Вот так разбегались наблюдаемые звёзды со своих привычных мест, когда в середину их «роя» вторглось массивное Солнце. Рисунок из книги Ч. Мизнера, К. Торна и Дж. Уилера «Гравитация».

— Потому что учёные, в отличие от других людей, понимают, что это означает! — ответил Андрей. — Вот и весь секрет их волшебства.

Никки продолжила:

— Эддингтон сообщил об успехе экспедиции телеграммой. Весть о том, что Эйнштейн оказался прав, разлетелась по первым страницам главных газет всего мира: «Наше пространство искривлено!»



Бернхард Риман (1826-1866), выдающийся немецкий математик, создавший теорию искривлённого пространства. Риманова геометрия впоследствии стала основой общей теории относительности. Русский математик Николай Лобачевский (1792-1856) создал свой вариант теории искривлённого пространства раньше Римана, но не нашёл понимания среди отечественных математиков. Искривить пространство в уме — это дано не каждому.

Эйнштейн стал всемирно знаменит. Его предыдущая известность в научных кругах не шла ни в какое сравнение с пришедшей славой. Но среди учёных, конечно, оказалось немало скептиков. Они указывали на недостаточность данных, ведь теорию Эйнштейна подтвердила всего одна фотопластинка невысокого качества.

Через три года в Австралию отправилась экспедиция из Ликской обсерватории во главе с её директором Уильямом Кэмпбеллом, чтобы ещё раз сфотографировать звёзды возле Солнца в момент затмения. Новые данные полностью подтвердили результат экспедиции Эддингтона. Консервативный Кэмпбелл не относился к числу сторонников Эйнштейна и надеялся (как он потом сам признавался), что звёзды откажутся подтверждать странную теорию об искривлении пространства. Но звёзды оказались с характером и не послушались Кэмпбелла.

Вселенная окончательно соскользнула с евклидовой неподвижной плоскости и погрузилась в изогнутые пространства Римана. Эддингтон опубликовал монографию «Математическая теория относительности», о которой Эйнштейн отозвался так: «Наилучшее изложение предмета!» В этой книге автор обсуждал исключительно трудный и спорный вопрос о том, что гравитационная энергия, в отличие от энергии электрического поля, не может быть математически описана с такой же долей объективности. И он увидел выход в том, чтобы отказаться от неоспоримого для физиков закона сохранения энергии. Он писал: «После того как был найден принцип сохранения энергии, физики превратили его практически в определение энергии, так что энергия рассматривалась как нечто, подчиняющееся закону сохранения… Подобный способ в свете новейших исследований оказался очень неудачным».

Учёный сделал смелое заключение о том, что энергия в общей теории относительности сохраняется не во всех случаях, зато она подчиняется более общему закону изменения, что «является, с нашей новой точки зрения, более простым и значительным, чем простое сохранение».

Эйнштейн был согласен с Эддингто-ном, но в обсуждении проблем почти не участвовал. В это время он работал над единой теорией поля, которая должна была «уничтожить» не только энергию, но и саму материю, оставив вместо неё лишь сложным образом искривлённое пространство.

— Как это? — не поняла Галатея.

— Я сама буду состоять из искривлённого пространства?

— Да, Эйнштейн полагал, что может описать элементарные частицы, из которых состоишь и ты, и все мы, как некие сгустки искривлённого пространства.

— Всё равно непонятно! — настаивала Галатея.

— Возьми носовой платок: когда ты разгладишь его на столе, то получишь ровное пространство, а если свяжешь в узел, то получишь нечто вроде частицы.

— То есть частицы — это такие кульки или узлы из пространства-времени? — переспросил Андрей.

— Да. Но Эйнштейну не удалось построить желаемую теорию — такое случается даже с самыми умными учёными. А ещё были проблемы с тем, как научный мир воспринимает его взгляды. Так что ему, впрочем как и Эддингтону, приходилось часто сражаться с непониманием некоторых учёных.

Среди астрономов Эддингтон известен и как создатель теории строения звёзд, автор книги, ставшей классической. Одна из моделей звёзд так и называется: «модель Эддингтона». Учёный доказал, что баланс звезды зависит не только от гравитации и давления газа, но и от светового давления, — на Солнце оно достигает одной десятой от давления солнечного газа. А в массивных звёздах давление излучения вообще становится главной причиной, удерживающей звезду от быстрого сжатия (падения в саму себя).


Загрузка...