«Не Колридж первым сотворил эти чары, это сделал божий, великий и нельстивый поэт-лауреат по имени Природа».
Ящерица
Итак, уже раскрыто много.
Уже приблизились к главному. Пока все это интересно. Пока — познания. В чем-то и отвлеченные. Но совершенно ясна и близка практическая цель. Хирурги уперлись в барьер несовместимости тканей. Им самим этот барьер не преодолеть. Но открытие иммунологической толерантности — это трамплин перед барьером. Практическое использование иммунологической толерантности — это ключ к управлению механизмами иммунитета. Такой же ключ, как и вакцины. Это два ключа для двух сторон иммунитета. Вакцина стимулирует воинственные качества армии иммунитета, усиливает, так сказать, обороноспособность. Иммунологическая толерантность учит быть терпимой к чужеземцам, к инородных тканям. Раньше иммунитет умели только стимулировать. Теперь научились его укрощать.
Остались «пустяки». Надо научиться создавать иммунологическую терпимость тогда, когда появляется потребность в пересадке.
Это еще впереди, но это уже не беспочвенная мечта. Приближаемся.
Каковы же практические перспективы? Если взять толерантный организм, неспособный иммунологически реагировать на определенные тканевые антигены, то естественно, что он не сможет выработать антитела против них. Он не сможет заставить клетки фагоцитировать и уничтожать их. Он не будет считать их чужими, и, стало быть, трансплантат ткани или органа от донора с этими антигенами не будет отторгнут и приживет.
Помните мышей разных линий — А и СВА — эксперимент Питера Медавара? Аналогичное должно происходить и с другими животными. Например, мышь линии С57ВL, толерантная к тканям крыс линии Вистар, должна считать их своими. Пересаженная на такую мышь крысиная кожа или другой орган от крыс линии Вистар должны прижить. Трансплантация должна проходить успешно. Так и происходит! Вот где простор для сногсшибательной фантастики. Ведь на животных можно экспериментировать. Мышь на крысиных ногах и с крысиным хвостом — это уже почти не фантастика. Это возможно, но просто не сделано. Наверно, у маленькой мышки не хватит сил передвигать такие громадные ноги и таскать такой колоссальный хвост.
Но ведь это и есть чудо древнегреческой мифологии. Существо, составленное из тканей разных животных.
Рождается сфинкс, или, как его официально называют, химера. Мне больше нравится термин «сфинкс».
В сфинксе все загадочно: и фантазия древних, составившая эдакое немыслимое. И фантазия древних, создавших легенду о царе Эдипе. Загадочное и потому, что сфинкс — символ загадочности. Мне приятно называть этих полувыдуманных животных, составленных по милости экспериментаторов, иммунологов, хирургов, не химерами, а сфинксами. Мне это приятно еще и потому, что загадка — задача пересадок — очень трудная, но, несомненно, разрешимая. И мне приятно будет убедиться, что иммунология окажется не менее мудрой, чем Эдип.
Поэтому я и прошу читателя простить мне эту научную вольность и отступить вместе со мной от официального термина «химера». Давайте на страницах этой книги пользоваться термином «сфинкс».
Если наших сфинксов составляют клетки разных видов животных — например, курица и индюшка, мышь и крыса, такие сфинксы называются гетерологическими.
Если клетки-составители принадлежат животным разных пород или линий, но одного вида, такие сфинксы будут называться гомологическими. Естественно, медицину интересует создание гомологических сфинксов.
Итак, медицину интересуют гомологические сфинксы, поскольку объект медицины — люди, все представители которых относятся всегда к одному виду — homo sapiens. Значит, медицину и, следовательно, нас интересуют именно гомологические пересадки.
Однако сфинксы возникают не тогда, когда у толерантного животного приживает кожа или какой-либо другой пересаженный орган. Сфинкс возникает раньше. Сфинксами рождаются.
Вы, конечно, запомнили пятое условие, необходимое для установления состояния толерантности, продолжающегося всю жизнь? Это условие требует введения эмбриону не экстрактов из тканей, не кровяной сыворотки или разрушенных клеток, а живых клеток. Живых клеток других индивидуумов того же вида или родственного. В эмбрионе, реагирующем наоборот, не будут развиваться реакции, направленные на отторжение чужих клеток; возникает противоположный процесс — процесс привыкания (терпимости) к ним. И клетки приживают. Таким образом, если эмбриону мыши линии СВА ввести живые клетки костного мозга, лимфатических узлов или селезенки мышей линии А, то в эмбрионе будут сосуществовать генетически разные клетки двух несовместимых в норме индивидуумов А и СВА. Это сосуществование будет продолжаться бесконечно долго, потому что избранные для введения клетки способны бесконечно размножаться. Когда эмбриону придет время родиться, то родится сфинкс. Внешне этот созданный руками человека сфинкс не будет отличаться от мыши линии СВА — он будет такой же серый. Но ему можно пересадить кожу от белых мышей линии А. Кожа приживет — сфинкс будет отличаться и внешне. Лоскуток его шубки будет белым.
Но не чужая кожа или пересаженный орган делает это животное сфинксом. Он уже родился сфинксом. Чужая кожа не приживет у обычного животного. Кусок чужого организма только усложняет, усиливает то сфинксовое, что уже есть у этого животного.
Итак, сфинксами рождаются.
Теперь снова приходится обратиться к вашей памяти. Вспомните методику создания иммунологической толерантности у птиц, предложенную Гашеком. Соединяются сосудистые зародышевые оболочки двух яиц через выпиленные «окошки». Эта методика много проще сложных операций на беременной матке мышей и укалывания «микроскопических» зародышей. Методика Гашека позволяет объединить и птиц разных пород одного вида и разных, но обязательно близких видов, например различных видов уток, кур, индюшек и т.п.
В термостате заканчивается развитие спаренных яиц. Вылупившиеся птенцы будут временными или постоянными взаимно толерантными сфинксами. В их костном мозге, селезенке, лимфатических узлах и в крови размножаются и живут одновременно два типа клеток. И в зависимости от выбора экспериментатора эти клетки могут принадлежать курам, индюшкам, уткам и так далее — какова будет воля ученого. Внешне эти сфинксы также не будут отличаться от своих родителей. Но если им пересадить кожу от партнера по парабиозу, то кожа приживет. Возникнет внешне выраженный сфинкс: например, белая курица леггорн с кожей и пестрыми перьями от петуха породы родайленд.
Иммунологи, как и все ученые, постоянно ставят перед собой задачу — передать достижения теории практике. Ясно, что для хирурга важно создавать и управлять иммунологической толерантностью по отношению к тканям донора, тканям, которые требуется пересадить больному человеку.
Понятно, что метод Гашека для человека, к сожалению, неприемлем. Внутриэмбриональные инъекции клеток шприцем также не пригодны. И не только потому, что это тяжело беременной женщине, не только потому, что эти инъекции могут привести к серьезным осложнениям и даже к гибели плода, но и потому, что мы не знаем, которому из будущих людей, а пока плодов, пересадка понадобится в жизни. Надо искать пути и способы создания сфинксов после рождения.
Нам нужны не рожденные сфинксы. Создать их наша задача. Надо выбрать пути. По каким же путям пошли?
Прежде всего вспомнили данные о продолжительности иммунологической неотвечаемости эмбрионов. Вспомнили, что период неспособности вырабатывать антитела у многих животных не заканчивается в момент рождения. Выше уже было сказано, что введение эмбрионам различных антигенов не приводит к выработке антител. Они не образуются и при иммунизации только что рожденных животных. Способность новорожденных продуцировать антитела возникает у различных видов животных по прошествии разного времени. Включает эту способность специальный орган — вилочковая железа, или, как ее еще называют, тимус.
Но ведь возникновение иммунологической толерантности происходит у эмбрионов именно вследствие развития терпимости к чужеродным антигенам в условиях неспособности к синтезу антител. Значит, толерантность может быть создана и после рождения в течение периода неспособности вырабатывать антитела.
Эксперименты показали, что это так. Период времени, в течение которого может быть создана иммунологическая толерантность, назван адаптивным. У некоторых животных, например у овец, адаптивный период заканчивается до рождения. Поэтому введение клеток после рождения не приводит к развитию толерантности. Но у мышей, крыс, собак, кур, индюшек, уток и у человека адаптивный период продолжается в течение нескольких дней после рождения: 1—2 дня для мышей, кур, индюшек; 2—5 дней для крыс, собак, уток. Например, в опытах на собаках переливали большие количества крови щенкам в течение первой недели их жизни. Это обеспечило развитие столь высоковыраженной толерантности, что у них через несколько месяцев прижила не только кожа, но и почка и даже нога, взятые от доноров крови. Эти опыты проделали Александр Пуза в Чехословакии и Анастасий Григорьевич Лапчинский в СССР.
Чешский исследователь осуществлял так называемое тотальное кровозамещение у новорожденных щенят. Иначе говоря, вся кровь подопытного новорожденного животного была замещена кровью взрослой собаки-донора. Когда щенок вырастал, у того же донора, который давал кровь, брали почку и пересаживали подросшему щенку. В ряде случаев созданная уже после рождения толерантность обеспечила длительное приживление чужеродной почки. Собственные почки у таких собак были удалены. Тем не менее они отлично себя чувствовали и даже приносили потомство.
Анастасий Григорьевич Лапчинский проделал аналогичную операцию у 6-дневного щенка рыжей масти по имени Братик. Донором была Цыганка — взрослая собака черной масти. В 9-месячном возрасте Братику пересадили правую заднюю ногу от Цыганки. Это произошло в январе 1964 года. Чужая нога служит Братику уже более двух лет.
Для человека продолжительность адаптивного периода пока еще точно не установлена. Тем не менее проведены успешные пересадки кожи у лиц, которым сразу после рождения переливали большие количества крови в связи с врожденной анемией. Кровь переливали через 10—120 часов после рождения. Кожу для пересадки брали от того же донора, что и кровь.
При создании иммунологической толерантности у новорожденных животных в течение последних дней адаптивного периода требуется пересаживать большее количество клеток, чем эмбрионам. Все перечисленные условия и закономерности сохраняются. Лучше всего вводить клетки в кровь, в вену. На втором месте стоит введение клеток в брюшную полость.
И все-таки медицина требует другого. Необходимо у взрослых создавать состояние толерантности. Ведь заболевшим взрослым нужно обеспечить возможность трансплантации органов и тканей. Необходимо во взрослом состоянии создавать сфинксов.
Тогда вспомнили острую лучевую болезнь. Болезнь развивается после облучения любых животных и человека рентгеновыми или гамма-лучами, нейтронами или другими ионизирующими ядерными частицами. При лучевой болезни организм перестает вырабатывать антитела. При облучении небольшими дозами происходит небольшое угнетение этой способности. Чем больше доза лучей, тем сильнее угнетение. При смертельном облучении продукция антител в ответ на введение антигенов останавливается совершенно: кроветворная ткань одна из самых чувствительных к действию радиации. С одной стороны, организм остается абсолютно беззащитным. Любой микроб, попавший в организм, может безнаказанно и без борьбы произвести грандиозные разрушения. Резко ухудшается состояние крови, пополнение крови.
Уже в первые часы после облучения в крови уменьшается количество белых клеток — лейкоцитов. С каждым днем их становится меньше и меньше. Через несколько дней начинает уменьшаться и число красных клеток — эритроцитов. Выработка всех клеток крови в местах их образования — костном мозге, селезенке, лимфатических узлах — угнетается или останавливается. Из всех кроветворных тканей сильнее всего поражается лимфоидная, то есть та, которая продуцирует антитела. После облучения не образуются клетки — фабрики антител. Введение антигенов не завершается появлением антител в крови. Обучения иммунологической армии не происходит.
Но это все с одной стороны.
С другой стороны…
Получается, что с определенных позиций облученный организм подобен эмбриону или новорожденному: он также не способен иммунологически реагировать на введение чужеродных тканей.
Спящие люди с ружьями
Следовательно, реципиента надо облучать. А потом уже пересаживать.
Пробовали.
Пересаживали кожу — не вышло! Пересаженный лоскут почти приживал. Он жил 11, 12, 15, 18 суток, а не 10, как всегда.
А что потом?..
Или доза радиации была смертельной и экспериментальные животные погибали от острой лучевой болезни. Или — при несмертельном облучении — восстанавливалась способность иммунологически реагировать на чуждые антигены, вырабатывались антитела и кожа отторгалась. Так происходило со всеми пересаживаемыми органами и тканями, кроме кроветворных.
Кроме кроветворных тканей!
Этот факт — один из ключей к лечению острой лучевой болезни. Смертельное облучение уничтожило армию иммунитета или лишило ее способности бороться против чужеродного. Не развиваются реакции, направленные на отторжение или рассасывание введенных чужих клеток кроветворной ткани — источника иммунитета, не вырабатываются против них антитела. Клетки начинают размножаться и замещают пораженную радиацией кроветворную ткань облученного животного. Из пересаженного чужого костного мозга или селезенки образуются кровяные клетки. Они берут на себя все утраченные было функции — и организм выживает. Смертельная лучевая болезнь побеждена!
Причудливые течения науки опять привели исследователей к клеткам костного мозга, лимфатических узлов и селезенки. Именно эти и только эти клетки приживают и размножаются в облученном организме! Но приживают при одном непременном условии — при полной остановке продукции антител, то есть при смертельном облучении.
Значит, сама по себе физика в виде ионизирующей радиации не в состоянии помочь нам создать иммунологическую толерантность и сфинксов среди взрослых особей. Нельзя же пользоваться смертельным облучением.
К счастью, на помощь физике приходит биология, и враг становится другом. Тот враг — пересаживаемые чужеродные кроветворные клетки, — против которого направлены, все помыслы и силы армии иммунитета, оказывается спасителем.
Трансплантация кроветворных тканей существенно отличается от кожных пересадок. Для пересаженной после облучения кожи типично лишь более позднее отторжение, если доза радиации была несмертельной. А если смертельной… кожный лоскут не успеет отторгнуться. Трансплантат кроветворной ткани тоже не приживает при малых дозах облучения — пересаженные клетки гибнут, они чужеродны. Но этот же самый трансплантат приживает при смертельном облучении благодаря полному подавлению иммунитета, а лучевая смерть отменяется благодаря лечебному эффекту приживления, поскольку приживление кроветворной ткани замещает вышедшие из строя клетки облученного организма.
Вот как тут все переплелось! Если не смертельное поражение, то человек или экспериментальное животное будет долго жить, если не умрет от осложнений. Лечить его пересадкой кроветворных тканей, что было бы разумно, невозможно: он не настолько облучен, чтобы силы иммунитета бездействовали и допустили бы чужую ткань в организме. Но зато если поражение смертельно — тогда можно пересадить то, что более всего поражено. Тогда появляются шансы на выход из этой тяжелой ситуации с меньшими потерями.
Если не смертельно — можно умереть. Если смертельно — больше шансов на жизнь.
Этот парадокс похлестче знаменитых уайльдовских. Ситуация столь необычна, столь удивительна, что сразу это не осмыслишь!
Ну, а введя кроветворную ткань в смертельно облученный организм и дождавшись ее приживления, можно начинать пересаживать другие ткани и органы от того же, первого донора?
Да, с помощью облучения и трансплантации клеток кроветворных тканей могут быть созданы животные-сфинксы без вмешательства в их жизнь в адаптивный период, то есть до рождения или сразу после него.
Животные поступали в опыт взрослыми и выходили из опыта состоящими из тканей двух организмов.
Например, уже знакомые нам черные мыши С57ВЬ с костным мозгом и кровяными клетками мышей линии А. Или мыши линии СВА с кроветворением крысиного типа за счет пересадки после облучения костного мозга крыс линии Вистар. Или кролик одной породы с кровью кролика другой породы. Сосуществование в одном организме тканей генетически разнородных и несовместимых продолжается в течение всей последующей жизни сфинксов.
Назовем этих сфинксов радиосфинксами (этот термин не хуже распространенного в литературе — «радиационные химеры»). Радиосфинксам так же, как и описанным ранее, можно пересаживать другие донорские ткани, в том числе и кожу. Трансплантации проходят успешно, требуя, как и в предыдущих случаях, сугубой специфичности. Приживает кожа только тех доноров, у которых брали костный мозг. На сфинксе, составленном из облученной мыши линии С57ВL и костного мозга мыши линии А, приживает только кожа мышей А-линии. Трансплантаты других линий отторгаются. Так же и в случае гетерологического радиосфинкса, составленного из мыши и костного мозга от крыс линии Вистар. Приживает кожа только от крыс этой линии.
Не будет преувеличением исчислять историю химиотерапии тысячелетиями. С тех пор как люди осознали разницу между здоровьем и болезнью, они ищут вещества, обладающие целебными свойствами. Они ищут лекарства. Эта история прошла через большие испытания. Она прошла через заклинания жрецов и ворожбу колдуний, освященную воду и поиски алхимической «панацеи» — лекарства от всех болезней. Долгий и трудный путь, на котором к истинным героям-путешественникам — химическим веществам избирательного действия — примазывались жрецы, знахарки, колдуньи, попы и заблуждающиеся ученые. И просто шарлатаны всех времен, без веры и идей. Но годы шли, росли знания. Биология и медицина крепли. Случайные попутчики оказались несостоятельными. Хинин излечивал малярию без колдовства и «святой воды».
Одно из наиболее действенных сердечных средств — наперстянка выделена из колдовского зелья знахарки. В зелье входило еще 39 компонентов. В методику лечения — нашептывания, напевы, танцы. Действовало лишь само растение. Сейчас обходятся одной химической основой наперстянки. В руках знахарки все равно была химиотерапия.
Современная химиотерапия обладает набором удивительных химических препаратов. Действие их направлено именно на то звено в организме, на которое надо подействовать врачу в данный момент. Антибиотики избирательно поражают микробы, не нанося вреда больному. Инсулин, введенный в кровь, заставляет печень перерабатывать излишний сахар крови в печеночные запасы гликогена. Эфир и другие наркотические вещества обладают уникальным свойством выключать сознание. Лобелин — стимулятор дыхания. Секуринин — стимулятор родовых сокращений мышц. В распоряжении врачей имеются химические вещества, понижающие температуру тела и повышающие ее, усиливающие сердечную деятельность и замедляющие работу сердца и многие другие.
О чудесах химиотерапии следует написать отдельную книгу. Приведенная здесь крупица информации несет лишь одну смысловую нагрузку — задать вопрос: неужели не найдены химические агенты против выработки антител?
И да и нет.
Такие вещества есть, но они очень токсичны. Чтобы затормозить выработку антител, нужно давать почти смертельные дозы таких лекарств. (Опять смертельное лечение. Посмотрим, куда оно нас приведет на этот раз!)
Отсутствие строго специфических препаратов, выключающих только антителогенез (то есть рождение антител), не затрагивая других важных функций, объясняется тем, что механизм выработки антител до сих пор является тайной. Никто не знает, каким образом клетка, вступив в контакт с чужеродным белком, начинает строить молекулу направленного против этого белка антитела. Но время придет. Химиотерапия поставит на полку своего арсенала ампулы с веществом, избирательно останавливающим выработку антител. И может быть, тогда барьер несовместимости тканей будет окончательно ликвидирован, будет открыта дорога хирургии будущего.
Но надо сказать, что борьба с рождением антител всегда будет чревата отрицательными сторонами. Даже тогда, когда мы будем знать тайну их происхождения. Лишая организм антител, мы обезоруживаем его. Если попадет какой-нибудь болезнетворный, или, как говорят медики, патогенный, микроб, организм этот окажется в тяжелом положении.
Но уже говорилось о том, что наука оказывается много фантастичнее самых бурных и неуемных взрывов нашего воображения. Посмотрим.
Известный английский писатель-фантаст и популяризатор науки Артур Кларк в своей книге «Черты будущего» приводит таблицу прогресса в ближайшие 150 лет. Как ему представляется на основании сегодняшних успехов эволюция науки будущего. Пока он пишет о прогрессе XX века — более или менее легко говорится «посмотрим». А вот дальше! Так хочется посмотреть!
К сожалению, он считает, что бессмертие, да и то относительное, можно ожидать лишь к 90-м годам XXI столетия.
Посмотрим…
А пока приходится довольствоваться лишь весьма скромными успехами. Успехами, показывающими, что с помощью введения взрослым животным некоторых химических веществ можно получить состояние иммунологической неотвечаемости, можно добиться приживления чужих клеток кроветворных тканей и, cледовательно, получить животных-сфинксов. Можно добиться довольно длительного приживления пересаженных почек у человека.
Ингибитор — вещество, подавляющее действие чего-либо. Ингибитор антителогенеза — вещество, подавляющее рождение антител.
Среди ингибиторов антителогенеза, с помощью которых могут быть созданы сфинксы, на первое место следует поставить имуран, циклофосфамид, аметаптерин, 6-меркаптопурин и некоторые другие пуриновые производные. Второе место занимают гормоны коры надпочечников и прежде всего кортизон. Их действие слабее, чем имурана или 6-меркаптопурина, но в сочетании с ними или совместно с облучением они облегчают приживление чужеродной кроветворной ткани.
Нет нужды повторять свойства сфинксов, получаемых с помощью химических веществ. Химиосфинксы ничем принципиально не отличаются от радиосфинксов.
— Вы рассказали, — скажет читатель, — о том, как создавать сфинксов, когда и какие клетки им надо ввести. Вы рассказали, что искусственно созданные животные-сфинксы состоят из клеток и тканей разных линий, пород и даже видов животных. Все это очень хорошо. Но ничего этого не видно. Мышь остается мышью, курица — курицей. У них не увидишь, как у мифических сфинксов, соединения туловища льва с орлиными крыльями. Каким же образом вы, иммунологи, узнаете о том, что перед вами животное-сфинкс? Нам, не иммунологам, нужны доказательства. Есть ли они у вас?
— Да, есть. Во-первых, мы можем показать, что ткани наших сфинксов действительно состоят из клеток разных линий, пород или видов животных. Во-вторых, можем продемонстрировать таких сфинксов, у которых внешне видно сочетание двух несовместимых организмов.
Представим себе мышь-сфинкса, кроветворная ткань которой состоит из мышиных и крысиных клеток. Клетки крови у нее тоже мышиные и крысиные или только крысиные. Но отличить их трудно. Они совершенно одинаковы. Одинаковы настолько, что самый опытный гематолог — специалист по крови — не сможет различить мышиные клетки крови от крысиных, сколько бы времени он ни смотрел в микроскоп.
К счастью, в белых кровяных клетках крысы содержится особый фермент — щелочная фосфатаза. Его нет в мышиных клетках. И особая отрасль науки — гистохимия, т.е. наука о химизме клеток и тканей, — спасает положение. Специальная окраска на щелочную фосфатазу выявляет крысиные клетки. Они окрашиваются в черный цвет, а мышиные не окрашиваются. Таким образом, возникшее сомнение в принадлежности данной мыши к сфинксам разрешается просто и наглядно: при этой провокационной окраске в ее крови видны покрасившиеся в черный цвет крысиные клетки. Подобные приемы называются гистохимическими.
Можно применять и другой метод распознавания клеток — иммунологический. Чтобы его понять, достаточно вспомнить первую главу: при иммунизации одних животных эритроцитами других возникают специфические антитела. Специфичность антител столь высока, что они взаимодействуют только с эритроцитами, использованными для иммунизации. Сыворотка иммунизированных животных склеивает и растворяет только эти эритроциты. Следовательно, для наших целей нужно мышей проиммунизировать крысиными эритроцитами. Полученная от этих мышей иммунная сыворотка будет взаимодействовать только с крысиными клетками и не реагировать с мышиными. Эритроциты мыши в сфинксе с кроветворной тканью крысы будут склеиваться этой сывороткой. Доказательство достаточно наглядное и довольно точное.
Иммунологический метод определения принадлежности клеток может быть назван универсальным. С его помощью можно различать не только крысиные и мышиные клетки или клетки любых других видов животных. Он может идентифицировать внутривидовые различия. С помощью иммунных сывороток можно различать клетки разных пород или разных линий животных одного и того же вида. Например, с помощью облучения и введения костного мозга создана мышь-сфинкс. Но не межвидовой (гетерологичный) сфинкс, сочетающий ткани мыши и крысы, а внутривидовой (гомологичный), сочетающий ткани двух несовместимых линий мышей — С57ВL и А. Надо проверить, удался ли опыт, образовался сфинкс или нет. Гистохимия тут бессильна. У нее нет реактивов на внутривидовые различия. Гистохимически клетки разных мышей одинаковы. А иммунологически? Иммунологически, вы помните — индивидуальность превыше всего. Поэтому иммунология отказать не может. Для нее достаточны различия антигенного состава разных линий.
Для искомого доказательства мышей С57ВL иммунизируем эритроцитами мышей А. Получаем сыворотку, склеивающую эритроциты А, но не взаимодействующую с С57ВL. И наоборот, при иммунизации мышей линии А создаем сыворотку, агглютинирующую только клетки С57ВL. Таким образом, у нас в руках оказываются два совершенно специфических реактива. Они легко могут показать, из чьих клеток состоит кровь животного, и открыть его невидимую принадлежность к сфинксам.
Существует еще один метод, который дала нам цитология — наука о строении клеток. Один из приемов цитологического метода основан на использовании некоторых видимых в микроскоп специальных деталей строения клеток. Он использует, например, различия между клетками крови (лейкоцитами) самцов и самок. У многих животных в клетках самок содержится так называемый половой хроматин. Это вещество располагается в ядрах клеток и придает определенным участкам ядер, из-за утолщения некоторых их отделов, вид «барабанных палочек». Следовательно, если при создании сфинксов вводить кроветворные ткани от самок самцам, то их приживление и размножение можно будет видеть по половому хроматину в клетках крови.
Люди в плащах и шляпах
Некоторые линии животных имеют передающиеся по наследству особенности строения клеточных ядер. Особенности эти не распространяются на все ядро, а лишь на ту или иную хромосому.
В разделе о чистых линиях животных говорилось, что хромосомы — ядерные нити — это основные структурные единицы ядер. У каждого вида животных в ядрах всех клеток содержится стандартное число хромосом. Форма и размеры хромосом также трафаретны. Лишь иногда, довольно редко, появляются животные с каким-нибудь уродством одной из хромосом. Это уродство возникает еще в половой клетке родителя и потом распространяется на весь зарождающийся после оплодотворения организм, на все клетки его тела. Часто такое врожденное уродство какой-нибудь хромосомы смертельно для развивающегося организма, так как гены, находящиеся в хромосоме, заведуют и управляют жизнедеятельностью клеток. Однако в некоторых случаях уродство в строении одной из хромосом не сказывается на жизнеспособности и нормальном существовании организма. Такой организм обычно развивается, обычно живет, но среди хромосом во всех его клетках можно увидеть имеющуюся ненормальность. Например, одна из них необычно большая или необычно маленькая. Такую хромосому называют маркером (термин, по-видимому, ясен, объяснять не надо). Она помогает распознавать клетки данного организма в смеси с любыми другими.
Следовательно, если при создании сфинксов вводить клетки, несущие хромосому-маркер, животным с нормальным хромосомным набором, то в последующем их невидимую принадлежность к сфинксам можно будет открыть, обнаружив приживление и размножение маркированных клеток.
Выше было рассказано об одной важной для хирургии особенности сфинксов. У них приживляются кожа и некоторые другие органы, взятые от животных-доноров, чьей кроветворной тканью пользовались для создания этого сфинкса.
Приживление кожи является очень наглядным доказательством принадлежности животного к сфинксам. Животное становится сфинксом, видимым при внешнем осмотре, так как его кожный покров теперь уже состоит из кожи двух ранее несовместимых организмов.
В одном из предыдущих разделов была использована в качестве примера мышь-сфинкс, созданный из облученной мыши линии СВА и кроветворной ткани мыши линии С57ВL. У обычной мыши СВА пересаженная кожа С57ВL отторгается через 10—11 дней. У сфинкса этого не происходит. Пересаженная кожа приживает, и шубка сфинкса становится двухцветной, на фоне серой шерсти СВА живет как ни в чем не бывало черный лоскут С57ВL.
Был и другой сфинкс, составленный из клеток и тканей кур разных пород. Белый леггорн, украшенный кожей с цветными перьями от породы родайленд! Замечательных сфинксов создает парижский профессор Шарль Уйон. Он сращивает зародышей тритонов разных видов. Зародыши растут и развиваются. У них устанавливается взаимная толерантность. Операция по сращиванию производится таким образом, что сфинкс оказывается составленным из головы и передней части туловища тритона одного вида и туловища без головы тритона другого вида. Обе половины отличаются по размерам, цвету кожи и формам конечностей. Такие сфинксы имеют восемь лап: четыре от одного, четыре от другого тритона. Конечно, далеко не все операции проходят успешно, выход сфинксов не превышает 3 процентов. Но эти 3 процента живут, пользуясь всеми восемью лапами. Вот уж действительно сфинксы — чудища о восьми ногах!