства АТА по-прежнему развиваются и постепенно сокращают отрыв в производительности и надежности от устройств SCSI, пытаясь удерживать свое преимущество в цене. При нынешнем увеличении надежности аппаратного обеспечения и появлении специализированного программного обеспечения (например, программных массивов RAID, которые рассматриваются в главе 9) интерфейс АТА со временем может сыграть более важную роль в промышленных системах хранения данных. Однако обсуждение подобных перспектив выходит за рамки данной книги.

2.3 Модель мини-драйвера IDE

В архитектуре Windows Server 2003 поддерживается новая модель мини- драйвера IDE, которая должна заменить существующую модель драйвера IDE. Новый драйвер порта, предоставляемый Microsoft, работает быстрее, обслуживает несколько каналов и позволяет отказаться от разделения канальных интерфейсов и интерфейсов управления. Новая модель драйвера предоставляет более широкие возможности поставщикам жестких дисков; например, драйвер мини-порта от поставщика может изменить значение тайм- аута запросов и выбрать режим (DMA или РЮ) для каждого конкретного запроса. Компания Microsoft считает, что в перспективе устройства АТА будут играть более важную роль, поэтому продолжает развивать модель драйвера АТА. Будем надеяться, что в новых изданиях этой книги появятся дополнительные подробности, которые станут известными в процессе развития новых моделей драйверов.

2.4 Развитие адаптеров шин (НВА)

Изначально такие устройства хранения данных, как жесткие диски и накопители на магнитной ленте, подключались непосредственно к серверу. Единицы хранения размещались непосредственно в сервере или внешних отсеках, подключаемых к серверу с помощью контроллера ввода-вывода. Последний представлял собой плату расширения или модуль системной платы. Со временем для описания контроллеров начал использоваться термин адаптер шины (host bus adapter – НВА, т.е. адаптер, который подключен к шине ввода-вы- вода).

На рис. 2.1 демонстрируется сервер с платой контроллера ввода-вывода и несколькими устройствами, подключенными к контроллеру по шине SCSI. Хранилище данных, подключенное к серверу, – это неплохой вариант для небольших изолированных локальных сетей (например, для локальных сетей определенного отдела компании), однако подобные решения крайне плохо масштабируются. К одной из очевидных проблем относится количество единиц хранения, которые могут быть использованы при таком подключении.

Рис. 2.1. Хранилище SCSI, подключенное к серверу

Рис. 2.2. Интеллектуальная подсистема хранения данных

Еще одна проблема – наличие лишь одной шины SCSI для выполнения всех операций ввода-вывода.

Следующим этапом в развитии индустрии хранения данных была разработка подсистем хранения с собственными контроллерами ввода-вывода (рис. 2.2).

Представленная на рис. 2.2 подсистема хранения данных обладает дополнительными функциональными возможностями, что привело к переосмыслению некоторых терминов. Система на рис. 2.1 имеет только один контроллер ввода-вывода, который подключен к серверу. Система на рис. 2.2 содержит два контроллера, что потенциально может привести к путанице при указании

контроллера. Если существуют также дополнительные подсистемы хранения данных с собственными контроллерами, все может стать еще более запутанным. В связи с этим и была принята терминология, в которой контроллер, подключенный к серверу, называется адаптером шины. Адаптер шины может обеспечивать подключение к шине SCSI, IDE или интерфейсу Fibre Channel.

2.5 Логические единицы хранения (LUN)

Единицы хранения, которые расположены в схеме, приведенной рис. 2.2, за контроллером подсистемы хранения, должны поддерживать определенный метод адресации. Эти единицы называются LUN (logical unit number). В контексте приложений хранения данных или Windows NT три отдельных идентификатора взаимодействуют друг с другом для уникального определения каждой LUN. Обратите внимание, что в литературе, посвященной стандарту SCSI, используется выражение «определение LUN для целевого устройства SCSI», однако я предпочитаю выражение «для идентификатора SCSI», поскольку устройство SCSI может быть как целевым, так и инициатором. Это различие станет еще более очевидным при распространении интерфейса iSCSI, где устройство SCSI может быть инициатором в одном случае и целевым устройством – в другом.

Команда SCSI отправляется устройству, которое уникально идентифицируется тремя параметрами.

Шина SCSI (адаптер шины может поддерживать несколько шин или на сервере Windows NT может быть установлено несколько адаптеров шин). Операционная система Windows NT поддерживает до восьми шин для одного адаптера шины.

Идентификатор устройства SCSI на шине. Операционная система Windows NT поддерживает до 128 идентификаторов SCSI для одной шины.

Идентификатор SCSI LUN. Операционная система Windows NT SP4 и более поздние версии Windows NT поддерживают до 254 идентификаторов LUN на один идентификатор SCSI. Иногда возможность поддержки такого большого количества идентификаторов LUN обозначается термином Large LUN support (расширенная поддержка LUN). Предыдущие версии Windows NT поддерживали до восьми идентификаторов LUN на один идентификатор SCSI. Стандарт SCSI-2 поддерживает до восьми LUN на идентификатор SCSI. В свою очередь, в стандарте SCSI-3 описана поддержка 64-разрядного значения, указывающего количество LUN на идентификатор SCSI, но конкретное количество зависит от типа устройства.

Поддержка такого большого количества единиц LUN (более восьми) зависит от драйвера адаптера шины, а также от устройств SCSI, которые должны обработать команду Report LUNs (SCSI). Более новые драйверы поддерживают по умолчанию более восьми LUN. Более старые драйверы могут вообще не поддерживать такой идентификатор, как LUN, или же потребуют изменений в системном реестре Windows NT. Операционная система Windows NT обнаруживает наличие таких устройств, отправляя команду Report LUNs на каждое устройство с идентификатором LUN, равным 0. Для активизации в Windows NT поддержки большого количества единиц LUN устройство должно правильно обрабатывать команду Report LUNs.

2.6 Драйвер Storport

В главе 1 рассматривается стек ввода-вывода Windows NT, в том числе один из важных его компонентов – драйвер SCSIPort (разработанный в Microsoft). Этот драйвер взаимодействует с драйвером мини-порта, создаваемым поставщиком конкретного устройства и предназначенным для обслуживания последнего. До выхода Windows Server 2003 устройства хранения данных различного типа, например более старые жесткие диски SCSI, новые устройства SCSI-3 и Fibre Channel, использовали специфичный для устройства драйвер мини-порта, который подключался к драйверу SCSIPort. Этот сценарий имел несколько недостатков.

В описываемой модели подразумевается, что устройства Fibre Channel имеют возможности, сопоставимые с аналогичными функциями устройств SCSI, что не имеет под собой реальной основы.

Драйвер SCSIPort использовал однопоточную модель, не поддерживая полнодуплексный режим. Это означает, что одни запросы не могли выполняться, пока в очереди находились другие запросы, и наоборот. При обслуживании прерывания драйвер мини-порта не мог принимать новые запросы и сообщать о завершении уже выполненного запроса. Использование Windows на многопроцессорных компьютерах делало эту проблему еще более актуальной.

Драйвер порта содержал информацию, которая не отправлялась драйверу мини-порта, что требовало от последнего самостоятельного сбора необходимых сведений с помощью нескольких запросов. В частности, это было характерно для работы со списками разборки/сборки[4].



Рис. 2.3. Драйвер Storport в иерархии драйверов Windows Server 2003


■ Не удовлетворенные таким положением вещей, поставщики устройств Fibre Channel решили проигнорировать драйвер SCSIPort (созданный компанией Microsoft) и реализовали комплексные драйверы (обеспечивающие возможности как драйвера порта, так и драйвера мини-порта) или собственные драйверы портов и мини-портов. Поскольку этот процесс был основан на инженерном анализе функций драйвера порта, полученные драйверы в лучшем случае работали с минимальным количеством проблем. Зачастую возникали ситуации, при которых два устройства от разных поставщиков не могли одновременно работать на компьютере под управлением Windows NT.

В Windows Server 2003 компания Microsoft представила новую модель драйвера с поддержкой драйвера порта Storport (рис. 2.3). Драйвер Storport предназначен для использования поставщиками более новых устройств SCSI-3 и Fibre Channel. Таким образом, Microsoft намерена постепенно прекратить поддержку драйвера SCSIPort, который, хотя и не удален из Windows, предназначен для использования только вместе с более старыми устройствами хранения данных.

На данном этапе поставщикам адаптеров шины предлагается создавать драйверы мини-портов, которые должны подключаться к драйверу Storport, а не к SCSIPort. Чтобы упростить процесс перехода, Microsoft сделала драйвер Storport обратно совместимым с моделью SCSIPort. Это значит, что поставщики, не желающие затрачивать время и силы, могут воспользоваться

некоторыми (но не всеми) преимуществами новой модели драйверов. Для максимального использования возможностей новой модели драйверов поставщикам требуется выполнить больше работы, чем обычная перекомпиляция и сборка с другой библиотекой.

Новая архитектура обеспечивает значительный прирост производительности, который достигается несколькими методами.

Новая модель драйверов поддерживает полнодуплексный режим, при котором новый запрос может быть помещен в очередь драйвера одновременно с выполнением операций ввода-вывода. Новая модель поддерживает использование прерываний для выполнения большего объема работы драйвером мини-порта, созданным поставщиком. Обратите внимание, что эта эффективность достигается за счет усложнения структуры драйвера мини-порта, так как от него требуется поддержка синхронизации. Драйверы мини-портов SCSIPort поддерживали только полудуплексный режим и работали не так эффективно, однако поддержка синхронизации не обеспечивалась (поскольку эта обязанность была возложена на драйвер порта).

Новая модель минимизирует количество вызовов между драйверами порта и мини-порта. Например, в старой модели драйвер мини-порта осуществлял несколько вызовов драйвера SCSIPort для получения списков разборки/сборки.

Кроме повышения быстродействия, модель Storport обеспечивает ряд Других преимуществ.

Модель Storport улучшает взаимодействие между драйверами порта и мини-порта. В модели SCSIPort драйверу порта не разрешалось сообщать о занятости устройства. В свою очередь, модель Storport позволяет драйверу мини-порта передавать драйверу Storport команды на приостановку и возобновление передачи данных, а также сообщать о занятости адаптера.

В новой архитектуре реализован сложный механизм управления ошибками. Драйвер SCSIPort просто пытался повторно инициировать шину, что требует немало ресурсов и нарушает стабильность работы системы. При соответствующей поддержке драйвера мини-порта от независимых поставщиков аппаратного обеспечения модель Storport позволяет аннулировать параметры конкретной логической единицы, устройства и только в крайнем случае – самой шины. Еще одним улучшением в механизме обработки ошибок является расширение списка ошибок, который поддерживается драйвером порта. Модель Storport позволяет обрабатывать сообщения об ошибках, которые выдают более новые устройства SCSI-3, в то время как драйвер SCSIPort маскировал такие ошибки в более старый тип ошибок, поддерживаемых драйвером.


Рис. 2.4. Работа с очередью запросов в модели Storport


Все новые возможности имеют минимальный шанс нарушить нормальную работу системы, гак как модель Storport обратно совместима с SCSIPort. Поставщики могут просто перекомпилировать и скомпоновать старый код с библиотекой драйвера Storport, (вместо библиотеки драйвера SCSIPort), не затрачивая усилий на перенос кода на другую платформу. Это позволит использовать новую модель, хотя и не предоставит всех преимуществ, доступных при полноценном переносе.

Новая архитектура предоставляет интерфейс, отменяющий необходимость создания «виртуального устройства» (ghost device). Модель SCSI не позволяет приложению запрашивать функции без монтирования модуля мини-порта. В свою очередь, модель Storport не требует создания виртуального устройства, поддерживая запрос функций даже без монтирования этого модуля.

Кроме всего прочего, в новой архитектуре улучшен интерфейс с целью обеспечить соответствие требованиям поставщиков систем хранения данных высокого уровня. Особенно это касается поставщиков систем RAID и Fibre Channel. Например, старая модель SCSIPort поддерживала ограниченный набор возможностей по управлению'очередью запросов. Новые устройства, в свою очередь, требуют расширенного управления очередью. Модель Storport поддерживает использование 254 запросов на каждую логическую единицу каждого адаптера. Максимальное количество запросов на адаптер ограничено только количеством логических единиц, поддерживаемых адаптером (рис. 2.4).

Еще одно преимущество иерархической структуры в модели Storport заключается в Етличии интерфейса управления для конфигурации и управления высокоуровневыми устройствами хранения данных. Этот интерфейс

основан на инструментарии управления Windows (Windows Management Instrumentation – WMI). Интерфейс используется другими элементами Windows, например интерфейсом управления для командной строки. Технология WMI рассматривается в главе 7. Интерфейс управления WMI поддерживает четыре различных класса WMI.

Класс адаптера шины. На компьютере может быть установлено несколько таких адаптеров и для каждого из них создается экземпляр такого класса.

Класс каналй. Каждый адаптер может иметь один или несколько каналов, которые соединяют адаптер с его физическими дисками.

Класс массива дисков. Каждый канал может иметь один или несколько массивов дисков или не иметь таковых вообще.

Класс физического диска. Каждый адаптер может иметь один или несколько подключенных физических дисков или не иметь таковых вообще.

2.7 Сложности практической реализации

В новой модели драйверов Storport оптимизированы функции ввода-вы- вода и общая производительность системы управления. Однако системный администратор и менеджеры по закупкам в информационных отделах компаний должны знать, что новая модель драйверов Storport доступна только в Windows Server 2003. Тем же, кто сделал ставку на платформу Windows, рекомендуется ознакомиться с планами поставщика оборудования по переходу к модели Storport и наравне с этим проанализировать поддержку устройств конкретного поставщика в Windows 2000, включая подробности реализации драйвера.

Особое внимание необходимо обратить на параметры пропускной способности системы при использовании модели драйверов SCSIPort (которая скоро станет устаревшей), если эта модель поддерживается поставщиком. Кроме того, стоит обратить внимание на наличие продукции поставщика, в которой вообще не используется модель драйверов SCSIPort. Следует проверить наличие сертификации и поддержки частного драйвера всеми заинтересованными сторонами. Наконец, нужно узнать о возможности «безболезненного» перехода с текущей технологии для Windows 2000 к модели драйверов Storport в Windows Server 2003.

Резюме

Стандарт SCSI развивается уже много лет и на данный момент превратился в группу стандартов. Стандарты SCSI значительно изменились в контексте

увеличения скорости передачи данных. Пользователям требуется компромисс между количеством устройств, которые подключены к шине, и длиной шины. Кроме того, в процессе развития стандартов SCSI возникли новые команды, например Extended Сору.

Интерфейсы ATA/IDE также не отстают и продолжают развиваться, благодаря чему возрастает их надежность и производительность.

Маскировка LUN в Windows NT может выполняться драйвером адаптера шины, который предоставляется производителем.

В Windows Server 2003 внедрена новая модель драйверов Storport, предназначенная для замены старой модели SCSIPort. Более новый драйвер Storport ориентирован на поддержку высокопроизводительных интеллектуальных устройств SCSI-3 и Fibre Channel. По сравнению с драйвером SCSI- Port драйвер Storport обеспечивает повышенное быстродействие, расширенные функции по управлению и обработке ошибок. Поставщики устройств могут максимально использовать возможности Storport, переписав драйверы для использования новой модели. И даже обычная перекомпоновка драйвера с библиотекой новой модели Storport дает возможность задействовать некоторые из функций Storport.

Индустрия хранилищ данных развивается от серверов с непосредственно подключенными устройствами в сторону архитектуры клиент/сервер, в которой применяется несколько серверов в локальной сети. При таком подходе одни серверы предназначены для приложений, управляющих базами данных, а другие выделяются исключительно для хранения данных. Выделенные серверы для хранения данных и называются хранилищами, подключенными к сети (NAS), чему посвящена следующая глава.

Загрузка...