В Англии тоже занимались поиском простого и надёжного способа определения долготы. Даже Луиза де Керуаль, фаворитка британского монарха Карла II, принимала в этом участие. Она посоветовала королю привлечь астрономов.
— Какая умная Луиза! — восхитился Андрей.
— Под давлением мадам де Керуаль и других советчиков в 1674 году Карл II учредил Гринвичскую обсерваторию, которая должна была найти решение сложнейшей задачи определения долготы в открытом море.
Первым королевским астрономом Гринвичской обсерватории стал Джон Флемстид (1646-1719). Он только-только приступил к наблюдениям за движением звёзд и Луны, как случилась трагедия с эскадрой адмирала Шовелла. Это событие потрясло англичан и привлекло всеобщее внимание к задаче точного определения координат кораблей в открытом море. Британский парламент назначил слушание по «проблеме долготы» и пригласил на него известных учёных Исаака Ньютона (1642-1727) и Эдмунда Галлея (1656-1742).
Ньютон в своём выступлении описал три наиболее реальных метода определения долготы. Один из них придуман великим Галилео Галилеем (1564-1642). Наблюдая в небольшой телескоп за движением открытых им спутников Юпитера, он решил использовать их как небесные часы, с помощью которых можно определять долготу места, откуда ведётся наблюдение. За разработку этого метода правительство Голландии наградило Галилея золотой цепью, но инквизиторы, державшие астронома под домашним арестом, не позволили учёному принять награду. Способ Галилея французские учёные успешно применили к сухопутным наблюдениям и получили в конце XVII века гораздо более точную, чем раньше, карту Франции. Король Людовик XIV был недоволен новой картой, так как площадь страны на ней значительно уменьшилась. Король воскликнул: «Эти учёные отняли у меня земли больше, чем завоевала моя армия!»
Второй способ основан на движении Луны. Наблюдать спутник Земли гораздо удобнее, потому что, в отличие от Юпитера, если небо не затянуто тучами, Луна видна в любой день года. Но это — очень капризный объект с точки зрения динамики. Ньютон, который занимался теорией движения Луны, понял, что использовать наше ночное светило в качестве ориентира для моряков можно только при очень сложных вычислениях на основе очень точных наблюдений Луны в течение десятков лет, а таких наблюдений в начале XVIII века ещё не было.
Третий способ был прост сам по себе. Он заключался в сравнении времени местного полдня со временем на часах, показывающих полдень в точке с известной долготой, например в Гринвичской обсерватории. Однако такой способ требовал, чтобы на корабле были очень точные часы, «хранящие» гринвичское время долгие месяцы: ошибка в одну секунду во времени давала ошибку на четыреста метров в координатах плывущего судна.
— Я не понимаю, как с помощью часов можно измерить долготу, — сказал хмуро Андрей. Галатея согласно закивала головой.
В комнату зашла Дзинтара и позвала всех обедать.
— Где накрыт стол? — поинтересовался Майкл.
— На веранде, — ответила принцесса.
— Отлично! — обрадовался чему-то Майкл и выглянул в окно. Солнце пыталось добраться до зенита.
Когда все уселись за круглый стол, в центре которого торчал длинный нераскрытый зонт, Майкл сказал:
— Сейчас я покажу вам, как с помощью часов можно измерить широту и долготу. Мы это сделаем с помощью зонта, часов и… — Майкл осмотрел стол, — винограда!
Глаза детей немедленно загорелись. А Майкл оторвал виноградинку от фиолетово-дымчатой кисти и положил её на конец тени, которую отбрасывал зонт на белую скатерть. Потом он посмотрел на часы и сказал:
— Пока мы обедаем, Солнце пройдёт высшую точку на своём пути. В этот момент тень будет самой короткой, и мы должны засечь это время. Будем измерять длину тени каждые четыре минуты.
Они принялись обедать, не забывая выкладывать на скатерти длинный ряд виноградин. Кое-где чашкам и тарелкам пришлось потесниться, но все, включая Дзинтару, энергично расчищали путь «астрономическим» ягодам, которые образовали плавную дугу, огибающую зонт.
Майкл прищурил один глаз, потом поколдовал с ниткой, привязанной к основанию зонта, используя её как циркуль, — и указал на одну из виноградин:
— Вот эта ближе всех к зонту.
Она оказалась одиннадцатой с момента начала наблюдений. Поразмыслив, Майкл заключил:
— Солнце достигло максимальной высоты в час и восемнадцать минут.
— И что дальше? — спросила Галатея, доедая жаркуе с картофельным пюре.
— А вот что, — сказал Майкл и взялся за телефон. — Я позвоню своему сыну, Роберту. Он сейчас в Лондоне и, думаю, не откажется нам помочь.
Роберт откликнулся почти сразу:
— Добрый день. Я гуляю с друзьями по Кембриджу.
— А не мог бы ты съездить в Гринвичскую обсерваторию и засечь время самой короткой тени от какой-нибудь заострённой длинной палки, а также измерить угол тени — вернее, отклонение Солнца от вертикали в этот момент. У нас время самой короткой тени было в 13 часов 18 минут.
Галатея едва дождалась конца разговора и нетерпеливо воскликнула:
— Но ведь они опоздали! Время короткой тени уже прошло!
Майкл отрицательно покачал головой:
— Оно прошло на нашей долготе. А на долготе Лондона Солнце ещё не забралось на вершину своей траектории. Давайте измерим угол тени, — сказал Майкл. Он вынул из кармана ключи с брелком и вытянул из брелка рулетку.
— Вначале определяем высоту зонта над поверхностью стола, потом — длину кратчайшей тени. Если длину тени поделить на высоту зонта, то получим тангенс верхнего угла в треугольнике, образованного зонтом и тенью. С помощью калькулятора легко вычислим, что угол отклонения тени — или солнечного луча от вертикали — равен 29,5 градуса.
— Я не знаю, что такое тангенс! — насупилась Галатея.
— Это очень простая штука, сейчас объясню, — сказал Майкл. — Предположим, что длина тени равна длине зонта, значит, их отношение равно единице. Чему равен верхний угол в таком треугольнике?
— Это я знаю, — облегчённо сказала Галатея. — Треугольник стал половиной квадрата, значит, верхний угол равен половине прямого угла, или 45 градусам.
— Верно! — просиял Майкл и быстро написал на листке бумаги слева «45 градусов», а справа единицу.
— А если длина тени стремится к нулю, то и угол равен нулю! — и Майкл добавил два нуля в таблицу — только в самый низ страницы.
— Теперь будем задавать другие значения отношения длин тени и зонта — от нуля до единицы, а потом измерим получившиеся углы. Так мы заполним все строчки в таблице. Например, для отношения длины тени и зонта, равного 0,5, мы можем измерить верхний угол, и он окажется равным 26,6 градуса. Можешь ли ты, Галатея, заполнить такую таблицу сама, если я дам тебе линейку для черчения треугольников и угломер для измерения углов?
— Конечно, могу, — заявила Галатея.
— Прекрасно! — улыбнулся Майкл. — Теперь представь, что какой-то древний математик сделал это впервые, посмотрел в таблицу и сказал: «Отношение горизонтальной и вертикальной сторон в таком прямоугольном треугольнике есть функция верхнего угла. Отныне пусть эта функция называется тангенсом!»
— Вот так просто? — не поверила ушам Галатея. — Составить таблицу примитивных измерений и объявить это тангенсом?
— Да, только надо сделать это первым. А потом надо ввести таблицу во все калькуляторы, чтобы я мог задать калькулятору любую длину тени, а он, сверившись с таблицей тангенсов, сразу выдал бы мне величину верхнего угла в выбранном мной треугольнике.
— Если я возьму и составлю таблицу отношений длины горизонтальной тени не к длине зонта, а к длине наклонной линии в этом треугольнике и буду потом измерять верхний угол, это ведь будет другая функция? — спросила недоумевающая Галатея.
— Конечно! — воскликнул Майкл.
— Это будет функция, которая называется синусом!
Галатея напряжённо впилась взглядом в таблицу.
Дети спорили про синусы и тангенсы, пока не принесли вкуснейшие пирожные и душистый чёрный чай с мятой. Пока то да сё, время пролетело, и позвонил Роберт.
— У нас Солнце достигло максимальной высоты в 13 часов и 22 минуты!
Майкл уточнил:
— По гринвичскому времени, которое отстаёт от нашего на целый час, так как располагается в другом часовом поясе. Итак, гринвичский полдень настал позже нашего на 1 час и 4 минуты. Земля делает оборот в 360 градусов за 24 часа, следовательно, запаздывание Солнца на 4 минуты соответствует смещению долготы на один градус. Значит, между нами и Гринвичским меридианом примерно 16 градусов. Долгота Гринвичского меридиана — ноль, это означает, что наше местоположение соответствует 16 градусам восточной долготы. Роберт, а какой угол отбрасывала ваша тень в этот момент?
— 41,5 градуса от вертикали.
— Значит, разница в широтах между нами и Гринвичем — 12 градусов. Каждый моряк знает, что широта Гринвича — 51,5 градуса, значит, он легко найдёт нашу широту — 39,5 градуса северной широты.
— Здорово! — восхищённо сказал Андрей, а Галатея недоверчиво покачала головой и попросила принести географическую карту. Принесли карту Европы, и Галатея поползла — или поплыла? — по ней, пыхтя, как старый паровой буксир. Потом она спросила:
— А если бы мы находились не в Бельведере-Мариттимо, а в испанской Валенсии? Она расположена возле нулевой долготы, значит, Солнце в Лондоне и в Валенсии достигает максимальной высоты в одно время?
— Да, между этими городами существует лишь разница в широтах. Кстати, ты можешь определить по карте расстояние между Валенсией и Лондоном?
Галатея с помощью Андрея и линейки измерила расстояние между городами.
— 1335 километров!
— Отлично! — обрадовался Майкл.
— А вот теперь догадайтесь, как можно определить длину окружности Земли, зная, что между широтами Лондона и Валенсии разница в 12 градусов, а расстояние между этими городами 1335 километров? Такую задачку в своё время решил древнегреческий математик и астроном Эратосфен (276 г. до н.э. — 194 г. до н.э.) для двух египетских городов, расположенных примерно на одной долготе.
Дети задумались. Первым сообразил Андрей:
— 12 градусов — одна тридцатая окружности в 360 градусов! Значит, длина земной окружности в 30 раз больше, чем расстояние между Лондоном и Валенсией. Это будет… это будет 40 тысяч километров и ещё… ещё 50 километров!
Майкл восхитился:
— Прекрасный, очень точный ответ!
Галатея немедленно надулась на Андрея.
Майкл спросил:
— Ну, теперь понятно, как точные часы, которые ходят одинаково в разных точках мира, могут помочь определить широту и долготу? Если бы у меня были таблицы времени достижения максимальной высоты Солнца в Гринвиче каждый день, то я смог бы определить наши координаты без помощи Роберта. Таблицами, указывающими положение Солнца на год вперёд, пользовались моряки прошлых веков. Они замеряли время максимальной высоты Солнца в разных концах света, куда их заносила судьба. Но во времена Ньютона самые точные часы были снабжены механическим маятником. В условиях качки такие хронометры могли отставать на десять минут в сутки, и за долгие месяцы плавания ошибка в ходе часов накапливалась огромная.
Таким образом, чтобы определять долготу третьим способом, нужно было создать часы, которые выдерживали бы качку, перепад температур и точно работали и в жарких океанских тропиках, и в морях, покрытых льдами…
Парламент выслушал доклад Ньютона и постановил объявить награду в двадцать тысяч фунтов стерлингов за решение проблемы определения долготы в море с точностью до половины градуса. По тем временам это были огромные деньги — примерно пять миллионов нынешних долларов. За дело взялись и астрономы, и часовщики. Первые накапливали наблюдения за Луной и усовершенствовали теорию её движения, чтобы любой штурман, измерив положение Луны относительно звёзд и сверившись с лунными таблицами, смог определять положение корабля в открытом океане.