Глава II. Земля — единый организм

Прочитав данный заголовок, читатель может подумать, что авторы назвали нашу планету организмом ради красного словца. Но это не так. И, готовя материал для книги, нам приходилось все больше убеждаться в справедливости мысли о единстве и общности законов, управляющих различными царствами природы.

Конечно, в своих представлениях авторы книги не достигли уровня Д. Дидро, считавшего, что и камни думают, только по-своему, по-каменному, или уровня болгарской целительницы Иванки, верящей, что любой камень живой и с ним можно обмениваться информацией и разговаривать. Но стало ясно: между живой и косной (неживой) природой нет такой резкой разницы, которая нам рисовалась в недавние времена. И правы были мыслители и ученые прежних эпох, взывавшие к целостностному восприятию мира. Исследования последних десятилетий подтвердили их правоту. Так, минералоги Д.П. Григорьев и Н.П. Юшкин (1983 г.) подчеркивают, что наукой раскрыты такие стороны строения и поведения минералов, которые раньше приписывались лишь биологическим объектам. К характерным чертам детищ минерального царства, роднящим их с живыми организмами, эти исследователи относят динамическое поведение минералов в меняющихся условиях, наличие сложных взаимосвязей между минералами и минералообразующей средой, подчиненность всеобщим законам развития, наследственность, способность накапливать и хранить генетическую информацию в виде компонентов структуры, существование регуляторных механизмов и др.

Сходство минералов с живыми организмами отмечается и другими исследователями. А книга Я.Е. Гегузина так и называется «Живой кристалл». В ней автор прямо говорит: «Люди, посвящающие свою жизнь кристаллу, часто воспринимают его живым… Вспомните поэтическую прозу поэта камня академика А.Е. Ферсмана, разговаривающего с обломком минерала как с живым существом, которое умеет прятаться от зоркого глаза искателя, а в ответ на обиду или несправедливость менять окраску — розовую на черную» (1987, с. 5).

И как не привести здесь проникновенное четверостишие Тютчева:

Не то, что мните вы, природа:

Не слепок, не бездушный лик;

В ней есть душа, в ней есть свобода,

В ней есть любовь, в ней есть язык…

Исследования минералогов последних лет подтвердили существование общих фундаментальных законов, согласно управляющих различными царствами природы. И глубоко прав был В.И. Вернадский, когда говорил, что «условия зарождения кристалла позволят выяснить нам общие физические основы, отвечающие форме законов, обусловливающих явления зарождения организма, т. е. жизни» (1979, с. 153).

Сходство биологического и минерального с неизбежностью доказывает, что познать окружающий нас мир и найти общий язык с ним можно, только опираясь на принципы единства всего существующего и на понимание живых организмов и самого человека как части биосферы. На это со всей определенностью указывал В.И. Вернадский, отмечавший, что живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны. В настоящее время мы имеем основания утверждать, что сама биосфера и вся Земля могут рассматриваться как глобальный организм, в котором все его компоненты постоянно взаимосвязаны и выполняют вполне конкретные функции, существенное нарушение которых приводит к дискомфорту планетарного организма и его болезни.

Последующие разделы книги посвящены изложению разрабатываемого нами учения об экологических функциях биосферы и почвенного покрова как узла планетарных связей. Именно знакомство с этими функциями убеждает нас в справедливости исходной посылки: Земля — единый организм.

«Кровь» Земли

В свое время выдающийся гидролог и почвовед Г.Н. Высотский назвал воду, содержащуюся в почве, ее кровью. С полным основанием мы можем именовать гидросферу нашей планеты кровью Земли. Сейчас уже однозначно доказано, что вода в жидкой и газообразной фазах оказывается главным действующим «лицом», приводящим в движение планетарнобиосферный организм и определяющим взаимодействие его различных компонентов.

Именно знакомясь с тем, как контактирует водная оболочка с другими составляющими биосферы (почвой, нижними слоями атмосферы, земной корой, живым веществом — совокупностью организмов планеты), мы убеждаемся в том, что все существующее на Земле завязано в одно целое. Особенно тесна связь водного и воздушного океанов. Поэтому охарактеризуем прежде всего основные атмосферные функции гидросферы, обратив внимание вначале на климатоформирующую роль водной оболочки, в первую очередь Мирового океана.

Удивительно, но факт, что, хотя воздушная оболочка Земли находится ближе к нашему светилу, аккумуляция солнечного тепла и последующая трата его на метеоролические процессы осуществляются главным образом гидросферой, а не атмосферой. Так, вклад Мирового океана в содержание тепла в воздухе примерно в 120 раз больше вклада самой атмосферы. Объясняется это просто: солнечное тепло поглощают и воздух, и вода, но общая масса водной оболочки во много раз больше воздушной. К тому же у воды сама способность аккумулировать тепло (ее теплоемкость) в 4 раза выше, чем у воздуха. Поэтому не случайно, что общее количество солнечной энергии, накапливаемой в течение года океаном, измеряется колоссальной величиной — 29,7 * 1019 ккал, что составляет почти 80 % всей радиации, достигающей поверхности Земли (36,5 * 1019 ккал). В результате Мировой океан оказался главным аккумулятором солнечного тепла на планете — в нем содержится 76–1022 ккал тепла, что многократно больше того количества тепловой энергии, которое ежегодно поступает от Солнца на Землю (Кан, 1982).

Гидросфера Земли определяет не только общую энергетическую подзарядку воздушной оболочки. От нее тесно зависят многие Конкретные метеорологические явления: осадки, облачность, перемещения воздушных масс и др. Воздушная среда, и прежде всего ее надокеаническая часть, вносит определяющий вклад и в возникновение экстремальных явлений. Ярким примером могут служить мощные тропические циклоны. Установлено, что циклоны средней силы только за сутки выделяют энергию, равную примерно 5*109 Дж, что эквивалентно энергии 500 тыс. атомных бомб, сброшенных на Хиросиму и Нагасаки. За 10 дней существования такого циклона высвобождается энергия, достаточная для удовлетворения энергетических потребностей такой страны, как США, в течение 600 лет (Кан, 1982).

Природа тропических циклонов достаточно сложна, но одной из важных причин их зарождения оказывается повышенная температура верхнего слоя океана, определяющая количество пара, поступающего в атмосферу.

В отношении воздушной оболочки гидросфера выполняет еще одну важную функцию — она оказывается одним из регуляторов ее газового состава и во многом определяет содержание в воздухе кислорода, углекислого газа и других летучих компонентов. И опять на первое место по влиянию выходит Мировой океан, который, в частности, способствует сохранению оптимального содержания CO2 в атмосфере. Дело в том, что морская вода в состоянии связывать значительную часть избыточного количества углекислоты, в результате чего CO2 в океане оказалось в 60 раз больше, чем в атмосфере. Для благополучия биосферы данная способность океана имеет исключительное значение. Ведь если произойдет, например, двукратное увеличение CO2 в воздушной оболочке, то средняя температура поверхности Земли может вследствие парникового эффекта повыситься на 2–4 °C, что вызовет сильнейшее глобальные изменения климата. Произойдут таяние льда, подвижка природных зон и другие негативные явления.

Такая мрачная перспектива весьма реальна, если человечество не обуздает свой безумный норов. Но, увы, пока этого не происходит. По-прежнему в атмосферу в результате хозяйственной деятельности поступает избыток CO2 и других парниковых газов, а поверхность водной оболочки сильно загрязняется, что затрудняет ее нормальный газообмен с атмосферой. Масштабы загрязнения весьма значительны. Ежегодно в океан попадает порядка 6 млн т нефти и нефтепродуктов. А достаточно 25 млн т нефти, чтобы вся поверхность Мирового океана могла покрыться пленкой в одну десятую микрона (Залогин, 1983).

Водная оболочка играет значительную роль в эволюции атмосферы.

Появление сотни миллионов лет назад воздушной среды с высоким содержанием кислорода было связано вначале с фотосинтетическими морскими организмами, жизнедеятельность которых в течение многих миллионов лет способствовала накоплению огромных запасов кислорода в атмосфере и появлению в ней защитного озонового экрана. И сейчас эти организмы одни из основных поставщиков кислорода в атмосферу.

Не менее значительно и впечатляюще влияние воды на формирование почвенной оболочки (педосферы) и каменной оболочки (литосферы), в связи с чем обособляются педосферные и литосферные функции гидросферы. Среди этих функций выделяются размельчение, растворение и перемещение водными потоками веществ почвенной и каменной оболочек. Масштабы данных процессов поразительны. Достаточно сказать, что, по данным А.П. Лисицына, только реками ежегодно выносится с континентов более 25 млрд т вещества, мобилизованного на водоразделах. Кроме того, значительный объем работы по перемещению, измельчению и растворению твердого вещества выполняет Мировой океан за счет размывания берегов, донной эрозии, переотложения находящихся в нем осадков и др.

Указанные выше процессы значимы не только сами по себе. Они важны также тем, что создают предпосылки для проявления других ответственных функций водной оболочки, направленных на формирование полезных ископаемых, химических соединений и горизонтов педо- и литосферы и на поддержание взаимосвязей между ними.

Да, основательно потрудилась вода, чтобы на Земле возникли и существовали в развитой форме почвенная оболочка и литосфера. Но при этом она и сама не оказалась обделенной, поскольку в природе наблюдается принцип — долг платежом красен. Преобразуя почвы и породы, вода обогащалась выносимыми из них соединениями, которые накапливались в конечных водоемах стока, в морях и океанах.

В настоящее время в Мировом океане сосредоточилось более 46 миллионов миллиардов тонн минеральных веществ. Если распределить их ровным слоем по поверхности, то уровень материков повысится на 200 м. Поэтому не случайно мнение, что из океана человек может получать со временем почти все необходимые ему элементы (Федосеев, 1975).

Особняком стоят биологические функции гидросферы, проявление которых весьма многопланово: вода оказывается одной из важнейших сред жизни, участвует в построении тела живых организмов и поддержании обмена веществ в них, является фактором миграции и адаптации организмов. Теснейшая историческая связь живых организмов с водой закрепилась в их конституции и химическом составе. Как отмечал В.И. Вернадский (1987), «все организмы — и водные и наземные — представляют собой полужидкие, иногда жидкие водные коллоидные системы. Поэтому совершенно правильно с этой точки зрения определил их французский зоолог Р. Дюбуа как „оживленную“ или одухотворенную воду».

Подтвержается ли эта мысль расчетами среднего содержания воды в живых организмах? Да, и блестяще! В рыбах и моллюсках до 76 %, а в медузах до 95 % воды, в наземных травянистых растениях ее до 85 %, в сухопутных крупных млекопитающих около 60 %. И тело человека также состоит в основном из «оживленной» влаги: в зависимости от возраста в нем находится 58–66 % воды, а в крови еще больше — 79 %. Содержание воды зависит также от пола — в женщинах ее больше, чем в мужчинах.

Кроме того, отмечена тесная зависимость химии живых организмов от химии гидросферы, которая особенно наглядно проявляется при сравнении солевого состава крови человека и океанической воды. Посудите сами. Хлора в нашей крови содержится 49,3 % от суммы растворенных солей, и в водах Мирового океана примерно столько же — 55,0 %. Практически одинаково содержание натрия: в крови 30,0 %, в морской воде 30,6 %. По другим элементам данные также близки: калия и кальция в крови соответственно 1,8 и 0,8 %, в океанической воде — 1,1 и 1,2 %; кислорода в крови 9,9 %, в воде 5,6 %. Не случайно кровь на вкус солоноватая.

Вода не только является важнейшим компонентом тела живых организмов, но и играет главную роль в их функционировании, индивидуальном развитии, поведении и эволюционном приспособлении. Так, необходимость поддерживать высокую влажность в дыхательных органах вынуждает животных, обитающих в неводных средах, вырабатывать специальные приспособления по сохранению влаги в организме. Ярким примером может служить образование хитинового покрова у насекомых, защищающего их от обезвоживания. Благодаря этому насекомые смогли освоить все среды обитания и стать самым многочисленным классом. Известно, что по числу видов (более 1 млн) они превосходят все другие классы животных, вместе взятые.

Кратко рассмотрим общебиосферные и планетарные функции гидросферы. Водная оболочка прежде всего через круговорот воды осуществляет связь всех приповерхностных геосфер Земли (тропосферы, почвенной оболочки, земной коры и др.). Достигается это благодаря отмеченным ранее исключительным свойствам воды, на которые постоянно обращал внимание В.И. Вернадский: «Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться с ней по влиянию на ход основных, самых грандиозных, геологических процессов. Нет земного вещества — минерала, горной породы, живого тела, которое бы ее не заключало. Все земное вещество — под влиянием свойственных воде… сил, ее парообразного состояния, ее вездесущности в верхней части планеты — ею проникнуто и охвачено» (1960, с. 16).

Кроме того, водная оболочка оказывается мощным аккумулятором поступающей солнечной энергии и регулятором теплового режима бисферы. Как отмечалось выше, особенно заметную роль здесь играет Мировой океан. Необходимо также отметить регулирование теплового режима биосферы мощными океаническими течениями, осуществляющими теплообмен между экваториальными и полярными широтами. Характеризуя данное явление, американский океанограф и метеоролог М. Мори отметил, что творец дал два великих назначения океану и воздуху — разделять влагу на поверхности Земли и смягчать сильные колебания климата в различных широтах (см.: Федосеев, 1975).

Водная оболочка выступает также в качестве одного из ведущих факторов трансформации и движения вещества и энергии геосфер. Конкретные проявления данной функции многообразны, но особенно наглядна рельефосозидающая деятельность гидросферы. Ведь весь лик земной поверхности формировался при том или ином участии воды, которая во многом определила образование не только микро- и макроформ, но и наиболее крупных феноменов — мегаформ рельефа Земли.

Решающая роль воды в рельефообразовании выявляется и при проведении сравнительного анализа, который показывает, что при полном отсутствии воды на планетах (Луна и Меркурий) или наличии ее не в жидкой фазе и в малых количествах (Венера и Марс) отмечается пассивное преобразование поверхности планет экзогенными процессами. Одно из следствий этого — доминирование кратерного рельефа, господствующего на Луне, Меркурии, Венере и преобладающего на Марсе. Причина здесь в том, что при отсутствии воды экзогенные процессы не в состоянии подавить эффект бомбардировки метеоритами данных планет, поверхность которых вот уже миллиарды лет украшена в основном пейзажами лунного типа.

Отметим также участие гидросферы в формировании геодезических полей Земли (гравитационного, магнитного и др.). Хотя основной вклад в данные поля вносят твердые оболочки Земли, в которых сосредоточено 99,97 % массы планеты, вклад воды также весом.

Вряд ли необходимо долго доказывать непреходящее значение воды в жизни человека и общества. Остановимся лишь на некоторых аспектах этой проблемы.

Характеризуя роль воды в существовании землян, отметим, что она служит одним из основных субстратов жизни, ресурсом промышленного и сельскохозяйственного производства, выполняет целебно-гигиеническую и эстетическую функции и т. д. Действительно, если взять промышленность, то фактически ни один сколько-нибудь крупный технологический процесс не обходится без широкого использования воды. Так, для выплавки 1 т стали ее требуется 250–330 м3, для получения 1 т бумаги — 550–730, а 1 т вискозного волокна — 470-1080 м3.

Исключительно водоемким оказывается и современное сельское хозяйство. Например, для получения 1 т хлопка-сырца тратится 4000–5000 м3 воды, 1 т риса — 5000–7000 м3. Поскольку с орошением выращиваются и многие другие культуры, сельское хозяйство оказалось главным потребителем воды — оно забирает около 80 % всех используемых человеком водных ресурсов Земли (Львович, 1986).

Богатым фактическим материалом можно проиллюстрировать и другие аспекты использования воды современной цивилизацией, подробно рассмотренные в работах А.Б. Авакяна, Б.С. Залогина, Р.К. Клиге, М.Н. Львовича и др. Наиболее разносторонне освещена роль Мирового океана, на долю которого приходится более 90 % запаса воды в гидросфере.

Из морской, а также из соленой озерной воды добывают в промышленных масштабах поваренную соль (около 7 млн т/год), а также магний, калий, бром, иод и др. В Японии уже получают «морской» уран. Энергия приливов питает многие приливные электростанции. Воды Мирового океана активно используются в качестве естественных путей сообщения между различными странами. Достаточно сказать, что морской транспорт обеспечивает свыше 95 % перевозок, связанных с мировой торговлей, и 80 % всего мирового грузооборота. Интенсивно используются биологические ресурсы океана, который дает человеку около 25 % белка животного происхождения.

Трудится гидросфера и на восстановление нашего здоровья благодаря целебному действию многих минеральных вод, благодаря благодатному воздействию на организм человека морской воды и климата побережий. Не случайно прибрежная зона — это главная здравница многих стран мира, самой природой созданная для лечения и отдыха людей. В последние десятилетия широкое развитие получил оздоровительный речной и морской туризм, охвативший различные уголки земного шара.

Итак, все, что существует в биосфере, прямо или косвенно обязано созидательной работе воды, генетически или функционально связано с деятельностью гидросферы. И хотя наша планета немыслима и без всех других геосфер, многогранная ценность и незаменимость водной оболочки особенно наглядны и бесспорны. Поэтому прогрессивное человечество так обеспокоено судьбой океана, судьбой пресных и других вод, ведь все развитие цивилизации (от становления до современной бурной эволюции) было постоянно связано самыми тесными узами с водой — животворящей влагой Земли.

Не случайно вода воспета поэтами, писателями, а среди художников существует даже особая школа маринистов. И глубоко прав был В.И. Вернадский, когда говорил: «Природная вода охватывает и создает всю жизнь человека. Едва ли есть какое-нибудь другое тело, которое бы до такой степени определило его общественный уклад, быт, существование» (1960, с. 17).

Назначение воздушного океана

Воздушная среда… Какова ее роль во взаимодействии с другими геосферами? На первый взгляд может показаться, что эта роль проста. Ведь неверно усвоенный со школьной скамьи образ атмосферы как механической смеси ограниченного числа газов с их постоянным процентным содержанием мешает воспринимать воздушную оболочку такой, какая она есть на самом деле. А она весьма сложна не только по строению и динамике, о чем уже говорилось, но и по своим функциям. Кратко охарактеризуем их.

Среди гидросферных функций воздушной оболочки следует прежде всего назвать обеспечение ею круговорота воды на Земле. Ведь без динамичной атмосферы не было бы вечно длящегося водообмена между океаном и континентами, не было бы повторного выпадения осадков в результате конденсации и превращения в дождь влаги, образовавшейся за счет местного испарения.

Велика роль воздушной оболочки и как источника для гидросферы водорастворимых газов, в первую очередь CO2 и O2. Значение этого процесса трудно переоценить. Так, растворение кислорода в водоемах — важнейшее условие существования в них высокоорганизованных форм жизни, прежде всего разнообразных представителей царства рыб.

Кроме газов, атмосфера передает водной оболочке твердое вещество, попадающее в воздушные слои в результате ветровой эрозии почв, а также деятельности человека. Особенно в значительном количестве эоловая взвесь поднимается с земли во время пыльных бурь, которые могут приводить к колоссальному перемещению материала воздушным путем.

Наиболее ощутимо поступление эоловой взвеси в водоемы в засушливых районах. По данным А.П. Лисицына (1978), в аридных зонах северной части Тихого океана вклад привнесенного ветром вещества в формирование донных океанических осадков составляет: кремния, алюминия, кобальта, марганца — 2-20 %, железа и рубидия — 10–60 %, а хрома, меди, цинка, мышьяка — 60-100 %. О масштабах переноса над океаном твердого материала воздушными потоками говорит такой факт: в 1903 г. на территории Англии выпало 10 млн т красной пыли, перенесенной из Северо-Западной Африки. Движение этой пыли сопровождалось значительными выпадениями ее непосредственно на водную поверхность океана.

К числу несомненно важнейших функций атмосферы следует отнести передачу ею водной оболочке частично измененной солнечной радиации. Поглощенная гидросферой энергия нашего светила оказывается главным движителем многообразных процессов: динамики океанических масс, испарения, обеспечения жизнедеятельности водных организмов и др.

Педосферные и литосферные функции воздушной оболочки также весьма представительны. Атмосфера оказывается главным регулятором водно-теплового режима почв, является фактором физического выветривания и измельчения горных пород и их преобразования. Достойно пристального внимания и то, что атмосфера служит важным источником вещества для формирования почв, пород, полезных ископаемых. Достаточно сказать, что главнейший компонент почвенного гумуса — это углерод воздуха, усвоенный вначале растениями. Углерод атмосферы активно включается также в формирование ряда геологических пород и полезных ископаемых (карбонатные отложения, торф, каменный уголь, нефть и др.).

Следует особо отметить, что интенсивная хозяйственная деятельность во многом изменила педосферные и литосферные функции воздушной оболочки. Так, в связи со сведением естественного растительного покрова, с распашкой земель и осушением болот на огромных площадях все меньше остается почв и ландшафтов, аккумулирующих атмосферный углерод. В результате этого атмосфера все менее эффективно выполняет привычную для нее роль поставщика углерода для гумусообразования, торфообразования, формирования биомассы лесов. Не отданный вовремя углерод начинает накапливаться в воздушной оболочке, что усугубляется поступлением в нее углекислого и угарного газов в результате сжигания человеком созданных планетой горючих ископаемых.

Биологические и ноосферные функции атмосферы. Мы слились с воздушной оболочкой, ее окружение для нас естественно и логично. Особенно велика значимость атмосферы для высших форм жизни. Так, человек без воздуха может обходиться в тысячи раз меньше времени, чем без воды и пищи.

Одновременно атмосфера является энергетическим источником частично преобразованной солнечной радиации и поставщиком строительного материала для живых организмов в виде углерода, кислорода, водорода, азота и т. д. Тело человека по вещественному составу, по данным В.И. Вернадского (1987), на 65 % состоит из кислорода, на 18 % из углерода, на 10 % из водорода, на 2,5 % из азота. На остальные элементы (а их несколько десятков — Р, К, Na, Cl, S, Fe, Mg и др.) приходятся доли процента, лишь содержание кальция составляет 1,4 %.

Кроме того, атмосфера выполняет важнейшую роль защитного экрана от «жесткого» космического излучения. Эту функцию берет на себя прежде всего озоновый экран, расположенный в стратосфере на высоте 20–40 км. Формируется он вследствие поглощения молекулами 02 солнечного излучения и перехода их в возбужденное состояние при тройных соударениях, в результате чего образуется озон — O3. Но общая масса озона очень мала. Если весь рассредоточенный в стратосфере озон собрать воедино, то из него можно образовать вокруг Земли только небольшую сплошную озоновую пленку (приведенный слой) толщиной лишь около 0,3 см.

Концентрация озона зависит от общего содержания в атмосфере кислорода и газообразных примесей, способных проникать в стратосферу и вступать в реакции с озоном, в ходе которых он расходуется. Особое беспокойство вызывают периодически появляющиеся «дыры» в озоновом экране над Арктикой и Антарктикой.

Полагают, что наибольший вред озоновому слою наносят газы группы фреонов, широко применяемые во многих холодильных установках. Значительную опасность представляет и закись азота (N2O), в изобилии попадающая в атмосферу при нерациональном использовании азотных удобрений. При существующих способах внесения азот удобрений усваивается растениями лишь на 15–25 %, все остальное уходит в почву, попадает в гидросферу и воздушную оболочку.

Так что техногенный этап в развитии общества вызвал деградацию не только непосредственно окружающей нас среды, но и воздушных слоев, отстоящих от поверхности Земли на десятки километров. Понятно, с какой тревогой должны мы относиться к дальнейшему загрязнению воздушного океана. Прекратить этот губительный процесс, не дать разрушить важнейшие экологические функции атмосферы — одна из главнейших задач нынешнего дня. Нельзя ни на минуту забывать, что жизнь в современных ее высокоорганизованных формах сложилась в кислородной атмосфере, т. е. в воздушной оболочке сегодняшнего типа, история развития которой во многом предопределила характер биологической эволюции Земли.

В заключение отметим общепланетарные функции атмосферы, которая является пограничной зоной между космическим пространством и планетой и обеспечивает обмен веществом и энергией между ними, снабжает другие геосферы многими соединениями и частично трансформированной солнечной радиацией, является фактором смены геологических эпох (бескислородная, малокислородная и кислородная эпохи, ледниковый период, межледниковый и др.).

Заканчивая раздел о назначении воздушного океана, подчеркнем, что рассмотрение функций атмосферы, как и описанных выше функций водной оболочки, приводит к неизбежному главному выводу: Земля в целом по типу связей составляющих ее компонентов — единый организм. Действительно, каждое звено биосферы прямо или косвенно завязано со всеми другими звеньями и благополучно существовать без них не может.

Фундамент биосферы

Обрисуем экологическую роль литосферы и ее значение в жизни других приповерхностных сфер Земли. Под таким углом зрения каменная оболочка планеты изучена явно недостаточно, поскольку интерес к ней был. в основном практический: добыть как можно больше разнообразных полезных ископаемых, мало заботясь о том, что в конце концов с ними станется и что будет с окружающей средой в результате нещадной эксплуатации земных недр. И в этом человек основательно преуспел, внушительный результат — многие и многие миллиарды тонн ежегодно копаемого, добываемого, перевозимого вещества литосферы. Ведь в расчете на одного жителя Земли это составляет около 30 т в год.

Естественно, что такие масштабы горной добычи не остались бесследны для биосферы, особенно для ее почвенного покрова. И что весьма симптоматично, все более тяжелая болезнь распространяется на саму геологическую среду. Об этом говорят известные отечественные и зарубежные ученые, об этом свидетельствуют и конкретные исследования, например разработки С.В. Николаева (1989 г.) по выделению ценных геологических объектов и их экстренной защите от дальнейшей эксплуатации. В связи со сказанным становится ясным, насколько важно уяснение экологических функций литосферы. Дадим им самую общую характеристику (детальное освещение — дело будущего).

При взаимодействии с водной оболочкой литосфера выполняет весьма ответственные гидрологические функции. Она является источником и приемником воды глобальных влагооборотов, фактором передвижения текучих вод, с одной стороны, поглощает свободную воду с помощью вторичных минералов, а с другой — опять ее высвобождает в ходе метаморфизации рыхлых отложений. Значимость гидрологических функций литосферы удобнее всего показать на примере ее влияния на движение текучих вод. Возьмем речную сеть Восточно-Европейской и Западно-Сибирской равнин. Мало кто из нас задумывается над тем, что сам рисунок гидрографической сети, а вместе с ним и ландшафтные особенности этих регионов в значительной или решающей степени предопределены строением и динамикой земной коры в пределах данных территорий.

Известно, что Западная Сибирь — это край болот и озер, которых здесь больше, чем в аналогичных широтах Европейской территории страны.

Лесная зона здесь на 50 % занята заболоченными ландшафтами. Почему это происходит? Ответ, как правило, простой: Западно-Сибирская равнина — слаборасчлененная и пониженная. В связи с этим речной сток на ней замедленный, оттого она и сильно заболочена. Действительно, данная причина весьма важна, но она не единственная, не меньшее значение имеют общие особенности геологического строения данного региона, в силу которых главные реки — Обь, Енисей — направлены в одну сторону, что является важнейшей дополнительной причиной переувлажнения территории. На Восточно-Европейской равнине магистральные реки текут в различных направлениях, что способствует более быстрому ее освобождению от избытка вешних и дождевых вод.

А особенности сложения пород? Разве можно сбрасывать со счетов этот фактор? Ведь западносибирские грунты склонны в большей степени задерживать влагу вследствие своей повышенной слоистости, длительной промерзаемости и ряда других особенностей.

Когда мы анализируем ситуацию с водой в том или ином регионе, мы должны в полной мере учитывать разностороннее влияние литологии. Это влияние порой весьма неожиданно. Взять, например, современные неотектонические движения земной коры. Долгое время считалось, что заметные их проявления следует ожидать в горных и предгорных районах, а жители равнинных регионов о них могут забыть и спать спокойно. К сожалению, это утверждение справедливо лишь частично, поскольку, как выясняется, неотектоника вездесуща и человеку никак нельзя забывать о ней, особенно при строительстве различных сооружений.

Поучительный урок преподнесла Западная Сибирь. Обнаружилось, что в силу относительной геологической молодости данная территория испытывает значительные вертикальные движения. Так, А.Д. Панадиади (1974) указывает, что район Барабы заметно приподнимается, причем с неодинаковой скоростью — на западе 4,6 мм в год, а на востоке 19–23,6 мм. Это необходимо в полной мере учитывать при строительстве мелиоративных систем и не устраивать каналы с юго-запада на северо-восток, так как приданный им уклон будет со временем уменьшаться.

Проявление неотектоники на Западно-Сибирской равнине приходилось наблюдать одному из автором, и, надо сказать, зрелище это незабываемое.

В один из августовских дней 1968 г. при подлете на вертолете к очередной точке полевых исследований на правобережье Оби, проводимых почвоведами совместно с геологами МГУ В.М. Семеновым и В.Н. Коломенской, мы вдруг увидели обширное белоснежное пространство. Все прильнули к иллюминаторам. «Это снег», — крикнули новички. И некоторые стали доставать теплую одежду — в Сибири мало ли что может быть? Но каково же было наше удивление, когда, совершив посадку, мы обнаружили под собой белоснежный кварцевый песок дна бывшего озера, вода из которого совсем недавно была спущена в результате локального восходящего движения поверхностного слоя земной коры.

Можно еще много говорить о тесной зависимости гидрологических особенностей территории от строения и динамики ее литогенной основы, но ограниченный объем книги не позволяет это сделать. Поэтому отметим лишь весьма важный аспект проблемы — явную недооценку негативных последствий антропогенных изменений литосферы, связанных с добычей полезных ископаемых, с закачкой воды в скважины и др. Так, замечено, что при нерегламентированном нагнетании воды в скважины на большую глубину в горизонты, где находятся рассолы, могут происходить местные замлетрясения (Львович, 1986).

Важное значение литосферы в жизни воздушной оболочки состоит в том, что она пополняет ее газообразными соединениями, особенно во время извержения вулканов, передает тепловую энергию недр, влияет на динамику воздушных масс при их взаимодействии с поверхностью Земли, является фактором эволюции атмосферы.

И конечно, огромный интерес представляет роль литосферы в формировании и жизни почв. Основной материал по данной проблеме систематизирован в специальном учебном пособии Е.М. Самойловой «Почвообразующие породы» (1992). Здесь же мы отметим, что по отношению к почве литосфера (прежде всего поверхностный слой земной коры) выступает как универсальный фактор почвообразования, основной источник вещества почв, фактор их эколого-генетического разнообразия, регулятор механической и химической денудации почвенного профиля. Следует также обратить внимание на трудный путь признания почвоведами тесных родственных уз почвы с материнскими породами.

На протяжении развития почвоведения как науки наблюдалась прямо-таки парадоксальная ситуация. Суть парадокса — в шараханье из одной крайности в другую без видимых на то оснований. Вначале отношение почвоведов к материнским почвообразующим породам было более чем уважительным, а агрогеологическая школа почвоведов фактически только с ними и связывала пространственное разнообразие почв. Затем произошла корректировка чрезмерной привязанности агрогеологов к породе, закончившаяся перегибом в другую сторону — признанием в качестве главного почвообразователя другого фактора — климата (климатическое почвоведение) и почти полным забвением роли геологического фактора. К настоящему времени благодаря работам А.А. Роде, В.В. Пономаревой, В.А. Ковды, В.О. Таргульяна, М.А. Глазовской, Г.В. Добровольского, В.М. Фридланда, В.Д. Тонконогова, Б.П. Градусова, П.Н. Чижикова, Ф.Р. Зайдельмана, Л.О. Карпачевского, С.В. Зонна и других почвоведов положение в столь важном деле, как признание значимости вклада материнской породы в формирование основного разнообразия почв, в значительной мере выправлено.

Завершая краткий обзор основных экологических функций литосферы, отметим ее колоссальную общебиосферную и планетарную роль. Ведь каменная оболочка является фундаментом биосферы, источником материала и энергии для глобальных круговоротов, фактором эволюции и существования живых организмов, узловым структурно-динамическим компонентом планеты. В сформулированном А.Б. Роновым геохимическом принципе сохранения жизни отражена теснейшая зависимость живого от динамики литосферы и геологической активности планеты в целом:

«Жизнь на Земле и других планетах, при прочих равных условиях, возможна лишь до тех пор, пока эти планеты активны и происходит обмен энергией и веществом между их недрами и поверхностью. С энергетической смертью планет неизбежно должна прекратиться и жизнь» (1980, с. 78).

Функции мира живых организмов

Мир живого… Фактически все, что сейчас существует и происходит на земном шаре, в той или иной мере прямо или опосредованно связано с деятельностью организмов, их прошлой и современной жизнью. По-настоящему вклад биомира в развитие биосферы оценил В.И. Вернадский (1987), им же было успешно использовано понятие биогеохимических функций живого вещества. Первейшее значение Владимир Иванович придавал участию организмов в формировании химического состава приповерхностных геосфер, особенно нижней части воздушной оболочки — тропосферы. Так, он подчеркивал, что тропосфера не есть астрономическое явление, а есть планетное явление, созданное живым веществом. Все основные газы тропосферы и более высоких слоев атмосферы — N2, O2, H2S, СН4… и их количественные соотношения — результат суммарного действия живого вещества.

Исследования последних десятилетий доказывают справедливость основных установок В.И. Вернадского и, более того, дают нам основания идти дальше и утверждать, что, по существу, ничто на Земле не минует влияния живого. Даже процессы, идущие в недрах планеты — за пределами земной коры, связаны с биомиром, так как они подпитываются энергией, освобождающейся при погребении в глубокие слои биогенных продуктов. Перечислим основные экологические функции живых организмов.

Весьма очевидны по своей важности атмосферные и гидросферные функции биомира, который осуществляет биогенизацию и регулирование состава водной и воздушной оболочек, заметно воздействует на динамику нижних слоев воздуха, участвует в перераспределении и трансформации атмосферных осадков и регулировании поверхностного и речного стока. Значимость данной группы функций покажем на следующем примере.

Атмосферные осадки… Многие из нас, слушая метеопредсказания о выпадающих на почву осадках, полагают, что Земля получила столько влаги, сколько пролилось дождя. Увы или, напротив, к счастью, дело обстоит намного сложнее, а потому интереснее. Во-первых, целительную дождевую воду старательно ждут биоперехватчики в лице трав, деревьев и кустарников. Первые порции дождя, особенно в засушливые дни, жадно поглощаются листовой поверхностью. Далее вступают травянистые стебли и деревянистые стволы, растительный опад и напочвенная подстилка, которые также стремятся зарядиться влагой. В результате, если дождь небольшой, самой почве мало что останется. Растительность выполнит функцию перераспределителя атмосферных осадков. Например, лесной полог задерживает до 30 % всех выпадающих на него осадков.

Но растительный покров не только активно перераспределяет, но и существенно трансформирует химический состав атмосферных осадков. Так, исследованиями Л.B. Медведева, Т.Е. Шитиковой, В.А. Алексеенко (1986), выполненными в южной тайге на Валдае, показано, что воды, стекающие с крон и стволов деревьев, значительно отличаются от исходных осадков, падающих на древостой. С одной стороны, эти воды обогащаются многими химическими компонентами. В них возрастает содержание калия, органического углерода и т. д. Причем рост этот различен — в 3-20 раз в кроновых водах и в 5-60 раз — в стволовых. С другой стороны, из осадков, падающих на лес, древостой извлекает недостающие ему элементы — в наибольшей степени азот, а также натрий и хлор. Исследователи приходят к выводу: «Вымывание десятков кг/га*год органических соединений придает кроновым и стволовым водам качественно новые свойства химически и биологически активных растворов, включающихся в процессы биорегуляции, почвообразования и геохимического транспорта веществ. Не менее важно химическое взаимодействие леса и осадков и для самого древостоя. Поглощение из осадков необходимых элементов питания и выделение с помощью омывающих осадков ряда элементов, в том числе избыточных и вредных продуктов обмена веществ, являются одним из важнейших механизмов саморегуляции леса, в частности его пищевого режима» (Медведев и др., 1986, с. 52).

Педосферные и литосферные функции живых организмов проявляются в том, что организмы являются ведущим фактором почвообразования и постоянно подзаряжают почвенное плодородие, оказываются агентом биохимического выветривания и преобразования пород и минералов, служат материальным источником для формирования органогенных полезных ископаемых. Отличительная особенность данных функций — теснейшая связь с жизнью почв, потому их конкретные проявления разумнее рассмотреть в следующей главе настоящей книги.

Общебиосферные и планетарные функции биомира выражаются в том, что живые организмы — это решающий фактор возникновения и сохранения развитой биосферы, основной механизм перевода материи в особое активное состояние, порождающее ошеломляющее разнообразие ее форм. Кроме того, биомир формирует энергетический банк планеты, стимулирует динамику геосфер и их компонентов и поддерживает полноценную жизнь на Земле. Из всего перечисленного поясним вклад живых организмов в возникновение и сохранение развитой, весьма сложноорганизованной биосферы.

Как и отчего возникла биосфера, благодаря каким обстоятельствам приобрела устойчивость и способность к прогрессивной эволюции, по каким законам живет и функционирует и почему до сих пор прощает человечеству эксперименты над собой? На все эти вопросы ответы пока в стадии созревания. Но одно весьма важное обстоятельство начинает достаточно отчетливо проясняться. Суть его в том, что биосфера со всеми ее важнейшими атрибутами (за вычетом того, что в ней натворил человек) создана прежде всего всем миром живых организмов в результате упорной работы на протяжении около 4 млрд лет. Да, именно столько трудились организмы над своим детищем — биосферой. Это, в частности, доказывается тем, что наиболее древние осадочные породы в Гренландии возрастом 3,8 млрд лет содержат следы биологической активности, а в кремнях возрастом 3,5 млрд лет в Австралии отмечены строматолиты и микрофоссилии трихомных микроорганизмов.

То, что биосфера со всеми составляющими (водной оболочкой, тропосферой, почвой и т. д.) есть в первую очередь порождение живых организмов, подчеркивал В.И. Вернадский: «Жизнь, живое вещество как бы само создает себе область жизни. Это характерная организованность нашей планеты» (1987, с. 225). Следует особо подчеркнуть, что область жизни не строится отдельной группой или отрядом живых существ, а созидается всей их совокупностью, всем биологическим миром Земли, представленным чрезвычайно разнообразными видами, у каждого из которых есть своя неповторимая экологическая функция, свое узаконенное эволюцией место на планете. Из признания этих убедительных установок следует, к прискорбию, весьма удручающий вывод: если человечество, даже перестав далее загрязнять среду, будет продолжать уничтожение биологических видов, оно неизбежно угробит сложноорганизованную биосферу, превратив ее в «биопримитив», неспособный произвести бесплатно воду, воздух и пищу нужного качества, так как в биосфере исчезнут необходимые «специалисты» различных профилей.

Справедливость сделанного заключения обосновывается не только общими рассуждениями, но и рядом доказанных теоретических и фактических положений. Так, уместно сослаться на универсальный принцип американского математика-теоретика Джона фон Неймана, согласно которому если уровень сложности и организованности системы становится расположенным ниже определенного минимума, то это приводит к ухудшению ее качества. И напротив, превышение минимального уровня создает условия для самообеспечения и совершенствования системы (см.: Моисеев, 1990).

Так что сохранение видов, скорости исчезновения которых стали катастрофическими, — это не просто сбережение детищ биологической эволюции, это прежде всего спасение пригодной для жизни естественной среды обитания человека.

В этой связи коснемся ноосферных функций живых организмов — их роли в жизни землян. Эти функции впечатляют даже при беглом знакомстве с ними, ведь биомир не только создает жизнепригодную для человечества среду обитания, но и снабжает его необходимыми ресурсами, является условием сохранения здоровья людей, фактором эстетического и нравственного развития человека, источником познания законов природы.

Особая роль принадлежит зеленым фотосинтезирующим растениям, дарящим нам и здоровый воздух, и вкусную пищу, и прочее, и прочее, и прочее. Не случайно В.И. Вернадский подчеркивал: «Весь животный мир, и человек в том числе, взятый в целом, требующий для своей жизни свободного кислорода, является придатком хлорофилльных организмов. Без них он не мог бы существовать. Хлорофилльные растения являются автотрофным живым веществом. В отсутствие их наземный животный мир позвоночных должен был бы исчезнуть» (1987, с. 223).

А проблема питания! Ведь благодаря растениям и получаемым из них продуктам человечество не просто не умирает с голоду, а приобретает возможность развития, комфортного житья. Например, полкилограмма хорошего хлеба — это больше чем наполовину удовлетворенная суточная потребность человека в белке, углеводах, витаминах групп В и Е, различных минеральных и балластных веществах. Как здесь не вспомнить слова К.А. Тимирязева о хлебе как выдающемся достижении людей, полученном ими благодаря наличию на земле зеленого золота: «Многим ли, действительно, приходила в голову мысль, что ломоть хорошо испеченного пшеничного хлеба составляет одно из величайших изобретений человеческого ума, одно из тех эмпирических открытий, которые позднейшим научным изысканиям приходится подтверждать и объяснять. В самом деле, из сотен тысяч растений, населяющих Землю, нужно было найти то, которое представляет наилучшее сочетание неизвестных веществ (белков и углеводов), соединенных в органах растений, легко собираемых и сохраняемых» (цит. по: Тышкевич, 1985, с. 7).

Растения не только кормят, но и уже тысячи лет лечат человека. Г.Л. Тышкевич (1985) сообщает, что в Древнем Египте репчатый лук имел не только пищевое, но и лекарственное назначение. Луковицы почитались как амулеты, которые носили воины для храбрости и чтобы не заболеть, особенно во время долгих военных походов. Луковицы содержат настолько сильные фитонциды, что амулеты, изготовленные из них, способны были предохранить человека от возбудителей тяжелых заболеваний. Аналогично использовался и чеснок. Египтяне не только употребляли его в пищу, но и натирались им (это же делали наши предки во время вспышек чумы и холеры). Чеснок наряду с луком входил в обязательный рацион легионеров Древнего Рима. Широко использовался он и в России, куда был завезен из Византии в IX–X вв. Жевание дольки чеснока в течение 3–4 мин убивает бактерии в полости рта.

К сожалению, современный человек борется со своими болезнями в основном порошково-микстурно-таблеточным методом, зачастую забывая нацело о достижениях народной медицины.

И конечно нельзя не сказать хотя бы несколько слов о бесспорном влиянии биомира на эстетическое и нравственное развитие людей и их творческую деятельность. Живая природа является главным учителем, воспитателем человека, а во многих случаях и соавтором выдающихся творений ума и сердца. Пушкин, Тургенев, Толстой, Левитан, Есенин, Пришвин… Когда мы произносим эти имена, в нашем воображении рисуется не только тот или иной гений русской культуры, но и милая одухотворенная русская природа, во многом создавшая и долгие годы питавшая творчество своих великих сыновей.

Один только небольшой исторический пример: тихий древнерусский городок Плёс на берегу Волги с великолепными зелеными холмами и березовыми рощами. Ведь именно он и его окрестная изумительная природа вдохновили Левитана на создание бессмертных творений. Только за три летних приезда (1880–1890 гг.) художник создает здесь 200 картин и этюдов. Упомянем некоторые из этих полотен: «После дождя. Плёс», «Вечер. Золотой Плёс», «Над вечным покоем», «Золотая осень. Слободка», «Березовая роща», «Осень. Мельница. Плёс». Вы обратили внимание, что в названии ряда картин упомянуто место, где они создавались? И это не случайно. Художник бесспорно чувствовал и считал, что памятник русской природы Плёс — его верный вдохновитель, соавтор и друг.

Вот мы и подошли к окончанию главы «Земля — единый организм». Были приведены разнообразные факты и доказательства теснейшей взаимосвязи атмосферы, литосферы, гидросферы, мира живых организмов и невозможности их существования друг без друга. Это бесспорный аргумент целостного устройства нашей планеты. Но экологические функции одного из важнейших компонентов биосферы — почвы оказались нерассмотренными. И сделано это умышленно. Почва является узлом планетарных связей, а потому ее роль в жизни природы уместно рассмотреть особо.

Загрузка...