III. СТАТЬИ И ПИСЬМА

Физики не шутят

«Правда Москвы», 15 февраля 1996 г.


Горком профсоюза работников научных учреждений провел 14 февраля митинг с целью в очередной раз привлечь внимание властей к бедственному положению ученых. Лояльность их постепенно улетучивается, о чем также свидетельствует переданное в нашу редакцию письмо президенту Б. Н. Ельцину.


Борис Николаевич!

Я, ученый, дважды лауреат Государственной премии СССР и премии имени М. В. Ломоносова, заслуженный деятель науки России, обвиняю Вас в развале науки, конкретно — физико-математической науки, в которой в советские годы наша страна была лидирующей в мире.

Страна высоко ценила труд ученых, они были наиболее уважаемой и вполне обеспеченной частью нашего общества. Переводя на рыночные рельсы нашу науку и образование, Вы обрекли их на полное уничтожение. Молодежь покинула науку, кто мог, уехал за рубеж. Оставшиеся буквально умирают с голода, не получая зарплаты. Непоправимые потери отбросили нас назад на многие десятилетия.

Борис Николаевич! Во всем этом я обвиняю Вас, и не только я! Подумайте об этом, подумайте, что скажут о Вас потомки!

Я долго ждал, что с подобным письмом к Вам обратится директор нашего института А. М. Прохоров. Его мировой авторитет переживет всех президентов. Но как директор, он, к сожалению, боится Вас. Приходится это делать мне.


А. А. Рухадзе,

профессор

Нужны ли российские ВАК и Академия наук?

«Трибунал», № 9, сентябрь 1997 г.


Я постараюсь ответить на этот вопрос возможно кратко и четко, чтобы уложиться в рамки небольшой газетной статьи.

В бывшем Советском Союзе ВАК была призвана осуществлять контроль за единством требований при присуждении ученых степеней специализированными учеными советами научных центров больших городов (Москвы, Ленинграда, Новосибирска, Киева и др.) и советами маленьких республик и регионов. В действительности ВАК никогда не соблюдала этого принципа. По крайней мере, за 25 лет (с 1968 по 1993 г.) работы в Экспертном совете ВАК по физике в качестве эксперта я многократно наблюдал его нарушение. Всегда периферийным регионам и республикам делались «поблажки». Под предлогом, что уровень провинций надо поднимать, кандидатские и докторские диссертации из периферий утверждались, несмотря на их явную слабость. Кроме того, аспирантам и докторантам, в особенности вузов, делались снисхождения, учитывая требования защиты в срок! Наконец, следует отметить и «мафиозность» ряда специализированных Ученых советов, использующих свое влияние на ВАК, чтобы «проводить» явно слабые диссертации. Правда, такие явления все-таки были исключением.

Тем не менее тогда в стране не было министерства науки и технологии, и существование ВАК можно было как-то оправдать. Сейчас, когда Советский Союз распался и появилось в России такое министерство, потребность в ВАК полностью отпала. Более того, ВАК вреден не только потому, что, обладая большим штатом, расходует впустую большие государственные средства, но и потому, что нарушение единства требований в ВАК сегодня стало вопиющим, о чем говорят многочисленные скандалы, свидетелем которых я был.

Считаю, что узкоспециализированные (не более двух специальностей) ученые советы в крупных вузах и федеральных научных Центрах России вполне могут взять на себя все функции ВАК. И если принцип единства требований будет нарушаться такими советами, то это очень быстро отразится на их авторитете при условии, что в дипломах присуждаемых ученых степеней будет указываться также ученый совет, в котором была присуждена Ученая степень. Формирование и контроль за работой таких советов должно взять на себя министерство науки и вмешиваться в их работу только в крайне редких, конфликтных случаях.

Все сказанное относится и к четырем известным академиям наук (РАН, академиям медицинской, сельскохозяйственной и образования), финансируемым государством. При отсутствии министерства науки они осуществляли координацию и распределение, средств между научными учреждениями. За эту работу (а точнее, вообще ни за что!) «самоизбранным» членам академий выплачивались пожизненные государственные пенсии, а сами академии укомплектованы огромными чиновничьими штатами, пожирающими большие средства. Сейчас, когда создаются крупнейшие федеральные научные центры, финансируемые непосредственно министерством науки России, роль академий сводится к нулю. Поэтому их надо реорганизовывать, превратив в не финансируемые государством общественные и чисто «престижные» организации.

Это высвободит средства, идущие на финансирование административных аппаратов этих академий, не говоря о том, что искоренит источник коррупции, процветающий в них.

Тем же ученым, которые уже «самоизбраны», надо сохранить; стипендии до конца жизни (правда, только тем, которые работаютпостоянно в России). Ведь они сами говорят по этому поводу: «Расход небольшой, но если не платить, то вони будет больше!»

Таким образом, считаю и ВАК, и Академии наук России абсолютно ненужными и даже вредными как центры необъективности и коррупции. Их функции надо передать большим вузам, федеральным научным центрам и министерству науки России.


Анри Рухадзе

Благотворительность с сомнительной окраской

«Российские вести», № 113, 24 июня 1997 г.


Странно, что наше правительство, приняв решение взять насебя половину расходов по проведению программы Института «Открытое общество» «Соросовские профессора», передоверило вознаграждение отечественных ученых такой сомнительной организации, как Фонд Сороса.

Хочу поделиться своим мнением по поводу того, кому и зачем адресована его поддержка. Я был в числе соискателей, но не получил долгосрочный грант и дважды не попал в число соросовских профессоров. Поначалу было обидно, но, проанализировав, как этопроизошло, я пришел к выводу, что по-другому и быть не могло.

Сравнивая неблагоприятные отзывы экспертов о моих научных предложениях с теми, которые получили гранты, могу сказать, что мои лучше подавляющего большинства из них. Когда я сам пишу отрицательные отзывы, то сообщаю о них авторам. Фонд же экспертизу предложений проводил закрыто, способствуя возможной необъективности оценки, и заодно, нарушив существующую в мире практику, не оплатил труда рецензентов.

Столь же необычно Институт «Открытое общество» отбирал и соросовских профессоров. Расскажу о собственном опыте. По положению, для того чтобы разобраться со мной, сотрудники фонда должны были провести опрос моих студентов. Человек, который этим занимался, позвонил мне и сказал: «Студенты рассказывают о вас взахлеб. Я хочу прийти на вашу лекцию». Помимо Госпремии за учебник, я получил еще одну за науку и стал лауреатом Ломоносовской премии. По положению, мне нужно было набрать шесть защитившихся под моим руководством кандидатов наук. У меня их было 15. На мою монографию по физике плазмы было сделано больше 178 ссылок, а нужно пять. Казалось бы, чего еще? Тем не менее я вылетел из списка. В официальном ответе было написано, что студенты оценили мою преподавательскую деятельность как посредственную.

Список соросовских профессоров, которых фонд отбирал столь же закрыто, как и грантополучателей, вызывает удивление странным однообразием фамилий. Неужели русские профессора настолько тупы? В списках их так мало, что создается статистика, которая может иметь только одно разумное объяснение, — эта благотворительность носит национальную окраску, подобно тому, как премии имени Ш. Руставели и А. Пушкина вручаются только грузинским и только русским писателям соответственно. Есть ли такое же условие в уставе Фонда Сороса — сомнительно, ибо институту «Открытое общество» оно не к лицу.

Впрочем, уместно ли говорить о сохранении лица организации, которая, пользуясь бедственным материальным положением наших ученых, бесплатно собрала ценнейшую информацию об их новейших разработках и идеях, спровоцировав претендентов на грант изложить все это в многочисленных анкетах. Зная предприимчивость г-на Сороса, уверен, что он найдет этой информации хорошее коммерческое применение.

Столь же неоднозначно выглядит при ближайшем рассмотрении и такая оказываемая Соросом помощь, как повсеместное внедрение компьютерной сети Интернет. Прилагая огромные усилия для создания таможенной службы, способной остановить контрабанду, наше правительство, видимо, не знало, что идеология глобальной компьютерной сети была задумана и разрабатывалась Для того, чтобы сделать прозрачными любые границы. Положить заслон продолжающейся через Интернет утечке стратегической информации из России можно только одним путем — создать ученым нормальные условия для проживания и работы у себя на родине. Можно ли перепоручать это заокеанским дядюшкам, заинтересованным в прямо противоположном?

P. S. Меня некоторые упрекают: «Если ты так думаешь о фонде Сороса, зачем же дважды сам участвовал в конкурсе фонда?». Ответ простой — а как же иначе я мог убедиться в национальной ориентации фонда?

О Физтехе, ВАК и Академии наук

«Независимая газета», ежемесячное приложение, № 5(9), 6 мая 1998 г.


Взяться за перо меня побудила статья Сергея Петровича Капицы, опубликованная в «НГ-Науке» за 14 января 1998 г. Нужен ли России знаменитый Физико-технический институт, Физтех? Ответ, мой будет положительным — нужен!

Я окончил среднюю школу с золотой медалью в 1948 году, в Тбилиси и поступил в Физтех после 3 туров довольно сложных отборочных экзаменов. Это был второй набор Физтеха, так что я старожил и имею определенное право высказаться об этом институте. Добавлю к этому, что вот уже более 30 лет работаю профессором физического факультета МГУ и могу провести сравнение этих двух близких вузов.

После окончания с отличием института в 1954 году я поступил в аспирантуру Физического института Академии наук (ФИАН) к академику Игорю Тамму и проработал в академии вот уже почти 45 лет — от младшего научного сотрудника до заведующего теоретическим отделом и главного научного сотрудника. Более десяти раз выдвигался в члены Академии наук. Так что, наверное, могу оценить и работу научных институтов, и роль самой Академии наук и ее президиума. Кроме того, с 1967 по 1992 год был членом экспертных комиссий Высшей аттестационной комиссии (ВАК) по физике как по открытым, так и по закрытым работам, и поэтому функции ВАК и их фактическое выполнение этим органом мне также хорошо знакомы. Выскажусь обо всех этих вопросах очень кратко.

Высшая аттестационная комиссия никогда не соблюдала основной свой принцип — единство требований при присуждении ученых степеней, всегда делала поблажки периферии («ее до развивать»), аспирантам («они должны защищаться в срок и влиятельным группировкам (сильные мира сего всегда вмешивались). Зачем такая ВАК? Она давно изжила себя!

Мое мнение по этому вопросу: функции присуждения степеней надо полностью доверить специализированным ученым советам при крупных вузах и научных институтах, указывая место защиты в дипломе. Это очень быстро покажет, кто есть кто и чего стоит. Конфликтные же ситуации, а их число при этом должно резко уменьшиться, надо доверить небольшому совету при министерстве науки, который к тому же и будет утверждать спец. советы.

Членам Российской Академии наук, избираемым самими же членами РАН, пожизненно с момента избрания платят «академическую пенсию», и уже по этой причине они не могут быть достаточно объективными. Примеров такой необъективности членов РАН и желающих во что бы то ни стало быть туда избранными имеется множество. В последние годы академия, очевидно, угождает чиновникам и прочим «значительным лицам». Примеров чересчур много, чтобы здесь их перечислять. В то же время в РАН не были избраны такие, например, ученые, как Владилен Летохов, Юрий Климонтович, Сергей Ахманов, Гурген Аскарьян — гордость нашей физической науки.

Российская академия наук должна быть бесплатным клубом элитных ученых. Что касается самих академических институтов, их надо сохранить, усилив их роль в развитии фундаментальной науки и резко сократив их участие в прикладных проблемах, — для этого существуют прикладные институты, финансируемые во многом частным капиталом и через госзаказ. Академические же институты должны финансироваться министерством науки.

И, наконец, о Физтехе. Созданный с целью подготовки кадров для развития фундаментальной науки в институтах АН СССР, министерства среднего машиностроения и некоторых других министерств, Физтех был институтом очень нужным и даже элитным (по уровню подготовки кадров). В частности, в Физтехе изучались основы физики ядерного и термоядерного взрыва, физические процессы в топливах новых авиационных и ракетных двигателей, новые физические принципы локации. Но начиная с 1970-х годов, когда ВПК начал определять тематику академических институтов, они стали дублировать прикладные. Фактически это привело к господству прикладных исследований в Физтехе. С открытием кафедр прикладных институтов в Физтехе он начал терять свое лицо.

Я не хочу винить в этом последнего ректора и его предшественника — такова была государственная политика, которая привела к падению престижа Физтеха. Последней каплей в этом процессе стало открытие кафедры философии эстетики (как пишет Сергей Капица, введение гуманитарного образования). Эта кафедра мне напоминает рекламу «Я выбираю безопасный секс»: когда физик становится импотентом в физике, он начинает философствовать на эту тему.

А Физтех должен быть таким, каким он был задуман, — кузницей высококвалифицированных кадров для фундаментальной физики с ориентацией на определенные практические приложения. Здесь должны преподавать активно работающие крупные ученые, обладающие к тому же педагогическим даром, что бывает очень и очень редко!


Анри Амвросьевич Рухадзе, доктор физико-математических наук, профессор МГУ, главный научный сотрудник Института Общей Физики РАН, дважды лауреат Государственной премии СССР, лауреат премии имени М. В. Ломоносова МГУ.

Недоразумения и недобросовестность в науке

Часть I. Фрагменты истории: ошибки, открытия, реклама и пр

В ныне разрушенном СССР науке уделялось заметное внимание, которое не оставляло равнодушными даже поэтов. «Что-то физики в почете, что-то лирики в загоне…» — сокрушался один из них по этому поводу. А поскольку «поэт в России больше, чем поэт», то ученые порой и вовсе представлялись какими-то неведомыми небожителями, чему способствовала, кстати, и завеса секретности, отсутствующая у поэтов. В «застойное» время одна из газет вела долгую общую дискуссию о науке и нравственности, и при этом создавалось впечатление, будто ученые в этом отношении чем-то особым и существенным, кроме специфики своей работы, отличаются от других людей.

Ученым, как и всем прочим людям, не чуждо ничто человеческое, в том числе и совсем не возвышенные страсти, а также заблуждения и ошибки, порой весьма курьезные и поучительные Вычисляя отклонение луча света около массивного тела, Эинштейн в рамках релятивистской теории в начале двадцатого века первоначально получил ошибочный результат, который еще в начале девятнадцатого столетия был уже получен на основе нерелятивистской (ньютоновской) теории тяготения и корпускулярной теории света.

Открытое экспериментально П. А. Черенковым в 1934 г. излучение электрона, равномерно движущегося в среде со сверхсветвой скоростью, было теоретически предсказано также в девятнадцатом веке Хевисайдом, о чем ученые узнали спустя много лет, уже после открытия Черенкова и присуждения за это открытие и его объяснение Нобелевской премии И. Е. Тамму, Г. М. Франку и П. А. Черенкову в 1958 г.

Несмотря на интенсивные теоретические и экспериментальные поиски высокотемпературной сверхпроводимости, ее открытие в 1986 г. в керамических образцах стало почти полной неожиданностью, поскольку подобные материалы оставались вне поля зрения теоретиков.

Эти примеры показывают, сколь причудливым может быть движение переднего края науки, конфигурация которого определяется и общественными потребностями, и внутренней логикой развития науки, и устремлениями отдельных ученых.

В химии, биологии, медицине и других науках также случались различные не очень приятные истории, в том числе и такие, которые непосредственно влияли на жизнь и здоровье многих людей. Достаточно вспомнить в связи с этим о применении медицинского препарата талидомида, инсектицида ДДТ, о неприятии асептики современниками доктора Зиммельвейса или об истории с «голубой кровью» — кровезаменителем перфтораном.

Но мы ограничимся здесь областью точных наук — физикой, поскольку физика нам ближе всего по роду наших занятий. Кроме того, как уже упоминалось выше, в почете были именно физики, и поэтому вовсе не случайно один из перестроечных кумиров был сотворен из физика А. Д. Сахарова. В массовом сознании представители других наук не имели такого особого ореола, а химики были даже дополнительно скомпрометированы неуемной хрущевской «химизацией», так что слова «химик» и «химичить» стали почти нарицательными, бросая неоправданную тень на науку, «широко простирающую руки свои в дела человеческие».

Научная работа требует безупречной логики, так как в противном случае вероятность получения ошибочных выводов резко возрастает даже при правильных исходных посылках. Об одном таком случае из истории своей работы с Л. Д. Ландау рассказал в недавно вышедшей книге «О науке, себе и других» (1997 г.) академик В. Л. Гинзбург. Из рассуждений Ландау следовало, что в феноменологическом уравнении для сверхпроводников константа взаимодействия с внешним электромагнитным полем должна быть универсальной, и по этой причине ее положили равной заряду электрона е. Однако на самом деле эта константа оказалась Равной удвоенному заряду электрона («куперовская пара»), что не противоречит первой части рассуждений Ландау, поскольку константа столь же универсальна, как и е.

Отношение к ошибкам и другим нежелательным или спорным явлениям в науке может служить характеристикой не только отдельных личностей, но и целых общественных систем. В наших научных журналах до сих пор фактически отсутствует регулярная рубрика, аналогичная «Комментариям» в ряде зарубежных журналов, где печатаются критические и другие замечания по опубликованным статьям. Такие журналы, как, например, «Science» и «Nature», постоянно держат в поле зрения вопросы профессиональной научной этики, которым у нас в научных журналах уделяется явно недостаточное внимание.

В средствах массовой информации сейчас говорят и пишут почти обо всем, в том числе и о халтуре в науке. Как пишут — это отдельный вопрос, но в прежние времена эта тема практически совсем не обсуждалась, хотя после «оттепели» иногда научные коллизии или скандалы попадали на страницы газет в форме сенсационных публикаций, за которыми порой следовали авторитетные разоблачения. Многие ученые старшего поколения еще помнят, наверное, о «теории Козырева» или о «чуде в Бабьегородском переулке», где был достигнут КПД больше единицы.

В пятидесятые годы и ранее открытые дискуссии были событием скорее чрезвычайным, чем нормальным, поскольку в жестко централизованной системе они могли повлечь за собой очень серьезные последствия для ее участников. Известное противостояние Н. И. Вавилова и Т. Д. Лысенко привело к аресту и гибели Н. И. Вавилова. Под арестом и в заключении побывали многие крупные ученые и специалисты: Л. Д. Ландау, В. А. Фок, С. П. Королев, А. Н. Туполев… Талантливый физик М. П. Бронштейн, без должной серьезности воспринимавший обострение «классовой борьбы» и заявлявший, что он назовется племянником Троцкого, если тот придет к власти, был расстрелян в 1937 году. Жестокие удары обрушивались тогда и на ученых, и на поэтов, и на иных выдающихся или простых людей, не говоря уже о партийно-государственных деятелях. Один из них шутил по этому поводу: «У меня со Сталиным разногласия по аграрному вопросу — кто кого закопает». В этом деле Сталин оказался более опытным, чем его противники, и это обстоятельство многих продолжает волновать до сих пор.

Продолжение трагедии, как известно, нередко превращается в фарс и трагикомедию. Уже на нашей памяти Ландау сначала изображали как невинную жертву тоталитарного режима, которую едва удалось спасти от гибели благодаря усилиям академикам П. Л. Капицы. Затем стали намекать, что Ландау все-таки был идейным борцом с режимом, а это, как говорится, две очень, большие разницы. Погибшего академика Н. И. Бухарина не только полностью реабилитировали, но и восстановили в партии, которую потом стали называть фашистской, как бы подтверждая прежние обвинения в сговоре Бухарина с фашистами.

Подобного рода «парадоксальность» мышления и действий характерна для многих представителей российской интеллигенции, не исключая и ученых. Они, например, ставят превыше всего «права человека» и одновременно поносят государство как зловредную систему, словно забывая, что государство как раз и предназначено для реального обеспечения этих прав. В результате такой борьбы за «общечеловеческие ценности» в разрушаемой стране миллионы бюджетников не получают заработанные деньги, а представителей более удачливого меньшинства их конкуренты отстреливают в подворотнях, как собак. Настойчиво призывая не замечать национальных различий, те же самые «общечеловеки» зовут всех «прогрессивных» людей на борьбу с антисемитизмом, явно выделяя среди прочих национальностей одну особенную. Такое выделение не может не затрагивать интересы всех остальных людей, включая и «лиц кавказской национальности».

По этой причине, в частности, многие научные коллизии нередко смещаются в плоскость национального вопроса, которого у нас вроде бы никогда не существовало, поскольку он был решен окончательно и бесповоротно после победы революции. Но в действительности все обстояло совсем не так, что и было отражено в известном афоризме: «Физик — это не профессия, а национальность». Теперь постепенно многие подобные истории становятся достоянием гласности, хотя и не без определенного сопротивления.

Недавно один из нас — А. Р. — опубликовал в журнале «Физика плазмы» (№ 5 за 1997 г.) статью, написанную по просьбе главного редактора этого журнала В. Д. Шафранова и посвященную истории кинетической теории плазмы, в создании которой существенную роль сыграли работы А. А. Власова и Л. Д. Ландау. Ландау первым понял необходимость формулирования кинетической теории плазмы — газа, состоящего из заряженных частиц. В 1936 г. он опубликовал работу «Кинетическое уравнение для газа кулоновских частиц». Хотя поставленная цель в ней и не была достигнута, тем не менее это одна из наиболее цитируемых работ Ландау. Мы не случайно подчеркнули первую половину предыдущего предложения, поскольку именно эти выделенные слова были вычеркнуты из статьи А. Р. уже после проверки ее корректуры.

Такое откровенное проявление цензуры в наше «демократическое» время уже само по себе примечательно, тем более что речь идет о событиях шестидесятилетней давности. Однако «укрепление авторитета» Ландау столь «старомодным» способом, за счет умаления заслуг Власова продолжается.

Дело в том, что правильное кинетическое уравнение для плазмы первым написал Власов в 1938 г., и это обстоятельство оказалось, по-видимому, очень болезненным для самолюбия некоторых физиков. Так или иначе, но в 1946 г. в «Журнале экспериментальной и теоретической физики» появилась статья известных ученых В. Л. Гинзбурга, Л. Д. Ландау, М. А. Леонтовича и В. А. Фока под названием «О несостоятельности работ А. А. Власова по обобщенной теории плазмы и теории твердого тела», которая является позором для ее авторов и редакции ЖЭТФ, не предоставившей Власову возможности для печатного ответа, хотя с его ответом авторов указанной статьи ознакомили еще до ее публикации.

В основном результате работы Власова нет приписываемых ему ошибок. Полученное им уравнение вошло в мировую научную литературу под названием «уравнение Власова», имя которого в ЖЭТФ старались упоминать как можно реже.

Эта история показывает, до какой степени ослепленности могут доходить некоторые ученые в своих уязвленных амбициях, когда кто-то другой опережает их. Уязвленно-необъективное отношение к выдающемуся достижению Власова отчетливо проступает в стиле изложения статьи Ландау «О колебаниях электронной плазмы» (ЖЭТФ. 1946. 16. С. 574; Ландау Л. Д. Собрание трудов. Т. 2. М., 1969. С. 7): «Колебания электронной плазмы описываются при больших частотах сравнительно простыми уравнениями… Эти уравнения были применены к изучению колебаний плазмы А. А. Власовым [1, 2], однако большая часть полученных им результатов является ошибочной». Судя по этому стилю, для Ландау просто невыносимо публичное признание того факта, что Власов не только применил «эти уравнения», но и впервые в мире: сформулировал их для плазмы!

Вышеупомянутая статья четырех авторов (ЖЭТФ. 1946. 16, вып. 3. С. 246) не была включена составителями в «Собрание трудов» Л. Д. Ландау и ее не содержит даже приведенный в т. 2 на с. 448 «Список статей, не включенных в это Собрание». О ней обычно стараются вообще не вспоминать, как это делает например, Е. Л. Фейнберг в своей книге «Эпоха и личность Физики. Очерки и воспоминания» (М.: Наука, 1999), где есть статьи, посвященные Л. Д. Ландау и М. А. Леонтовичу. Не избегай «острых углов» при описании характеров и некоторых поступком этих ученых, Евгений Львович тем не менее никак не затрагивает историю с Власовым, в которой они оба участвовали.

В тех случаях, когда подобное замалчивание затруднено, используется такая форма подачи материала, которая превращает Власова в некую безликую фигуру и не оставляет места даже для намека на то, что сформулированные им уравнения заслуженно носят его имя в мировой научной литературе.

В книге А. С. Сонина с закавыченным названием «Физический идеализм» и подзаголовком «История одной идеологической кампании» (Москва, 1994) в разделе «Борьба с космополитизмом» (с. 100) читаем: «13 ноября 1947 г. состоялось заседание Ученого совета физического факультета МГУ. С докладом «О патриотическом долге советских ученых» выступал декан профессор В. П. Кессених. Он начал, конечно, с идеологических постановлений ЦК ВКП(б). В свете этих постановлений, подчеркнул Кессених, становится ясным, что отдельные профессора факультета недооценивают роль русских и советских ученых…

Замалчивание русских ученых иногда переходит в «охаивание и опорочивание». Профессор А. А. Власов написал в 1946 г. интересную статью по теории плазмы. Тут же Фок, Ландау, Леонтович и Гинзбург (обратите внимание на фамилии — А. Сонин) послали в ЖЭТФ статью «О несостоятельности работ А. А. Власова по обобщенной теории плазмы и теории твердого тела». По мнению Кессениха, указание на ошибки коллеги — это «опорочивание»…

Доклад Кессениха поддержал профессор А. А. Соколов. Главным мотивом в его выступлении звучало обвинение физиков Академии наук в «затирании» университетских физиков. Это было подано как происки космополитов Фока, Ландау, Леонтовича, Гинзбурга и др. Он опять вернулся к случаю со статьей Власова, посетовал на то, что всю редакционную политику в ЖЭТФ определяет один Лифшиц, который препятствует напечатанию статей физиков МГУ.

В разделе «Совещание, которое, к счастью, не состоялось» на с. 132 А. С. Сонин пишет: «Особое место в выступлении Ноздрева занимал вопрос о «травле и замалчивании» отечественных физиков из МГУ «антипатриотической группой» из Академии наук СССР. По мнению Ноздрева, история этой «травли» началась в 1944 г., когда заведующим кафедрой теоретической физики был избран Власов, а Тамм был забаллотирован. Тогда Мандельштам, Фрумкин, Семенов, Фок и Леонтович подали в Комитет по высшей школе заявление, в котором была сделана «попытка дискредитировать Власова» и выдвинуты требования отменить решение Ученого совета физического факультета. Комитет удовлетворил это требование и назначил заведующим кафедрой Фока. Однако «под давлением научной общественности» физического факультета Комитет отменил свое решение и назначил избранного Власова».

«Тогда, — заявил Ноздрев, — начинаются атаки с другой стороны. В ЖЭТФ появляется статья за подписью Фока, Леонтовича, Ландау и Гинзбурга под кричащим заголовком «О несостоятельности работ проф. А. А. Власова». Тут же под председательством «небезызвестного своими антипатриотическими поступками» проректора В. И. Спицына была создана комиссия, которая сняла Власова с поста заведующего кафедрой, потому что «он слаб как организатор». Опять вмешалась «научная общественность», и Власова снова восстановили». Так выглядит эта история в изложении А. С. Сонина.

Добавим к сказанному, что Власов так и не был избран членом АН СССР. Академическая «элита» пыталась также, но не смогла помешать присуждению Власову Ленинской премии в 1977 г. Об этом нам известно потому, что А. Р. присутствовал на пленуме Комитета по Ленинским премиям как представитель МГУ для поддержки Власова и был свидетелем всего там происходящего.

Подробнее о жизни и работах Власова можно прочитать в книге И. П. Базарова и П. Н. Николаева «Анатолий Александрович Власов» (Москва, Физический факультет МГУ, 1999). Вспоминает о Власове и А. Д. Сахаров: «Основной для меня курс квантовой механики читал профессор А. А. Власов — несомненно, очень квалифицированный и талантливый физик-теоретик, бывший ученик И. Е. Тамма… Первые, очень интересные работы Власова были написаны совместно с Фурсовым, потом их плодотворное содружество распалось. Наиболее известны работы Власова по бесстолкновительной плазме; выведенное им уравнение по праву носит его имя. Уже после войны Власов опубликовал (или пытался опубликовать) работу, в которой термодинамические понятия вводились для систем с малым числом степеней свободы. Многие тогда с огорчением говорили об этой работе как о доказательстве окончательного его упадка как ученого. Но, может быть, Власов был не так уж и неправ. При выполнении определенных условий «расхождения траекторий» система с малым числом степеней свободы может быть эргодической (не поясняя термина, скажу лишь, что отсюда следует возможность термодинамического рассмотрения). Пример, который я знаю из лекций проф. Синая: движение шарика по биллиардному полю, если стенки сделаны вогнутыми внутрь поля. Власов был первым человеком (кроме папы), который предположил, что из меня может получиться физик-теоретик» (Знамя. 1990. № 10). Отдавая должное Власову Сахаров обходит молчанием историю со статьей в ЖЭТФ, которая по-видимому, не укладывается в тщательно охраняемую систему современных мифов о людях науки.

В истории науки имеется немало драматических и даже трагических примеров соперничества, неприязни и элементарной необъективности. Достаточно вспомнить о взаимоотношениях И. Ньютона и Г. Лейбница в истории создания дифференциального исчисления или И. Ньютона и Р. Гука в связи с открытием закона тяготения. Великий математик К. Ф. Гаусс оказал роковое влияние на трагическую судьбу одного из создателей неевклидовой геометрии Я. Больяи, который пришел к своему открытию независимо от Лобачевского. Поэтому, если бы предмет научных исследований был столь же доступен для массового восприятия, как и музыка, то легенда о Моцарте и Сальери просто затерялась бы среди ее научных аналогов, в которых гений и злодейство причудливо сочетались в одних и тех же персонажах.

(Первоначальный вариант изложенного выше текста был напечатан в «Независимой газете» 17. 02. 1999 под названием «Субъективные заметки о научной этике» и с подзаголовком «Наука полна аналогов легенды о Моцарте и Сальери». Его продолжение, которое приводится далее, опубликовать в той же газете пока не удалось.)

Уже в девятнадцатом веке взаимодействие между учеными несло на себе отпечаток не только личных, индивидуальных факторов, но и коллективных, групповых устремлений. Авторы приложения к переводу максвелловского «Трактата об электричестве и магнетизме» (Изв. вузов. ПНД. 1999. № 6) пишут: «Многие другие исследователи, занятые аналогичными делами, т. е. развивающие свои варианты теории, не восприняли достижения Максвелла как решающие и тем более как завершающие. Одной из причин, наверное, было привлечение образной, фарадеевского толка аргументации… Это отпугивало, по крайней мере, некоторых континентальных физиков. Как ни странно, но такая территориальная поляризация наблюдалась на самом деле: немецкая и французская наука была более привержена рассудочному, аналитическому способу познания, чем британская, тяготевшая к образным, геометрическим методам. И шло это традиционно еще со времен великого противостояния дифференциалов Лейбница и флюксий Ньютона. Вообще написанные Максвеллом уравнения показались «конкурентам» неубедительными и неубедительно обоснованными». На континенте в свою очередь «национально-территориальные» аспекты соперничества между французскими и немецкими учеными ощущались еще задолго до Первой мировой войны. В чем-то содействуя развитию науки, эти дополнительные факторы в то же время косвенно способствовали необъективности, практике двойного стандарта и другим не самым лучшим проявлениям человеческой натуры.

Открытие в 1895 г. немецким физиком Рентгеном «Х-лучей» стимулировало соответствующую активность во Франции, где Через несколько лет тоже были обнаружены новые таинственные «N-лучи». Их существование было «подтверждено» в нескольких лабораториях, однако в итоге все это начинание оказалось блефом, о котором сейчас мало кто и помнит.

Гораздо более масштабной и долгой оказалась другая околонаучная история, связанная с формированием релятивистской физики, в которой рассматриваются скорости движения, сравнимые со скоростью света. В работе 1905 г. по специальной теории относительности Эйнштейн ни словом не обмолвился о своих предшественниках в этой области — Лоренце и Пуанкаре. Такое явное нарушение норм научной этики было обусловлено и духом времени, и личными качествами отдельных ученых, и национально-территориальными аспектами.

Упоминание национального фактора нередко вызывает явное неудовольствие у некоторых «культурных» людей, исключающее возможность объективного рассмотрения подобных вопросов. В этой связи в качестве примера противоположного рода стоит упомянуть статью «Иерусалимские размышления» (Природа. 1991. № 10) известного физика М. Азбеля, который в свойственной ему парадоксальной манере заявляет: «А недавно мне пришла в голову и еще более еретическая мысль. В нарочито заостренной форме ее можно выразить так: Геббельс был прав — существует наука арийская и наука еврейская. Наука в Советском Союзе и отчасти в Европе — наука еврейская. Наука в Америке и Израиле(!) — это наука арийская.

Мысль эта пришла мне в голову при чтении книги Доры Штурман, в которой она описывает характер Троцкого. В этом характере мне вдруг почудилось что-то страшно знакомое. Где-то я уже читал нечто подобное… И вдруг я вспомнил: в западной биографии Эйнштейна!

В России мы привыкли к образу добропорядочного, всепрощающего, всепонимающего, скромнейшего Эйнштейна. В жизни это был человек, плохо понимавший возможность чьей-либо правоты кроме своей собственной; резкий и нетерпимый в споре; готовый прислушаться к мнению лишь немногих избранных. Узнав это, меньше удивляешься тому, что у Эйнштейна никогда не было настоящих учеников, что он не создал и не оставил школы. Характер Эйнштейна подозрительно напоминал характер другого известнейшего еврейского физика — величайшего советского теоретика Льва Ландау».

«Если моя теория относительности окажется правильной, — заявил Эйнштейн в своем выступлении в Сорбонне в 1920 г., — то немцы будут называть меня немцем, а французы — гражданином мира. Если же теория не подтвердится, то французы будут считать меня немцем, а немцы — евреем» (Nature. 2000. 403. P. 17).

Впоследствии вокруг «теории Эйнштейна» была развернута шумная мировая рекламная кампания, а он сам был объявлен величайшим физиком всех времен и народов, гениальность которого роднит его с Моцартом, Шекспиром, Достоевским и прочими известными в истории фигурами. При этом подчеркивалось, что понять его теорию по-настоящему не может никто, с чем далекий от физики обыватель легко соглашался. Естественная негативная реакция на эту шумиху объявлялась антисемитизмом, что способствовало дополнительному разжиганию страстей, направленных и против конкретной физической теории, и против Эйнштейна, и против всех тех, кто его так непомерно возвеличивает.

В различных формах этот рекламный процесс продолжается до сих пор, предоставляя возможность обывателям услышать соответствующее имя из уст и Михаила Горбачева, и Аскара Акаева, и персонажей «Санта-Барбары», естественно, без адекватного упоминания о других физиках и математиках, которые внесли вклад в «теорию Эйнштейна» не меньше, чем ее «создатель». В итоге такой интенсивной промывки мозгов даже многие физики как-то упускают из виду, что «уравнения Эйнштейна» несколько раньше него написал Д. Гильберт, что релятивистские преобразования пространства-времени называются «преобразованиями Лоренца», что Нобелевскую премию за теорию относительности Эйнштейн не получил и что первая релятивистская теория в физике — электродинамика Максвелла — создана вообще без всякого участия «величайшего физика всех времен и народов».

Авторы упомянутой выше статьи в «ПНД» — М. Л. Левин, Е. В. Суворов, М. А. Миллер — отдают должное громадному вкладу Максвелла в развитие современной физики, поскольку уравнения Максвелла — это не только первая релятивистская теория, но и первый пример «единой теории поля», объединившей электричество, магнетизм и оптику. Кроме того, в отличие, например, от общей теории относительности, уравнения Максвелла «работают» практически во всей окружающей нас технике.

Между тем достойная оценка роли Максвелла как одного из создателей современной классической физики оказывается скорее исключением, чем правилом. Вот перед нами текст лекции академика Ж. И. Алферова, члена редакционного совета журнала «Наука и жизнь», прочитанной в рамках Соросовской конференции в Петербурге и напечатанной в этом журнале (№ 3 за 2000 г.). В ней дается обзор достижений физики — «главной науки уходящего столетия». Этот период автор называет также «веком квантовой физики, поскольку именно квантовая физики определила лицо Уходящего века». Отмечая сравнительную молодость современной науки, насчитывающей примерно лет триста, Алферов сообщает, что основателями современного естествознания, современной физики можно считать Исаака Ньютона, Галилео Галилея и Рене Декарта, которые сформировали классическую механику и классическую физику. О создателе классической электродинамики в этой статье не сказано ни слова.

Забыв упомянуть о Максвелле, Алферов, разумеется, не забыл сказать необходимый набор слов об Эйнштейне, который в данном случае предстает перед обывателем в новой ипостаси, долженствующей, по-видимому, дополнить или даже качественно изменить образ творца теории относительности: «Недавно журнал «Тайм» провел опрос, кого из жителей планеты можно признать олицетворившим XX век, и титул человека столетия с подавляющим преимуществом получил Альберт Эйнштейн — основной создатель (если говорить об индивидуальностях) квантовой физики…

Конечно, решающее слово было сказано Альбертом Эйнштейном, предложившим в 1905 году квантовое объяснение фотоэффекта. Именно за квантовую теорию фотоэффекта, а не за теорию относительности ему в 1922 году была присуждена Нобелевская премия по физике. Потому что эта работа А. Эйнштейна сыграла ключевую роль в формировании квантовой теории».

Объявление Эйнштейна «основным создателем» квантовой физики является очевидным для каждого физика преувеличением, не менее выразительным, чем гиперболизация роли Эйнштейна в ряду других создателей релятивистской физики. По этой причине, наверное, Ж. Алферов не стал повторять эти опубликованные сентенции в своем выступлении в Физическом институте РАН, которое состоялось 31. 01. 2001. уже после присуждения ему Нобелевской премии по физике за 2000 г.

Появление подобных публикаций накануне решения вопроса о присуждении Нобелевской премии может показаться чистой случайностью, если не обращать внимания на некоторые другие обстоятельства, в частности на бытующее с некоторых пор утверждение о том, что «основой квантовой электроники как науки в целом служит явление индуцированного излучения, существование которого было постулировано Эйнштейном в 1916 г.». Такое утверждение содержится, например, в книге Н. В. Карлова (Лекции по квантовой электронике. М., 1983), где также сообщается о том, что «спонтанное излучение является эффектом принципиально квантовым, не допускающим классической трактовки» и что «автор благодарен своим друзьям и коллегам Ф. В. Бункину, В. Г. Веселаго, П. П. Пашинину, внимательно прочитавшим рукопись этой книги и сделавшим много полезных для автора замечаний». Между тем процессы индуцированного и спонтанного излучения не являются специфическими квантовыми эффектами и имеют свои известные до 1916 г. классические аналоги, о чем сам Эйнштейн добросовестно повествует в своих статьях 1916 г. «Испускание и поглощение излучения по квантовой теории» и «К квантовой теории излучения», в которых он предположил, что эти классические понятия можно перенести и в квантовую область (А. Эйнштейн. Собрание научных трудов. Т. III. М., 1966). Однако после первой из этих статей в указанном Собрании научных трудов на с. 392 помещено руководящее и направляющее редакционное примечание: «В этой работе высказаны идеи, которые впоследствии привели к возникновению и развитию электроники. В ней впервые были введены коэффициенты Эйнштейна А и В». Направленности этого примечания соответствует и более ранний текст в Физическом энциклопедическом словаре (М., 1962) на с. 180: «Впервые индуцированное излучение было постулировано Эйнштейном…». При этом, правда, все-таки присовокупляется, что «существование индуцированного излучения можно вывести из классической электродинамики», но не упоминается, когда и кем это было сделано впервые. В этой связи почему-то неотвратимо вспоминается другая классическая, но уже совсем лозунговая сентенция: «Пройдет зима, настанет лето — спасибо партии за это!».

Неприглядная роль СМИ в создании подобных деформаций массового сознания очевидна. Это отмечается, в частности, в фейнмановских лекциях по физике, автора которых вряд ли можно обвинить в антисемитизме. Обсуждая формулу E=mc2, Р. Фейнман в этих лекциях пишет: «Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если m распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему указали, какой процесс произойдет… Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и популярных описаний развития физики и техники. Проблема, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет».

К этим словам Р. Фейнмана стоит добавить, что приписывание этой формулы только Эйнштейну также является рекламным преувеличением, поскольку ее аналог еще до первой работы Эйнштейна был опубликован в работах X. Лоренца (1904 г.) и и еще раньше А. Пуанкаре (1900 г.), о чем можно прочитать, например, в «Am. J. Phys.» (1988. 56, № 2).

Наша «перестроечная» пресса оставила в своем усердии далеко позади те газеты, о которых писал Р. Фейнман. В деле сотворения мировой эйнштейнианы русскоязычные СМИ оказались «впереди планеты всей».

«Человеку свойственно стремление к ясности, к очевидности. Нам симпатичны геометрия Евклида и физика Ньютона, с ними нам как-то спокойнее. Но живем-то мы в эйнштейновском мире: в мире искривленного пространства, пересекающихся параллельных, физических неопределенностей. Тем не менее до сих пор мало кто ясно представляет себе смысл теории относительности».

Это не выдержка из философского трактата или научно-популярной брошюры. Такими сентенциями просвещает читателей опубликованная 22. 04. 1990 в газете «Правда» статья «Гений: путь к истине», автор которой Н. Морозова с особым нажимом и подчеркиванием пишет далее: «Точно так же и в общественных науках, в политике нам больше по душе линейные решения. А Ленин-то в политике и был Эйнштейном!»

Авторам «Правды» виднее, разумеется, почему Ленина сегодня следует считать именно Эйнштейном, хотя многим такое утверждение может показаться просто случайным недоразумением. Однако никакой случайности здесь нет, поскольку в наших изданиях для упоминания этого имени используются любые поводы.

В предисловии к избранным произведениям М. В. Ломоносова (1986 г.) С. Микулинский пишет: «Стремление раскрыть эти законы, чтобы использовать их в интересах человека и развития своего Отечества, было постоянным внутренним стимулом творчества Ломоносова. Эти дерзновенные устремления ученого XVIII в. сродни мечте Эйнштейна об открытии нескольких основных законов, которые объяснили бы любые явления в физическом мире».

«Не философствуя и не морализируя, Высоцкий философичен в понятном всем общечеловеческом значении, в каком каждый из нас рано или поздно становится философом, т. е. начинает всерьез размышлять над тем, как мы живем и почему живем так, а не иначе. (Как никогда раньше, человечество нуждается сегодня, по остроумной формуле А. Эйнштейна, «в скамеечке, чтобы сесть и подумать»)». Так пишет в журнале «Смена» (№ 19 за 1986 г.) В. Толстых в статье о В. Высоцком.

«Говоря о литературном таланте Шоу и музыкальном — Моцарта, Альберт Эйнштейн заметил: «В прозе Шоу нет ни одного лишнего слова, так же как в музыке Моцарта нет ни одной лишней ноты. То, что один делал в сфере мелодий, другой делает в области языка: безупречно, почти с нечеловеческой точностью передает свое искусство и душу»». Данное литературно-музыкальное откровение Эйнштейна встретится читателю в книге Ю. Александровского «Глазами психиатра» (1985 г.).

Этот могучий рекламный поток вовсе не является стихийным и неконтролируемым, он довольно жестко корректируется и направляется в нужную сторону заинтересованными лицами. Вот как наставляет и поучает Ю. Нагибин в газете «Советская культура» 01. 12. 1984 Наталью Сац, которая, по его мнению, в «Новеллах моей жизни» рассказала о встрече с Эйнштейном совсем не так, как это должен делать «любой среднеобразованный человек»: «Не задался Н. Сац образ Эйнштейна. Перед нами симпатичный немецкий «гелертер», любящий жену, детей, свой загородный домик и сад, любящий поливать цветы из резинового шланга, играть на скрипке и добродушно болтать с гостями…

Наталья Ильинична дает понять, что образ Эйнштейна ей не по плечу, поскольку она не может постигнуть его теорий. Но ведь это не так. Знаменитая формула Эйнштейна, покончившая с ньютоновским миром и поместившая нас как бы в иную вселенную, доступна любому среднеобразованному человеку, а главное, надо понять не математическое выражение идей Эйнштейна; а их философский смысл, что, конечно же, по силам ухватистому уму Натальи Сац. И тогда среди жасминов и шлангов появился бы не уютный доморощенный садовод и скрипач-любитель, а великая личность».

В отличие от Н. Сац, подавляющее большинство пишущей и вещающей у нас братии в подобных наставлениях совсем не нуждается.

В статье под названием «Куда живем?», напечатанной 15. 08. 1987 в газете «Социалистическая индустрия», Л. Жуховицкий информирует и размышляет: «…Именно люди, гуманитарно развитые, как раз и добиваются большего в любой сфере деятельности. Известно самое авторитетное из возможных тому свидетельство: не кто-нибудь, а сам Эйнштейн признался как-то, что Достоевский дал ему больше, чем Гаусс. Величайшего физика всех времен и народов легко понять: сложность, глубина, парадоксальность Достоевского лучше любых профессиональных менторов готовит человека к сложному, глубокому, парадоксальному в любой сфере деятельности. А мы во имя весьма полезной информатики ужимаем как раз Достоевского. Не потеряем ли нового Эйнштейна? Впрочем, дело даже не в гениях, хотя их роль в прогрессе непомерно велика».

«Многие писали об Эйнштейне, но лишь Б. Г. Кузнецов раскрыл глубокий смысл общности Эйнштейна с Достоевским и с Моцартом», — сообщил М. Волькенштейн в заметке «Наш Друг», напечатанной в журнале «Наука и жизнь» (№ 1 за 1985 г.) в связи с кончиной Б. Г. Кузнецова.

«7 октября исполнилось сто лет со дня рождения Нильса Бора. Хотел было написать — великого физика Нильса Бора, но понял, что эти дополнительные слова излишни. В самом деле, наш век, и особенно его первая половина, — это период расцвета физики и даже ее известного доминирования среди других наук. Естественно поэтому, что о двух крупнейших физиках двадцатого столетия Альберте Эйнштейне и Нильсе Боре слышал, каждый». Так «естественно» начинает академик В. Л. Гинзбург в «Литературной газете» 11. 12. 1985 статью, посвященную Нильсу Бору.

Академик прав: благодаря такой массированной рекламной кампании у нас об Эйнштейне действительно «слышал каждый»! С этим именем читатель, слушатель и зритель сталкивается в СМИ гораздо чаще, чем с именами всех прочих, вместе взятых, не менее выдающихся физиков: Максвелла, Лоренца, Планка, Шрёдингера, Гейзенберга и других.

Не углубляясь далее в обсуждение основных принципов различных физических теорий и той роли, которую играли при их создании разные ученые, включая и первую жену Эйнштейна — его однокурсницу сербку М. Марич, с которой он потом развелся, женившись на своей кузине. Не затрагивая совсем отношения Эйнштейна к сионизму, коммунизму и прочим «измам», а также его участия в борьбе за создание атомной бомбы и против нее, мы обращаем здесь внимание прежде всего на связанный с его именем рекламный процесс, начавшийся у нас еще до появления на телеэкранах Лени Голубкова с его партнером и тети Аси с ее отбеливателем.

В интенсивности этой рекламной кампании сейчас может легко убедиться каждый, кто имеет доступ в Интернет и посмотрит на частоту упоминания имени Эйнштейна по сравнению с другими физиками. Пассажиры московского метро в 1999 г. могли созерцать портрет Эйнштейна на плакатиках Верховного комиссара ООН по делам беженцев («И гений может стать беженцем… Эйнштейн был беженцем»), В этом же контексте Эйнштейн преподносился домоседам-телезрителям, которые могли услышать это имя и в рекламе лианозовского молока, и в рекламе витаминов, и по многим другим поводам[38]. Портрет Эйнштейна повешен в кабинете следователя в теледетективе про Каменскую, а батончики «Марс» рекламируются с помощью «формулы Эйнштейна» (или наоборот!).

Этот рекламный напор в СМИ дополняется соответствующими перекосами в специальной и научно-популярной литературе. В «Советском энциклопедическом словаре» (1989) написано, например, что «Максвелл создал теорию электромагнитного поля (уравнения Максвелла), развивая идеи М. Фарадея». А вот об Эйнштейне без всякого упоминания о предшественниках просто сообщается: «Создал частную (1905) и общую (1907–1916) теории относительности». И если в статье о Пуанкаре еще можно прочитать, что он независимо от Эйнштейна развил математические следствия «постулата относительности», то в статье о Гильберте нет вообще никакого упоминания о получении им ранее Эйнштейна уравнений общей теории относительности.

Сторонники такого подхода не скрывают своих принципов. Рецензируя книгу А. Миллера об Эйнштейне, М. В. Терентьев в журнале «Природа», № 8 за 1985 г., пишет: «Глава завершается обсуждением того, на каком уровне знал Эйнштейн электродинамику в 1905 г. Эта тема часто затрагивается, и одна из причин — в том, что Эйнштейн, с точки зрения обычных критериев, не был аккуратен в литературных ссылках (заметим, что в обсуждаемой статье 1905 г. их попросту не было). Существуют свидетельства, что Эйнштейн не знал некоторых важных работ своих предшественников. Как известно, незнание не освобождает от ответственности за нарушение законов и не снимает с Эйнштейна вину за пренебрежение к традиционным правилам при публикации научной статьи, проявившееся в отсутствии ссылок. Но на самом деле — так ли уж велик этот грех?.

Нужно еще учесть, что в 1905 г. Эйнштейн понимал принципиальные проблемы в физике значительно глубже, чем все его современники. Возможно, это еще одна причина отсутствия ссылок. Резко осуждать Эйнштейна можно, лишь не осознавая в полной мере, какой глубокий разрыв со всем строем мысли его предшественников означала его работа. Высказанные соображения совпадают по существу с позицией автора книги, хотя А. Миллер не формулирует ее буквально в таком виде».

В этой же рецензии можно прочитать и следующие строки: «Явление «гений в силе», помимо естественной реакции благоговейного удивления, заслуживает в каждом случае того, чтобы быть изученным с самых разных точек зрения… Например, явление «Эйнштейн в Берне» с указанной точки зрения разработано намного хуже, чем «Пушкин в Болдино», хотя его историческое и общечеловеческое значение не меньше».

Подобная гипертрофированная реклама оказывает дурную услугу пропаганде реальных достижений Эйнштейна в развитии физики XX века.

Откровенная проповедь вседозволенности для избранных сочетается здесь с безудержным восхвалением одной личности при явном принижении роли предшественников и современников Эйнштейна.

Следование подобным «принципам» порождает лицемерие и ложь, которыми в значительной степени отравлена наша наука и все наше общество. Происходящие в стране катастрофические перемены не избавляют нас от этой отравы, разрушающее влияние которой ощущается во всех сферах нашей жизни. Если с подобными негативными явлениями не вести постоянную целенаправленную борьбу, то наша страна вряд ли сможет встать на путь нормального развития.


Рухадзе Анри Амвросьевич, доктор физико-математческих наук, профессор Московского государственного университета имени М. В. Ломоносова, дважды лауреат Государственной премии СССР, лауреат премии имени М. В. Ломоносова (МГУ)

Самохин Александр Александрович, ведущий научный сотрудник Института общей физики РАН

Часть II. Люди науки в разрушающемся обществе

Наука в России переживает сейчас нелегкие времена, о чем много говорят и пишут уже несколько лет подряд. «Наука уже в коме» — так озаглавлена опубликованная 02. 11. 1994 в «Известиях» статья академиков РАН В. Е. Захарова и В. Е. Фортова. Во многом справедливая, эта статья оставляет тем не менее ощущение какой-то особой перекошенности мышления ее авторов, неадекватности восприятия некоторыми академиками вполне очевидных вещей.

Разруха коренится в головах, и эта элементарная истина касается не только Шарикова и Швондера. От разрухи в головах не гарантируют ни академические звания, ни высокие начальственные кресла.

Захаров и Фортов повествуют о развале науки почти как о стихийном бедствии, которому способствует «бушующая у нас малоцивилизованная рыночная экономика». Но разве эта «бушующая экономика» разгулялась у нас вследствие каких-то неведомых космических причин или происков инопланетных пришельцев прилетевших на НЛО? Разве не была она вколочена в нашу жизнь посредством хорошо известных «умных» голов при активном участии «международного сообщества», на адресную поддержку которого так рассчитывают академики?

Вспоминая в своей статье в связи с разрушением науки и Генриха Гиммлера, и Адольфа Гитлера, академики так и не доходят в своих рассуждениях до того русскоязычного «демократа» тоже на букву «Г», которому наша наука в значительной мере обязана своим нынешним положением. Анализ причин развала науки сводится академиками к рассуждениям о «государственном антисемитизме» и о том, что «по понятным причинам диктаторы не любят ученых».

С благоговением вспоминая «диссидентов — демократов первой волны» и «гигантскую фигуру А. Д. Сахарова», академики снова забывают, что этот гигант почему-то не смог сказать правду ни о чернобыльском реакторе РБМК-1000, ни о могущественных академических кланах. Словно какой-то гигантский бур выгрызает зияющие черные дыры в академическом мышлении и памяти!

«Конечно, наша наука накопила за последнее время тяжелый груз разнообразных проблем и нуждается в реформировании» — такой беглой констатацией практически исчерпываются все мысли двух академиков о реальном положении науки. Ни слова о том, в чем же заключается этот «груз» и кто его, собственно, «накопил»? Неужто Гиммлер и Гитлер?

Специфическое пристрастие некоторой части российской интеллигенции к муссированию ярлыков «фашизма» и «антисемитизма» превозмогает порой и рассудок, и порядочность. Многие еще помнят, наверное, как главный редактор «Знамени» Г. Бакланов напечатал в этом журнале адресованное ему анонимное письмо с угрозами общества «Память», которое на самом деле сочинил Аркадий Норинский — такой же «антисемит», как и сам Г. Бакланов.

Газета «Поиск» в июне 1998 г. (№ 26) публикует анонимное «Заявление членов Президиума Российской академии наук», которое начинается следующими словами: «Демократия дала России свободу мысли и слова. К сожалению, долгие годы тоталитарного Режима не могли способствовать развитию важных норм политической жизни и этических принципов, присущих подлинно демократическому обществу. Во многих регионах России все громче звучат голоса сторонников националистической, шовинистической и Даже фашистской идеологии, замешанной на опасной смеси популизма и лжепатриотических идей. Страна с молчаливого попустительства некоторых политических партий и властных структур Приближается к опасному рубежу, за которым межнациональная рознь может поставить под угрозу безопасность России…».

Сетуя далее на отсутствие «отпора фашиствующим элементам» и «выступающим с черносотенных позиций», анонимные члены Президиума призывают «всех тех, кому не безразлично будущее нашей страны, сказать свое веское слово в защиту прав человека в поддержку дружбы и сотрудничества между народами России».

Публикацию подобных заявлений вполне можно уподобить тушению пожара с помощью керосина, поскольку в них нет даже малейшего намека на то, что нашу страну в конце двадцатого века разрушили не Гитлер с Гиммлером, и не Васильев с Баркашовым, а совсем другие персонажи, называющие себя «демократами», «правозащитниками» и прочими «борцами с тоталитаризмом».

Реальная озабоченность этой проблемой звучит, например, в открытом письме Эдуарда Тополя к Березовскому, Гусинскому, Смоленскому, Ходорковскому и остальным олигархам (Аргументы и факты. 1998. № 38), которое очень похоже на отчаянное обращение «К евреям всех стран!», опубликованное «Отечественным объединением русских евреев за границей» в Берлине в 1924 г., еще до прихода Гитлера к власти.

Как известно, крайности сходятся. Поэтому стоит обратить внимание и на тех «антифашистов», которые превыше всего в мире стараются поставить борьбу с «антисемитизмом».

Помимо гуманитарно-политических глыб, подобных академику А. Н. Яковлеву, на этом поприще действует множество других персонажей. Захаров и Фортов пишут: «Правительство снова — как в последние сталинские годы — вернулось к политике государственного антисемитизма и ввело негласные ограничений на прием евреев в престижные учебные заведения и исследовательские учреждения. Эта безнравственная и нелепая политика вызвала первую волну эмиграции научных работников за рубеж, нанесшую серьезный ущерб прежде всего физико-математическим наукам. К чести наших ученых нужно сказать, что подавляющее большинство не поддержало эту политику и в той или иной степени ей сопротивлялось».

На практике это «сопротивление» выглядит следующим образом. В 1984 г. в Институте теоретической физики им. Ланду защищал докторскую диссертацию М. И. Трибельский. Были хвалебные официальные отзывы, была реклама в научной и научно-популярной литературе. В первом основном результате своей диссертации соискатель утверждал, что им «предсказана тепловая неустойчивость…», одним словом, уверенно демонстрировал свои способности и достижения.

Однако на публичной защите стала вырисовываться иная картина, из которой следовало, что Трибельский на самом деле означенную неустойчивость не предсказал, а просто приписал себе чужие результаты (предсказание этой неустойчивости, ее физическую интерпретацию и формулу для максимальной скорости ее нарастания), нарушив тем самым сразу две заповеди: «не кради» и «не лги».

В соответствии с положением ВАК о порядке присуждения ученых степеней при таком использовании чужого материала диссертация снимается с рассмотрения без права повторной защиты, что и должно было произойти с диссертацией Трибельского. Если, конечно, все соискатели равны перед требованиями ВАК. Но официально декларируемого равенства и единства требований у нас фактически не существует из-за мощного «сопротивления» борцов с «госантисемитизмом», которые попирают и библейские заповеди, и положение ВАК. Вместо предусмотренных положением ВАК действий Президиум ВАК постановил «строго указать М. И. Трибельскому на необходимость соблюдения научной этики» и присудил ему докторскую степень.

Случай с Трибельским отнюдь не единственный, но эта история примечательна тем, что в ней приняло участие множество академиков, членов-корреспондентов и тех, кто очень хотел войти в сообщество «избранных»: С. И. Анисимов, А. М. Бонч-Бруевич, Ф. В. Бункин, Л. П. Горьков, А. М. Дыхне, В. Е. Захаров, Я. Б. Зельдович, Н. В. Карлов, Ю. В. Копаев, А. Б. Мигдал, С. П. Новиков, Ю. А. Осипьян, Л. П. Питаевский, В. Е. Фортов, И. М. Халатников…

Этот не претендующий на полноту список показывает, как объединяются в подобных случаях представители различных академических кланов, о которых колоритно высказался И. С. Шкловский (1916–1985 гг.), член-корреспондент АН СССР, хорошо знавший академический мир изнутри. Приводимый ниже отрывок взят из журнального варианта его книги «Эшелон» (Химия и жизнь. 1988. № 9), однако он отсутствует в отдельном издании этой книги (М., 1991), где ему положено было бы быть на с. 149. Такая посмертная цензурная правка в данном случае придает особую значимость словам И. С. Шкловского: «В нашем отделении физики и астрономии имеются две основ ные мафии. Сейчас, пожалуй, самая мощная — это мафия Черноголовки (вспомним средневековые «дома-гильдии Черноголовых» в Риге и Таллине), включающая институты им. Ландау и твердого тела, где сейчас директором Осипьян. По существу, в эту мафию входит также Институт физпроблем, что на Воробьевке. Чисто работают ребята, что и говорить! Дисциплинка что надо. Почти всех своих деятелей вывели в академики, осталось всего ничего — Халатников, например, но уверен, что на следующих выборах он пройдет… Стиль работы этой мафии — высокопарные, ужасно прогрессивные и «левые» словесные обороты. Очень цепкая компания, а главное — дружная. Несколько сдала свои позиции мафия Института атомной энергии им. Курчатова, где долгие годы блистал наш покойный академик-секретарь Лев Андреевич Арцимович. Какие дела проворачивал! Еще переть и переть до реального открытия термоядерного синтеза, а мы уже имеем трех молодых академиков, из них, кажется, один вполне толковый…»

Обе эти мафии были едины в деле защиты Трибельского и «сопротивления» тем, кто не желает жить по лжи и угодничать перед «избранными». В связи с этим одному из нас — А. С. — было уделено особое внимание.

6 сентября 1985 г. на имя Председателя ВАК СССР поступило письмо, подписанное академиками И. М. Халатниковым, Л. П. Горьковым, А. Б. Мигдалом, С. П. Новиковым, Ю. А. Осипьяном, членами-корреспондентами АН СССР Ф. В. Бункиным, В. Е. Захаровым, А. М. Бонч-Бруевичем и Л. П. Питаевским следующего содержания:

«Мы хотели бы обратить Ваше внимание на то, что в процессе рассмотрения ВАК докторской диссертации М. И. Трибельского возникла беспрецедентная ситуация, когда один безответственный человек в течение длительного времени саботирует присуждение степени доктора наук ученому, который этой степени безусловно достоин…

Со своей стороны, мы считаем, что лауреат премии Ленинского комсомола М. И. Трибельский несомненно заслуживает присуждения степени доктора физ. — мат. наук».

Академики и членкоры не ограничивались, естественно, только такими письмами в защиту Трибельского. В феврале 1989 г. на предвыборном собрании в Физическом институте АН СССР кандидат в народные депутаты академик Ю. А. Осипьян прозрачно намекнул с трибуны, что по поводу диссертации Самохина тоже могут быть «разные мнения»…

Такой академический стиль кому-то может показаться более «прогрессивным», чем старомодная однопартийная формулировка, «Есть мнение…». Но суть здесь — прежняя, рассчитанная на простаков и приспособленцев.

На том же собрании выступал и кандидат в российские нардепы А. Е. Шабат, который постарался не заметить обсуждавшийся при нем вопрос о неправомерных действиях и решениях ВАК. Подобная позиция весьма характерна для наших «правозащитников» целеноправленно использующих в своей деятельности практику двойного стандарта.

В соответствии с обещанными академиком Осипьяном «разными мнениями» на защиту Самохина в октябре 1989 г. в Институт общей физики было представлено два очень похожих — вплоть до одинаковых орфографических ошибок — отрицательных отзыва от официального оппонента С. И. Анисимова (г. Черноголовка) и филиала Института атомной энергии им. И. В. Курчатова, которые обвиняли А. С. в том, что в своей диссертации он якобы приписывает себе чужие результаты. Ритуально-мстительный характер этих клеветнических утверждений был очевиден и недвусмысленно давал знак всем участникам, как они должны вести себя в этом деле.

Для многих «наших ученых» подобные указания неизмеримо важнее и положения ВАК, и научных истин, и моральных заповедей. Несмотря на то что заведомая необъективность и научная несостоятельность отрицательных отзывов была полностью выяснена на защите 02. 10. 1989, которая продолжалась шесть часов, результаты тайного голосования оказались отрицательными. «Неожиданное голосование!» — заявил по этому поводу председатель диссертационного совета академик А. М. Прохоров.

Руководимый им ученый совет отдела, рекомендовавший в 1986 г. диссертацию А. С. к защите, по итогам работы специальной комиссии (председатель В. П. Макаров) подтвердил 03. 11. 1989 эту рекомендацию и признал не соответствующими действительности обвинения в адрес диссертанта, содержащиеся в отзывах Анисимова и ФИАЭ.

Другая комиссия (председатель Ю. В. Копаев), образованная диссертационным советом для подготовки заключения по апелляции А. С. от 27. 11. 1989, также установила, что «фактов заимствования А. А. Самохиным чужих результатов в качестве оригинальных в диссертации нет».

Для любого нормального человека, не склонного к специфическому «парадоксальному» мышлению, из таких заключенй обеих комиссий однозначно следует вывод о необъективности отрицательных отзывов С. И. Анисимова и ФИАЭ. Однако в подобных случаях общепринятые нормы не действуют, как это уже было видно в деле Трибельского, на диссертацию которого «наши ученые», в том числе и Копаев, также писали необъективные, но хвалебные отзывы.

Продолжая традицию «сопротивления» нормам логики, морали и права, апелляционная комиссия вместо необходимого вывода о необъективности отрицательных отзывов сделала бездоказательное и не соответствующее действительности предположение о том, что «утверждения, содержащиеся в отзывах официального оппонента и ведущей организации, которые можно рассматривать как обвинения в такого рода заимствованиях, связаны, вероятно, с недостаточно четким изложением соответствующего материала в тексте диссертации». Ни одного примера «недостаточно четкого изложения» эта комиссия указать не смогла.

Опираясь на свое надуманное и унижающее достоинство А. С. предположение, апелляционная комиссия порекомендовала «автору переработать диссертацию, особенно четко выделить в тексте полученные им оригинальные результаты, после чего диссертация может быть представлена для повторной защиты». Издевательский характер такой «рекомендации» очевиден, поскольку оригинальные результаты диссертации уже были «особенно четко» выделены в отдельную часть ее текста, именуемую Заключением.

Большинство диссертационного совета, подчиняясь духу «сопротивления», постаралось не заметить этот издевательский абсурд и 25. 06. 1990 отклонило апелляцию, оставив без проверки и тот указанный в апелляции факт, что в отзыве ведущей организации в грифе «УТВЕРЖДАЮ» вместо означенного там директора ФИАЭ им. И. В. Курчатова, члена-корреспондента АН СССР В. Д. Письменного, на самом деле стоит подпись другого человека (по-видимому, Н. А. Черноплекова), чья фамилия и должность в документе не указаны.

Закрывая глаза на этот подлог, на заведомую необъективность отзывов Анисимова и ФИАЭ, на явные признаки сговора между их якобы «независимыми» составителями, ВАК оставляет в силе отрицательные решения диссертационного совета Д 003. 49. 01 от 02. 10. 1989 и 25. 06. 1990 по диссертации и апелляции Самохина. Поданная 24. 12. 1990 в соответствии с положением ВАК последняя апелляция на такое решение Президиума ВАК от 07. 12. 1990 до сих пор остается без ответа по существу.

Действуя далее также в соответствии с положением ВАК, А. С. представил к защите и в том же Институте общей физики 15. 02. 1993 на заседании другого диссертационного совета Д 003. 49. 03 (председатель А. А. Рухадзе) успешно защитил новый вариант диссертации с дополнительным теоретическим материалом, подтверждающим ее основные положения и выводы. Положиттельний отзыв ведущей организации — Физического института им. Лебедева был утвержден лауреатом Нобелевской премии академиком Н. Г. Басовым.

Основанное на отзывах Нобелевских лауреатов Басова и Прохорова и других известных ученых положительное решение совета Д 003. 49. 03, казалось бы, может служить основанием для того, чтобы ВАК принял положительное решение по этой защите и тем самым, «сохраняя лицо», дезавуировал необъективные отзывы Анисимова и ФИАЭ, содержащие не соответствующие действительности сведения и подлог.

Однако Президиум ВАК, наплевав в очередной раз на собственное «лицо», постановил 12. 11. 1993 не рассматривать положительное решение совета Д 003. 49. 03 по новому расширенному варианту диссертации, сославшись на невыполнение требований ее «переработки» в угоду именно этим необъективным отзывам, так как никаких других официальных документов с конкретизацией требований «переработки» диссертанту предъявлено не было. ВАК даже не счел нужным своевременно сообщить об этом своем постановлении соискателю и диссертационному совету. Ответом на последущие обращения в ВАК были отписки, ложь или просто молчание. Даже через суд не удалось получить от ВАК ответ на вопрос, какие же именно места и на основе каких замечаний должны быть «переработаны» в диссертации!

Подчеркнем специально, что в этой истории нет научного спора, поскольку критические замечания в адрес М. И. Трибельского и его соавторов, опубликованные в научной печати, не были никем опровергнуты. Вместо стремления к истине здесь проявляется тупое и небескорыстное подчинение озвученным академиком Ю. А. Осипьяном «разным мнениям»[39].

По этим примерам работы ВАК видно, что представляет собой на самом деле то «сопротивление», хвалу которому воздают в «Известиях» академики Захаров и Фортов. Подобная активность оказала и продолжает оказывать разрушительное влияние не только на нашу науку, но и на все общество в целом прежде всего потому, что в основе ее лежит ложь — большая ложь, масштабы которой заставляют вспомнить доктора Геббельса, соратника упоминаемых академиками Гиммлера и Гитлера.

В книге Шкловского «Эшелон» об этой лжи сказано так: «Кому не повезло в нашей литературе и искусстве, а также журналистике — так это ученым и науке. Трудно себе представить человеку, стоящему в стороне от науки, как вся эта проблематика в нашей литературе искажена и какие мегатонны лжи и глупости сыплются на головы бедных читателей».

Эта внешняя по отношению к науке ложь тесно смыкается с внутренней ложью, которая стала привычным делом для восхваляемого Захаровым и Фортовым «большинства наших ученых», включая их самих.

В «Независимой газете» 26. 09. 1998 Захаров сетует, что «зачастую институт лоббирования в России подменяется полублатным протекционизмом». Однако сам Захаров тоже внес в этот «протекционизм» заметный вклад, без которого, впрочем, его реальные научные достижения могли и не получить формальной оценки «академического сообщества», как это случилось с А. А. Власовым.

На защите Трибельского Захаров выступал в его поддержку, предавая научную истину и закрывая глаза на ложь, очевидную даже для неспециалиста. А двумя годами ранее в том же Институте теоретической физики им. Ландау Захаров выступал с официальным положительным отзывом на защите С. М. Гольдберга, в диссертации которого утверждается прямо противоположное тому, что написано в диссертации Трибельского — соавтора Гольберга.

А. М. Бонч-Бруевич, составлявший хвалебный отзыв ведущей организации (Государственный оптический институт им. Вавилова) на диссертацию Гольберга, выступает затем с хвалебным официальным отзывом на защите Трибельского, умалчивая о вопиющем противоречии между результатами этих диссертаций, и обе они признаются удовлетворящими требованиям ВАК. То же самое делает и другой официальный оппонент Гольберга — Б. С. Лукьянчук, составивший заведомо необъективный хвалебный отзыв на диссертацию Трибельского от Института общей физики. Директор Института А. М. Прохоров не стал утверждать этот отзыв, однако зам. директора Ф. В. Бункин не устоял и утвердил отзыв на своего соавтора Трибельского и даже поехал на защиту в Черноголовку, хотя формально в его присутствии не было необходимости. Но тут уж не до формальностей!

Один из непосредственных мотивов такого поведения — карьера в Академии наук, ради чего многие «наши ученые» пускаются во все тяжкие. Научные истины, моральные заповеди и законы в подобных играх отступают на задний план в угоду интересам того клана, который контролирует академические выборы и систему аттестации.

Неподчинение клановым правилам практически не оставляет никаких шансов ученым для продвижения по академическим ступеням, независимо от значимости их научных достижений! Повествуя об академических выборах, Шкловский пишет, что он лишился каких-либо шансов на избрание академиком после того, как «крайне неосторожно задел не подлежащий критике посмертный авторитет Ландау и позволил высказать свое недвусмысленно отрицательное отношение к одному неблаговидному поступку, некогда совершенному Зельдовичем». Не уделял, по-видимому, должного внимания академическим кланам и В. С. Летохов, который до сих пор не был избран даже членом-корреспондентом Академии наук, хотя его работы уже давно получили мировое признание. То же самое можно сказать о Г. А. Аскарьяне, С. А. Ахманове, Ю. Л. Климонтовиче и других ученых-физиках. О таких позорных для Академии фактах Захаров и Фортов не вспоминают, предпочитая разглагольствовать о «государственном антисемитизме».

Подобную «академическую» линию на своем уровне в системе аттестации проводит и ВАК, где действуют те же самые борцы «сопротивления», частично упомянутые выше. Стараниями таких деятелей уровень лжи в нашей науке и обществе давно превысил ту критическую отметку, за которой следуют экологические и социальные катастрофы.

Член-корреспондент АН СССР Л. П. Феоктистов был не только председателем экспертного совета ВАК по физике, который весьма специфически реализовывал на практике принцип единства требований к соискателям ученых степеней. Он был также зам. главного редактора журнала «Природа», где в октябре 1983 г. в рубрике «Новости науки» сообщалось о «достижениях» Анисимова и Трибельского, а в июне 1985 г. в статье, одним из соавторов которой был зам. директора ФИАЭ им. Курчатова — тот же Л. П. Феоктистов, рекламировалась «экономичность, надежность, безопасность» наших АЭС.

Через десять месяцев эта ложь взорвалась в Чернобыле. Как и всегда в подобных случаях, виноватым оказался «стрелочник», хотя опасные принципиальные недостатки реакторов чернобыльского типа не были тайной для специалистов. Однако эта информация подавлялась мегатоннами лжи, распространяемой борцами «сопротивления».

Подавляющее большинство «сопротивленцев», активно проявивших себя на этом поприще, были избраны членами-корреспондентами и академиками, получили новые назначения, в том числе и министерского уровня. Кресла министра науки и вице-президента РАН достиг В. Е. Фортов. В. Е. Захаров стал директором Института теоретической физики им. Ландау. Директором вновь образованного академического Института проблем безопасного развития атомной энергетики в 1991 г. был утвержден Л. А. Большов — составитель заведомо ложного и непонятно кем утвержденного отзыва ФИАЭ на диссертацию Самохина, который ВАК продолжает считать действительным. Очень старавшийся зам. председателя экспертного совета по физике Н. В. Карлов возвысился даже сразу до двух должностей: ректора МФТИ и председателя ВАК.

Однако летом 1998 г. ВАК в ее прежнем качестве была ликвидирована, реорганизована и передана в министерство высшего и среднего образования РФ. Новый руководитель ВАК академик и вице-президент РАН Г. А. Месяц назвал ликвидированную структуру «прогнившей и коррумпированной системой, в которой получали научные степени люди, не имеющие отношения к науке». Ликвидации ВАК предшествовали публикации в таких разных газетах как «Советская Россия» (20. 12. 1997), «Новые Известия» (10. 01. 1998), «Независимая газета» (06. 05. 1998), обвинявшие ВАК в коррупции, угодничестве перед власть имущими и невыполнении своей главной задачи — осуществлении принципа единства требований к соискателям. Все это вместе с приведенными нами дополнительными фактами вроде бы не дает никаких оснований для сожалений по поводу упразднения ВАК.

Тем не менее подобные сожаления появились. Так, газета «Известия» 22 мая 1998 г. на первой полосе печатает комментарий С. Лескова «Зачем церберу отрезали голову», автор которого сокрушается: «ВАК была попыткой обеспечить независимую межведомственную экспертизу, поставить заслон перед полными тщеславия карьеристами. Не случайно ВАК всегда возглавляли самые авторитетные ученые, члены Академии наук… После упраздения ВАК все честные специалисты в ужасе».

Назвать такие пассажи добросовестным заблуждением никак нельзя, поскольку мы давно уже представили С. Лескову множество неоспоримых фактов, свидетельствующих о гнусной практике двойного стандарта в ВАК. После многомесячной волокиты эти факты так и не были обнародованы в «Известиях». Столь же безрезультатно окончилась аналогичная попытка и в газете «Поиск».

«Новые Известия» 11. 08. 1998 с подзаголовком «Российскую науку лишили знака качества», также вынесенном на первую полосу, сообщают о ликвидации «всемирно знаменитой и уважаемой ВАК». Газета приводит последнее интервью председателя ВАК, Н. В. Карлова, в котором последний, в частности, утверждает: «Экспертный совет ВАКа организован таким образом, что наши эксперты принадлежат к разным научным школам и являются оппонентами». Это обстоятельство якобы препятствует продажности ВАК: «Дух соперничества и антагонизма не позволил бы… Все бы сразу выплыло наружу». Карлов здесь откровенно лукавит, поскольку ему хорошо известны факты сговоров «оппонентов» из различных «научных школ», в действиях которых он сам принимал непосредственное участие, злоупотребляя служебным положением.

Словоохотливый экс-председатель ВАК вполне доходчиво формулирует свое кредо: «ВАК — не женская консультация, а скорее роддом и загс в одном лице. Зачатие и развитие «ребеночка» происходит где-то, но в жизнь выводим его мы. И очень важно, чтобы это выглядело прилично. Родители проверены, ребенок аттестован». Каких именно «ребят» предпочитала аттестовывать ВАК, уже известно.

Главное у нас — это люди. Будем же более внимательны друг к другу, в том числе и к этим «ребятам», к их повивальным бабкам и родителям. Тогда будет легче противостоять различным формам недобросовестности в нашей науке и нашем обществе.

Анри Амвросьевич Рухадзе, профессор Московского государственного университета имени М. В. Ломоносова

Александр Александрович Самохин, ведущий научный сотрудник Института общей физики РАН

Часть III. Отрицательный индекс

Газета «Научное сообщество» (орган профсоюзной организации РАН), ноябрь 2003 г.


В конце 2002 г. в мировой науке произошло событие, всколыхнувшее научное сообщество и ставшее предметом обсуждения на страницах не только авторитетных научных, но и массовых изданий. 26 сентября газета «New York Times» сообщила о результатах расследования специальной научной комиссии, назначенной для проверки достоверности экспериментальных работ, опубликованных в ведущих научных журналах («Nature», «Science» и др.) сотрудником Лаборатории Белла в Мюррей-Хилл (Нью-Джерси) Хендриком Шоном. Эти работы, в частности, касавшиеся проблемы создания транзисторов на отдельных молекулах и сверхпроводимости фуллеренов, привлекли к себе большое внимание многих исследователей. Но за X. Шоном было трудно угнаться: в 2001 г. он выдавал следующую научную работу в среднем каждые восемь дней. Однако, согласно заключению комиссии, многие из его «замечательных» результатов оказались обманом и подделкой.

Это был шок. И заголовки некоторых статей в октябрьских номерах «Nature» непосредственно об этом свидетельствуют: «РАЗМЫШЛЕНИЯ О МОШЕННИЧЕСТВЕ В НАУКЕ. Обстоятельное исследование выявило значительное загрязнение исследователями физической литературы. Такие случаи трудно предотвратить, но нужно больше стараться», «КРУШЕНИЕ ВОСХОДЯЩЕЙ ЗВЕЗДЫ», «ВЫЯВЛЕНИЕ НАУЧНОЙ НЕДОБРОСОВЕСТНОСТИ ПОТРЯСАЕТ СООБЩЕСТВО ФИЗИКОВ», «ПУБЛИКУЙ И БУДЬ ПРОКЛЯТ…», «КТО ДОЛЖЕН СИДЕТЬ В КРЕСЛЕ РЕДАКТОРА?». Газета «Wall Street Journal» обвинила журналы «Nature» и «Science» в том, что в своей конкуренции за престиж и паблисити они «сглаживают углы», чтобы заполучить «горячие» статьи. Редакции научных журналов эти обвинения отвергли.

Этот прискорбный случай в очередной раз обозначил реально существующие проблемы, возникающие при рецензировании и отборе статей для публикации, при распределении грантов и вообще при оценке деятельности работников науки. Некоторым аспектам этих проблем посвящен ряд публикаций, последовавших за разоблачением X. Шона (см., например, журналы «Optical Engineering» за ноябрь 2002 г., «Nature» за 9, 16 января, 27 февраля 2003 г. и др.). Следует напомнить при этом, что вопросы научной этики и случаи ее нарушений (misconduct) всегда находятся в поле зрения многих англоязычных научных изданий.

В отечественной литературе подобные проблемы обсуждаются менее обстоятельно и отнюдь не по причине недостатка соответствующих поводов. Частично это связано с тем, наверное, что у нас нет аналогов таких научных изданий, как «Nature» и «Science», которые публикуют не только регулярные научные статьи, но и письма читателей с различными мнениями об организации науки и жизни научного сообщества.

Этот недостаток может в какой-то мере восполняться публикациями в журнале «Вестник РАН», в газете «Поиск» и научно-популярных журналах, а также в других, в том числе и массовых, изданиях. На страницах «Вестника РАН», например, публиковались дискуссионные материалы (февраль 2002 г.) о «новой хронологии» А. Т. Фоменко. «Независимая газета» 25 июня 2003 г. опубликовала две статьи — «Социальный заказ на “практическую” магию» Э. Круглякова и «Охота на академических ведьм» А. Рухадзе и Л. Уруцкоева, выражающие различные точки зрения на работу Комиссии РАН по борьбе с лженаукой, возглавляемой Э. Кругляковым. Одной из причин такого различия является нечеткость, размытость термина «лженаука», вдобавок к тому же еще и отягощенного мрачными историческими реминесценциями.

При неосторожном использовании этого понятия можно не заметить различия между добросовестным заблуждением, случайной ошибкой и злостным мошенничеством или психическим отклонением, которое, как известно, может быть и симуляцией. Ответ на вопрос «bad or mad?» (мошенник или сумасшедший?) порой столь же неочевиден, как и в случае квантовомеханического «кота Шрёдингера», поскольку в действительности эти различные состояния могут реализовываться в одном и том же персонаже.

В книге Э. П. Круглякова «“Ученые” с большой дороги» приведено множество примеров «научного» шарлатанства и паразитирования на авторитете науки, однозначная оценка которых вряд ли может вызывать какие-либо серьезные сомнения у большинства нормальных ученых. Однако эта однозначность утрачивается в некоторых «пограничных» ситуациях, когда публикуемые результаты не дают достаточных оснований для отнесения их к «лженауке», но вызывают яростную полемику в научной среде, в том числе и по вопросу о допустимости подобных публикаций на страницах серьезных научных изданий. О двух таких публикациях в 2002 г. упоминается в журналах «Nature» (24. 10. 2002) и «Science» (08. 03. 2002), в которых сообщается о наблюдении ядерных реакций, инициируемых акустической кавитацией в дейтерированном ацетоне. Авторы статьи в «Nature» (24. 10. 2002) подчеркивают, что исследователи спорят относительно того, насколько обоснованы выводы этих публикаций полученными экспериментальными данными, и никаких предположений о научной недобросовестности при этом не делается.

Большие прорывные открытия в науке случаются не очень часто, но работа научного сообщества продолжается непрерывно, оставаясь в основном малопонятной и малоинтересной для широких слоев населения и СМИ, ориентированных обычно на любого рода сенсации. Для оценки деятельности ученых используются различные подходы и критерии. Формальным признанием определенных научных достижений и заслуг является присуждение ученых степеней и званий, различных премий и других наград. К числу формальных показателей научной активности относятся такие критерии, как число публикаций и индекс цитируемости, т. е. число ссылок на работы данного ученого в научной литературе.

Очевидно, что никакие формальные процедуры сами по себе не могут обеспечить полной объективности оценки труда и достижений ученых, в том числе и с мировым именем, о чем явно свидетельствуют некоторые известные случаи из прошлой и настоящей жизни научного сообщества, например, неизбрание членами Академии наук А. А. Власова, В. С. Летохова и др., очередной скандал вокруг решения Нобелевского комитета — в последний раз в связи с присуждением премии по медицине и физиологии 2003 года — и т. п. Результаты применения формальных методов в этой области оказываются в гораздо большей зависимости от интересов и пристрастий ученых, чем это по общепринятым нормам допускается непосредственно в научных исследованиях. Весьма распространенным «грехом» научных работников является «раздувание» числа собственных публикаций (см., например, «Nature», 16. 01. 2003). В отличие от этого параметра индекс цитируемости представляется более объективным, но и такой критерий не свободен от ряда недостатков (см., в частности, публикации в «Независимой газете» 26. 06. 2002 и 14. 05. 2003). В связи с этим стоит отметить и тот факт, что упоминание в какой-либо статье ученого с мировым именем не всегда сопровождается наличием соответствующей ссылки в списке литературы на его оригинальные работы. По этой причине индекс «цитируемости» Ньютона, Фарадея, Максвелла, Шрёдингера и других гигантов мировой науки скорее всего окажется весьма низким. Это обстоятельство может влиять также и на индекс цитируемости наших более близких современников, чье имя «прикреплено» к названиям уравнений или физических эффектов (уравнения Власова, Гинзбурга-Ландау, черенковское излучение, эффекты Джозефсона, Мёссбауэра и др.).

Проблема адекватного цитирования имеет и ряд других аспектов, в том числе и касающихся несоблюдения норм научной этики. Один из самых, пожалуй, знаменитых случаев подобного рода связан с именем Эйнштейна, который в своей работе 1905 г. по специальной теории относительности просто не сослался на труды своих предшественников. В то же время в электронных и печатных СМИ это имя раскручено настолько, что его повторение, скорее всего, превосходит на этом поле индекс цитируемости всех других ученых, вместе взятых («Альберт Германович, куда пиво ставить? — Поставьте справа. — Относительно вас или относительно меня? — Относительно… Гениально! — Так родилась на свет теория относительности»).

В жизни современной науки неадекватное цитирование также имеет место, причем такие нарушения не всегда случайны. Бывает так, например, что автор работы в какой-то мере сначала цитирует предшественников, но в последующем ссылается только на эту свою работу, тем самым сознательно замалчивая предшественников и нередко искажая при этом существо обсуждаемой проблемы. На одной из таких «новейших» историй стоит остановиться подробнее.

Как и всякая история, она имеет свою предысторию. В июле 1967 г. в журнале «Успехи физических наук» (1967. 92. С. 517) была опубликована статья В. Г. Веселаго «Электродинамика веществ с одновременно отрицательными значениями ε и μ». По существу статья эта носила методический характер, что видно уже из ее весьма немногочисленного списка литературы по сравнению с обычными обзорными статьями. В ней говорилось фактически о том, что такие вещества являются примером сред с отрицательной групповой скоростью, «необычные» оптические свойства которых отмечались ранее, в частности, в работах Л. И. Мандельштама и других авторов, на которых В. Г. Веселаго более или менее правильно сослался.

В октябре 2002 г. в том же журнале «УФН» в рубрике «Методические заметки» В. Г. Веселаго в заметке «О формулировке принципа Ферма для света, распространяющегося в веществах с отрицательным преломлением» пишет: «В работах группы ученых из Университета Сан-Диего [1, 2] (Smith D. R. et al. // Phys. Rev. Lett. 2000. 84. P. 4184; Shelby R. A., Smith D. R, Shultz S. // Science 2001. 292. P. 77) сообщалось о практической реализации композитных материалов, необычные электродинамические свойства которых могут быть хорошо объяснены, если принять, что коэффициент преломления таких материалов отрицателен. Отрицательным значением коэффициента преломления могут быть охарактеризованы изотропные вещества, у которых фазовая и групповая скорости антипараллельны. Такая ситуация характерна, в частности, для веществ, у которых значения диэлектрической и магнитной проницаемостей оба являются скалярами и имеют отрицательный знак [3]» (Веселаго В. Г. // УФН. 1967. 92. С. 517).

Обратим внимание, что в данном случае никаких ссылок ни на Л. И. Мандельштама, ни на других авторов в заметке уже нет. Более того, в ее тексте читаем далее: «Хотя в [3] были достаточно полно изложены основные электродинамические свойства веществ с отрицательным коэффициентом преломления, сами такие вещества в руках экспериментаторов отсутствовали. Указывалось, в частности, на возможность реализации одновременно отрицательных значений ε и μ в магнитных полупроводниках, однако эти попытки не увенчались успехом прежде всего в силу чисто технологических трудностей при изготовлении таких веществ. (Кроме магнитных полупроводников, в работе [3] указывалось еще на проводящие ферромагнетики, а также на смесь из газовой плазмы и монополей Дирака. — Прим. авт. ).

Прорыв в данном направлении наступил совсем недавно, когда группа ученых из Сан-Диего [1, 2] синтезировала искусственный композитный материал, который в диапазоне сантиметровых волн может обладать самыми различными, в том числе отрицательными, эффективными значениями ε и μ… Эксперимент, реализованный в [2], убедительно показал, что преломление электромагнитной волны на границе вакуума и такой композитной среды подчиняется закону Снеллиуса с отрицательным значением n. Тем самым можно считать экспериментально подтвержденными основные положения работы [3]».

Поэтому очевидно, что такое утверждение о «подтверждении основных положений работы [3]» даже для неподготовленного читателя выглядело бы весьма странно, если бы автор работы [3] при этом сослался на более ранние работы других авторов, уже содержавшие эти «основные положения». По этой причине В. Г. Веселаго никаких ссылок и не делает, стараясь, как говорится, натянуть все одеяло целиком на себя, игнорируя и основополагающие заслуги предшественников, и нормы научной этики.

Одновременно при этом искажается и физическая сущность рассматриваемых эффектов. Пытаясь отмежеваться от того «неудобного» для него факта, что в физике давно известны периодические структуры, в которых в микроволновой (СВЧ) и оптической областях частот реализуется отрицательная групповая скорость, В. Г. Веселаго пишет: «Следует заметить, что сам факт антипараллельности фазовой и групповой скоростей давно реализован, например, в некоторых электронных устройствах и обычно характеризуется термином «отрицательная групповая скорость». Однако такого рода устройства не могут быть охарактеризованы определенными, тем более скалярными, значениями ε и μ».

Обсуждение методического вопроса о целесообразности использования тех или иных параметров для характеристики электродинамических свойств вещества, равно как и проблемы создания различных искусственных сред и устройств не является здесь нашей целью, однако нельзя не отметить специфическое своеобразие аргументации В. Г. Веселаго. Дело в том, что процитированные выше слова В. Г. Веселаго как раз справедливы и в отношении так взволновавших его искусственных композитных сред [1, 2], которые являются анизотропными и никак не могут быть охарактеризованы скалярными значениями, т. е. говорить здесь о «прорыве в данном направлении», тем более с точки зрения основных физических принципов, вряд ли уместно, даже если очень хочется. Когда же на сессии Отделения физических наук РАН 26 марта 2003 года В. Г. Веселаго прямо спросили, являются ли эти композиты изотропными или анизотропными, он не нашел ничего лучшего, как ответить, что этот вопрос не исследовался, хотя анизотропность этих материалов видна просто невооруженным глазом. Представьте себе человека, которому показывают обыкновенный футбольный мяч и спрашивают, шар это или куб, а он отвечает, что этот вопрос еще надо исследовать!

Однако это обстоятельство нисколько не смущает В. Г. Веселаго, который в тексте доклада на этой сессии, опубликованном в УФН (2003. № 7) под названием «Электродинамика материалов с отрицательным коэффициентом преломления» (!), пишет: «Основы электродинамики материалов с отрицательным коэффициентом преломления достаточно полно изложены, в частности, в работах [3–6] (Здесь он ссылается на свои публикации. — Авт. ). В этих работах было показано, что вещества с отрицательным коэффициентом преломления характеризуются также отрицательными значениями диэлектрической и магнитной проницаемостями. Существенно, что все эти утверждения относятся к изотропным материалам, для которых величины n, ε и μ — скаляры».

Группа ученых из Университета в Сан-Диего по какой-то причине дважды не вполне адекватно сослалась на работу В. Г. Веселаго (УФН, 1967 г.). В своей статье, опубликованной в журнале «Phis. Rev. Letters» (2000. 84. Р. 4184), они пишут: «Веселаго теоретически исследовал электродинамические свойства сред с отрицательными ε и μ и заключил, что в таких средах драматически меняется характер распространения электромагнитных волн из-за изменения знака групповой скорости, включая изменения эффектов Доплера и Черенкова, аномалии в рефракции и давлении света». В другой статье в журнале «Science» (2001. 292. P. 77) под названием «Экспериментальное подтверждение отрицательного индекса рефракции» эта ссылка идет в таком контексте: «Хотя все известные естественные материалы имеют положительный индекс рефракции, возможность существования материалов с отрицательным индексом рефракции исследовалась теоретически (здесь идет ссылка на статью В. Г. Веселаго в УФН 1967 г. — Авт. ) и был сделан вывод, что такие материалы не нарушают никаких фундаментальных физических законов».

Такая ссылка действительно способствует созданию ложного впечатления о том, что этот «вывод» сделал сам В. Г. Веселаго. Между тем в пятом томе «Собрания трудов» Л. И. Мандельштама (1879–1944) читаем: «Но мы знаем, что групповая скорость может быть отрицательной. Это означает, что группа (и энергия) движется в сторону, противоположную направлению распространения фазы волны. Возможны ли такие случаи в действительности?

В 1904 г. Лямб придумал некоторые искусственные механические модели одномерных «сред», в которых групповая скорость может быть отрицательной… Но, как оказывается, существуют и вполне реальные среды, в которых для некоторых областей частот фазовая и групповая скорости действительно направлены навстречу друг другу. Это получается в так называемых «оптических» ветвях акустического спектра кристаллической решетки, рассмотренных М. Борном. Возможность подобного явления позволяет с несколько иной точки зрения подойти и к таким, казалось бы, хорошо известным вещам, как отражение и преломление плоской волны на поверхности раздела между двумя непоглощающими средами. Протекание этого явления, при разборе которого о групповой скорости обычно вообще не упоминается, существенно зависит от ее знака».

Далее в лекциях Мандельштама еще на двух страницах (464, 465) с формулами и рисунками приводится достаточно подробный анализ этого явления с учетом знака групповой скорости. Поскольку содержание данного текста хорошо известно В. Г. Веселаго, то отсутствие у него адекватных ссылок является не случайным недоразумением, а отражением вполне определенной позиции, характерной для некоторой части научного сообщества и позволяющей превращать процедуру объективного научного цитирования в недобросовестную рекламную кампанию.

Непосредственным следствием подобной позиции в рассматриваемом случае является такое вот прямо-таки директивное указание на с. 69 журнала «Письма в ЖТФ» (2003. 29, вып. 1): «Основополагающей работой в теории отрицательно преломляющих сред следует считать работу В. Г. Веселаго, опубликованную в 1960-е годы». В результате такого коллективного сознательного и бессознательного рекламного творчества фигура «основоположника» избавляется от нежелательной «конкуренции» со стороны других ученых, имена которых при этом просто не упоминаются. Бывают случаи, когда здравствующие ученые достаточно четко реагируют в научной печати на подобные принижения их роли в конкретных научных исследованиях. Поскольку Л. И. Мандельштам не может участвовать в подобном процессе, то защита его научного имени от недобросовестного цитирования должна осуществляться теми живущими, кто дорожит его памятью и считает недопустимыми искажения подобного рода в отношении любого ученого.

Всей этой истории с неадекватным цитированием могло бы вообще не случиться, если бы еще при рецензировании статьи В. Г. Веселаго 1967 г. ему было указано на необходимость сослаться на Л. И. Мандельштама уже на первой странице этой статьи, где В. Г. Веселаго рассуждает о возможности существования сред с отрицательными значениями ε и μ, т. е. с отрицательной групповой скоростью, и об их отличии от обычных сред с положительной групповой скоростью. Этот пример еще раз напоминает нам не только о том, к чему могут приводить незначительные на первый взгляд перекосы в цитировании, но и о той ответственности, какая в связи с этим ложится на редакторов научных изданий, рецензентов научных статей и на всех работников науки. Только осознанными и своевременными совместными усилиями можно сохранить в науке ту атмосферу честного ей служения, без которого существование науки фактически невозможно.


А. А. Рухадзе, А. А. Самохин

По поводу статьи В. Л. Гинзбурга «О некоторых горе-историках физики»

«Вопросы истории естествознания и техники», № 4, 2000 г.


В этой статье с большим полемическим пылом критикуется А. А. Рухадзе, который «совершенно безответственен, что ярко проявилось в его «исторических изысканиях» [3] и всей брошюре [9]». Ссылка [3] — это статья А. Ф. Александрова и А. А. Рухадзе (далее — АР) «К истории основополагающих работ по кинетической теории плазмы» (Физика плазмы. 1997. 23. С. 474), а «брошюра [9]» — это первое издание книги воспоминаний А. А. Рухадзе «События, годы, люди» (М., 2000).

Академик В. Л. Гинзбург, несомненно, является большим ученым и яркой личностью[40], что в свою очередь не могло не отразиться на содержании и стиле обсуждаемой нами его критической статьи. Оставление такой статьи без внимания и ответа с нашей стороны может ввести читателей в дальнейшее заблуждение. В то же время, не будучи стопроцентными язычниками, мы не можем в данном случае просто ограничиваться формальными аргументами типа: «Юпитер, ты сердишься, значит, ты не прав!» или какими-нибудь иными метафорическими приемами. Надо отвечать более содержательно и конкретно.

В. Л. Гинзбург, безусловно, прав в своем утверждении о неверно указанной в [3] дате (1949 г.) публикации в ЖЭТФ статьи четырех авторов (В. Л. Гинзбург, Л. Д. Ландау, М. А. Леонтович, В. А. Фок — далее ГЛЛФ). Правильная дата — 1946 г. На неверно указанную дату печатно обратил внимание также М. Ковров в статье «Ландау и другие», опубликованной в газете «Завтра» (№ 17 за 2000 г.), и даже дал этому свою интерпретацию.

В. Л. Гинзбург сообщает, что о статье [3] «узнал лишь в июле 2000 г. из подкинутой (ему) в ФИАНе рукописи под названием «Ландау и другие». В качестве автора указан М. Ковров, но адреса нет, а сочинение это антисемитского типа, поэтому, вероятно, это анонимка».

Мы не знакомы с М. Ковровым, и нам не вполне ясно, почему В. Л. Гинзбург называет опубликованную под этим именем статью анонимкой. Более понятны причины, по которым заслуженный академик не собирается «цитировать господина (или товарища) Коврова», ибо о статьях АР и ГЛЛФ М. Ковров, в частности, пишет:

В статье Александрова и Рухадзе нет выдержек из Гинзбурга и др., а они любопытны: «применение «метода самосогласованного поля» приводит к выводам, противоречащим простым и бесспорным следствиям классической статистики», чуть ниже — «применение метода самосогласованного поля приводит (как мы сейчас покажем) к результатам, физическая неправильность которых видна уже сама по себе», «мы оставляем здесь в стороне математические ошибки А. А. Власова, допущенные им при решении уравнений и приведшие его к выводу о существовании дисперсионного уравнения» (того самого, которое сегодня является основой современной теории плазмы). Ведь приведи они эти тексты, и получилось бы, что Ландау и Гинзбург не разбираются в простых и бесспорных следствиях классической физики, не говоря уже о математике.

Определяя статью М. Коврова как сочинение «антисемитского типа», В. Л. Гинзбург указывает, что «статья Александрова и Рухадзе широко используется в ней для «доказательства» того, как Л. Ландау и другие травили А. А. Власова». Как мы видим, однако, М. Ковров для обоснования своей позиции использует непосредственно статью ГЛЛФ, критикуя при этом статью А. Р.

А вот как пишет о статье АР уважаемый академик:

Наконец, в-третьих, и по существу это главное. Горе-критики не потрудились даже сообщить читателям о содержании статьи ГЛЛФ [4], о том, что в ней критикуется не работа Власова [8], а его спекуляции относительно «обобщенной теории плазмы и теории твердого тела». Вся «критика» статьи ГЛЛФ в [3] сводится, как мы видели, к голословному утверждению о ее необоснованности, да и к тому же «в особенности в части, касающейся кинетической теории плазмы». На деле же у ГЛЛФ этой «части» просто не существует! Помимо уже процитированного выше замечания о справедливости применения метода самосогласованного поля в случае плазмы, о плазме в конце статьи ГЛЛФ [4] в нескольких строках лишь упоминается — в критике Ландау [12] статьи Власова [8] в отношении дисперсионного уравнения.

В этих «нескольких строках» статьи ГЛЛФ заявлено: «Однако исследование вопроса автор опять проводит на основе несуществующего «дисперсионного уравнения», вследствие чего большинство результатов этой работы также неверно».

Вряд ли Виталий Лазаревич будет теперь настаивать на справедливости подобных утверждений о «несуществующем» дисперсионном уравнении. В противном случае как тогда можно будет объяснить его соавторство с А. А. Рухадзе в двух изданиях книги «Волны в магнитоактивной плазме» (М., 1970; 1975), которая целиком основана на решениях различных дисперсионных уравнений для колебаний неравновесной магнитоактивной плазмы?!

Заслуживает внимания и отношение академика к употреблению термина «уравнения Власова»: «Нисколько не умаляя заслуги Власова, применившего такое самосогласованное приближение, я не вижу разумных оснований для подобного словоупотребления, ибо речь идет об укороченном уравнении Больцмана и уравнениях Максвелла (или уравнении Пуассона)». Далее В. Л. Гинзбург говорит о своем согласии с названием «кинетическое уравнение с самосогласованным полем», в котором не упоминается имя Власова. Мы не можем, однако, согласиться с мнением академика, что «вопрос о терминологии не имеет особого значения», и дело здесь не только в напоминании о приоритете. Слова «укороченное уравнение Больцмана» искажают суть приближения самосогласованного поля и более подошли бы к результату работы Л. Ландау 1937 г., если под «укорочением» понимать обрезание в интеграле столкновений при больших и малых прицельных расстояниях.

По поводу своего авторства в статье ГЛЛФ В. Л. Гинзбург пишет: «Я был тогда молодым доктором наук и горжусь тем, что мои старшие коллеги включили меня в число авторов статьи». Если В. Л. Гинзбург при этом действительно не снимает с себя ответственности за ее содержание, то тогда следовало бы более четко пояснить, почему эта статья не включена ни в «Собрание трудов» Л. Д. Ландау (М., 1969), ни в приведенный там же список статей, не включенных в это собрание, среди которых указаны, в частности, и ошибочные работы Л. Ландау.

Возможный ответ на этот вопрос подсказывается следующим признанием:

По всей вероятности, статья ГЛЛФ не появилась бы, не будь Власов представителем и даже знаменем сил, боровшихся с физиками, работавшими в АН СССР. Но это обстоятельство ни в коей мере не делает статью ГЛЛФ беспринципной или ошибочной — речь в ней идет о физике и только физике. Наша статья была бы беспринципной, если бы мы где-либо покривили душой, исказили научную сторону дела. Этого, конечно, не было. Просто, если бы Власов не занимал указанного положения и позиций, охарактеризованных в письме В. А. Фока, на его физические ошибки скорее всего не обращали бы особого внимания.

Можно было бы, наверное, действительно не обращать особого внимания на сопутствующие появлению статьи ГЛЛФ околонаучные обстоятельства, если бы ее авторы в азарте борьбы за свое «знамя» не отошли слишком далеко от научной истины, быть может, сами тогда не вполне это сознавая.

В. А. Фок в письме П. Л. Капице от 5 июля 1944 г. так писал об А. А. Власове:

В настоящее время он фанатично увлечен неверной идеей о том, что метод, примененный им к решению задачи о плазме, имеет будто бы универсальный характер. Он вообразил, что ряд разнородных явлений, как то: сверхтекучесть гелия, сверхпроводимость, флуктуации, упругость и пр. (явления, которые на самом деле едва ли между собой связаны), имеют общую причину — наличие «далеких взаимодействий». При этом он думает, что эта причина может быть учтена его формальным методом. Убедительных доводов в пользу своей идеи он привести не в состоянии, но часто выступает с декларациями о том, что нужно «искать новых путей в науке» и т. п., причем выставляет себя новатором, а всех прочих (внеуниверситетских физиков) консерваторами. Убежденности, с которой он произносит свои декларации, и следует приписать, вероятно, то влияние, которым он пользуется в ВКВШ и МГУ (об этом влиянии можно судить по тому, что мое несогласие на назначение Власова моим заместителем явилось, по-видимому, достаточной причиной для моего увольнения из МГУ).

Эти строки В. Л. Гинзбург не только цитирует без всяких оговорок, но и повторяет почти дословно уже от себя их содержание:

Но вот развитие бывает разное. А. А. Власов так увлекся применением самосогласованного приближения в теории плазмы, что решил применять такое же приближение и в случае короткодействующих сил, в частности в твердых телах. Однако такой подход, вообще говоря, совершенно неверен. Статья ГЛЛФ как раз и посвящена критике этих статей — так наша статья и называется.

И действительно, «развитие бывает разное». Неверными, вообще говоря, оказались как раз цитируемые и повторяемые В. Л. Гинзбургом утверждения о методе самосогласованного поля, который на самом деле имеет гораздо большую область применимости, чем это предполагали авторы статьи ГЛЛФ. И в этом смысле А. А. Власов был куда более прав, чем его оппоненты.

В этом нетрудно убедиться после даже беглого просмотра названий статей в нескольких текущих номерах авторитетных физических журналов: «Dynamical mean-field theory and electronic structure calculations» (Phys. Rev. B. 2000. 62. P. 12715), «Varionational maen-field aproach to the double-exchange model» (Phys. Rev. B. 2001. 63. P. 054411), «Weakly interacting Bose-Einstein condensates under rotation: Mean-field versus exact solutions» (Phys. Rev. Lett. 2001. 86. P. 945), «Relativists Hartree — Bogoliubov description of sizes and shapes of A = 20 isobars» (Phys. Rev. С. 2001. 63. 034305). В тексте статьи «Surface-directed spinodal decomposition in binary fluid mixtures» (Phys. Rev. E. 2001. 63. P. 041513) читаем: «In Sec. III, we describe our model and the numerical methods used. These involve an «integration» of the Vlasov — Boltzmann equations for the binary mixture in contact with a surface». А статья «A statistical theory of the mean field» (Ann. Phys. 1998. 262. P. 105) специально посвящена вопросу применимости метода самосогласованного поля к самым различным системам, взаимодействие в которых может быть короткодействующим или дальнодействующим, слабым или сильным.

С точки зрения истории науки и логики развития научных исследований интересным представляется вопрос о том, почему Л. Ландау в своей работе 1937 г. проглядел возможность применить к рассматриваемой им задаче метод самосогласованного поля. Создается впечатление, что Л. Ландау просто вытеснял из своего сознания этот термин и само это понятие. Такое предположение в известной мере подтверждается статьей ГЛЛФ и другими работами Л. Ландау.

Мы полностью согласны с высокой оценкой В. Л. Гинзбургом работ Ландау и Власова, но не можем безоговорочно принять его аргумент о том, что он не знает ни о каких последующих достижениях Власова. Эйнштейн, как известно, тоже посвятил много лет безуспешным попыткам построения единой теории поля, но вряд ли уместно рассматривать это обстоятельство как компроментацию самой идеи или конкретного ученого.

Метод самосогласованного поля, в развитие которого внес свой непреходящий вклад А. А. Власов, широко применялся и применяется не только в физике плазмы, но и в атомной и ядерной физике, в теории твердого тела и других областях физики. «Теория фазовых переходов Ландау представляет собой, как хорошо известно, теорию среднего поля (или, как иногда говорят, молекулярного или самосогласованного поля)» — эти слова напечатаны на с. 141 книги В. Л. Гинзбурга «О науке, о себе и о других» (М., 1997). Добавим к этому и другой общеизвестный факт, что В. А. Фок является автором одного из вариантов метода самосогласованного поля в атомной физике, который называется «метод Хартри — Фока».

Мы также поддерживаем В. Л. Гинзбурга в том, что «недопустимо проходить мимо лженауки и ее пропаганды, мимо лжи и необъективности в исторических сочинениях, мимо клеветы на людей под видом публикации воспоминаний и т. п.». Именно поэтому мы снова и снова возвращаемся к подобным проблемам, сознавая, сколь причудливой и трудно уловимой порой оказывается грань между истиной и ее суррогатами.


А. А. Рухадзе, А. А. Самохин

Мифы и реальность лучевого оружия в россии

Доклад на 4-й Международной конференции «Фундаментальные и прикладные проблемы физики», г. Саранск, 16–18 сентября 2003 г.


Этот доклад во многом носит автобиографический характер, и поэтому изложение ведется от первого лица. Здесь дается информация, которую я почерпнул не только из своих теоретических и экспериментальных исследований, но также и из исследований, проводимых во многих научных учреждениях бывшего Советского Союза. О них я узнавал либо от моих заказчиков, либо от друзей, работающих в этих учреждениях. Сегодня, когда завеса секретности с этих исследований давно снята, о них можно говорить. Более того, в периодической научной и научно-популярной литературе опубликованы практически все наиболее важные результаты таких исследований, их цели и перспективы реализации. Так что я никаких секретных сведений не раскрываю. Тем не менее мой доклад, думаю, интересен не только тем, что исходит от одного (не самого важного) из участников таких исследований, но и тем, что в нем рассказывается о моем отношении к этим исследованиям. Уверен, что аналогичные чувства испытывали и другие (более важные) их участники, но они так же, как и я, молчали. Правда, причины молчания, по-видимому, у всех были разные.

Впервые серьезно о лучевом оружии я услышал во второй половине 1960-х, где-то в 1966–1968 г. После защиты докторской диссертации, особенно после ее утверждения ВАК в 1965 году, я стремился получить самостоятельность в науке, возглавить какое-нибудь научное направление. Естественно, я хотел, чтобы это направление было связано с сильноточными релятивистскими электронными пучками и их взаимодействием с плазмой и со средами. В 1966–1967 гг. в лаборатории физики плазмы ФИАН, где я работал, защитили докторские Л. М. Коврижных и И. С. Шпигель, и они также стремились возглавить самостоятельные научные подразделения. Тематика у них была своя: термоядерная на «Стеллараторе» — главное направление научной деятельности лаборатории Физики плазмы в целом, которую возглавлял М. С. Рабинович.

Было в лаборатории и второе научное направление, начатое по инициативе В. И. Векслера, которое тогда возглавлял Г. М. Батанов, так называемый «РАМУС» — радиационный метод ускорения нейтральных сгустков заряженных частиц в волноводе с помощью мощного СВЧ-излучения. Однако оба эти направления финансово не были достаточно обеспечены для полноценной жизни лаборатории. К тому же в 1966 году В. И. Векслер умер, и тематика «РАМУС» вообще повисла в воздухе.

Перед М. С. Рабиновичем стояла большая проблема: как новым докторам и Г. М. Батанову создать сектора и где под них достать деньги. В то время их можно было достать только через военно-промышленный комплекс, предложив разработку какого-либо нового перспективного вида лучевого оружия. Именно лучевого, поскольку как для защиты, так и для нападения требовалось быстрое, безынерционное, почти мгновенное реагирование. Это было постхрущевское время, время разгара холодной войны. Именно тогда и у нас, и в США начали разрабатывать лазерное оружие, нечто вроде «гиперболоида инженера Гарина». Кроме слухов я ничего об этом оружии не знал. Знал только, что одно из направлений лазерного оружия носило глобальный характер и его возглавлял академик Н. Г. Басов. Другое же направление носило менее глобальный характер и скорее было нацелено на создание тактического оружия. Возглавлял его академик А. М. Прохоров. Вот и все, что тогда, в конце 1960-х, я знал о лазерном оружии и, честно говоря, большего знать и не хотел — лазер не был моим внутренним импульсом, и, кроме того, им и так занималось слишком много людей.

Не знал я и того, что у М. С. Рабиновича уже тогда было «за пазухой» весьма и весьма перспективное предложение о создании лучевого оружия, но не лазерного, а на основе мощного СВЧ-излучения. Дело в том, что эксперименты по теме «РАМУС», проводимые в группе И. Р. Геккера, привели к неожиданному результату: не к отражению СВЧ-излучения в волноводе от плотного сгустка плазмы и его ускорению, а к аномальному поглощению СВЧ-излучения плазменным сгустком и ускорению части его электронов до больших энергий. Это открывало новые возможности по созданию лучевого СВЧ-оружия, более перспективного, чем лазерное оружие. Связано это с тем, что длина волны лазерного излучения порядка микрона, поэтому лазерное излучение практически невозможно сфокусировать на относительно малой площади цели, находящейся на большом (больше 100 км) расстоянии. Естественное же угловое расхождение оптического лазерного излучения в атмосфере в результате рассеяния составляет θ ~ 10-4 (это было установлено в специально созданном для обеспечения выполнения программы создания лазерного оружия Институте оптики атмосферы в СО АН СССР в г. Томске, который возглавлял академик В. Е. Зуев). Отсюда следовало, что пятно лазерного излучения на расстояни 100 км будет иметь диаметр не менее 20 метров, а плотность энергии на площади в 1 см2 при полной энергии лазерного источника в 1 МДж (для короткоимпульсного лазера неосуществимая мечта и сегодня) меньше 0,1 Дж/см2. Этого слишком мало: чтобы поразить цель, создав в ней отверстие в 1 см2, требуется больше 1 кДж/см2.

Хотя приведенные оценки были получены несколько позже, но уже тогда, в конце 1960-х, в общих чертах они были ясны; по крайней мере, невозможность фокусировки лазерного излучения была хорошо понятна. И тем не менее о расходимости лазерного луча в атмосфере были намного более радужные надежды. Мне тогда все это было неизвестно и, более того, недоступно ввиду секретности этих данных. М. С. Рабинович, по-видимому, их знал и потому попросил Н. Г. Басова (тогда заместителя директора ФИАН) обратиться в правительство с предложением издать постановление о создании СВЧ-оружия сантиметрового диапазона длин волн. Ведь СВЧ-излучение можно сфокусировать с помощью фазированной антенной системы на площадь и λ2 (где λ = 3 см — длина волны СВЧ-излучения). Если расстояние до цели h = 100 км, то для такой фокусировки радиус антенны должен быть порядка

R ~ √λh ~ 60 м.

Отсюда следует, что если источник СВЧ-излучения обладает энергией 104 Дж, то можно разгерметизировать спутник либо ракету на расстоянии более 100 км.

Н. Г. Басов от идеи М. С. Рабиновича выйти в правительство отказался, ответив, что он может обратиться лишь к тогдашнему заместителю министра радиопромышленности В. И. Маркову, чтобы тот возглавил эту тему и обеспечил финансирование соответствующих работ в лаборатории М. С. Рабиновича. Но только при одном условии: работы эти в лаборатории М. С. Рабиновича должен возглавить А. А. Рухадзе. На это уже не мог пойти М. С. Рабинович, поскольку к работам по теме «РАМУС», в недрах которой и родилась эта идея, я не имел никакого отношения.

Альянс с Н. Г. Басовым не удался, и тогда М. С. Рабинович обратился к А. М. Прохорову. В результате в 1969 году вышло постановление правительства, согласно которому большая кооперация, возглавляемая заместителем министра В. И. Марковым и академиком А. М. Прохоровым, должна была создать источник СВЧ-излучения с длительностью импульса несколько миллисекунд и общей мощностью до 20 МВт путем когерентного сложения излучения от 196 источников с точностью до 10~ю с. Это постановление существенным образом повлияло на жизнь лаборатории физики плазмы, которая финансово стала одной из самых обеспеченных в ФИАН. М. С. Рабинович в конце 1971 года создал сразу четыре сектора: И. С. Шпигелю (сектор «Стелларатор»), Л. М. Коврижных (теоретический сектор; В. П. Силин, который возглавлял этот сектор до него, из лаборатории ушел), Г. М. Батанову (сектор «РАМУС») и мне (сектор плазменной электроники).

Так я получил возможность заниматься выбранной мною темой, в которой у меня был значительный задел, — взаимодействием сильноточных импульсных релятивистских электронных пучков с плазмой и исследованием генерации СВЧ-излучения я занимался давно. Но к закрытой теме я тогда еще не был допущен и к лучевому СВЧ-оружию прямого отношения не имел.

Но уже имел отношение к лазерному оружию. И произошло это следующим образом. Еще в 1966 году я увлек идеей импульсных релятивистских электронных пучков одного из сотрудников Н. Г. Басова — О. В. Богданкевича. Он тогда завершал работы по сооружению лабораторного корпуса в г. Троицке (в филиале ФИАНа), в котором предполагалось развернуть исследования по полупроводниковым лазерам. Мы убеждали Н. Г. Басова изменить тематику лаборатории в Троицке и заняться там совместно с нами физикой релятивистских пучков. Н. Г. Басов, естественно, нам отказал, иначе он не был бы самим собой — фанатиком лазеров. Зная, однако, мое стремление к самостоятельности, предложил и мне заняться проблемой лазерного оружия. Дело в том, что в басовской теме основным активным элементом, генерирующим мощное лазерное излучение, предполагалось использовать газ SF6J (предложенный И. С. Собельманом) при высоком давлении и в большом объеме. Полоса поглощения этого газа лежит в ультрафиолетовой области, поэтому обычные ксеноновые лампы разработанные И. С. Маршаком[41] и успешно используемые для накачки твердотельных лазеров, не годились. Возникла проблема создания эффективных источников мощного ультрафиолетового излучения для накачки SF6J, и Н. Г. Басов предложил мне участвовать в работах по созданию таких источников на базе сильноточного самосжатого разряда в плотных газах. Мне показалось это интересным, и я согласился, а также привлек к этим работам кафедру электроники физического факультета МГУ (группу тогда молодого А. Ф. Александрова). В ФИАН в лаборатории квантовой радиофизики эти работы велись в группах В. Б. Розанов и Ф. А. Николаева. Так с начала 1968 года я приобщился к работам по лазерному оружию. Тогда же я разобрался в деталях не только басовской темы, но и прохоровской. Хотя в качестве активного элемента в последней использовалось неодимовое стекло, но и здесь необходимо было создать долгоживущие электроразрядные источники света для накачки такого лазера. Исследования были очень схожи с нашими, и, естественно, своими достижениями мы делились, в том числе и с физиками из филиала ИАЭ им. И. В. Курчатова в г. Троицке (руководил работами Е. П. Велихов). Думаю, что все мы прекрасно понимали бесперспективность создания силового лазерного оружия, особенно дальнего действия (я, по крайней мере, в этом был убежден). Но никто об этом громко не говорил. Даже Ю. Б. Харитон — научный руководитель ядерного центра в Арзамасе-16, сказавший, что ракету можно сбить только антиракетой, — активно проводил исследования по мощным лазерам у себя на объекте.

Мы с А. Ф. Александровым на физфаке, В. Б. Розанов с Ф. А. Николаевым в ФИАН, Ю. С. Протасов с Н. П. Козловым в Бауманском училище честно выполнили свою задачу — создали эффективные источники ультрафиолетового излучения для накачки мощных лазеров и были удостоены Госпремии СССР в 1981 году за цикл работ по «физике излучающей плазмы».

О еще большем блефе 1970-х и 1980-х годов по созданию лучевого оружия я узнал после того, как в 1974 году стал активным участником работ по упомянутому выше СВЧ-оружию. Дело в том, что с 1971 года в созданном для меня секторе плазменной электроники начали проводиться работы по двум направлениям. Работы по релятивистским вакуумным СВЧ-источникам проводились в группе М. Д. Райзера в тесном контакте с электронщиками НИРФИ (г. Горький). Работы же по плазменным релятивистским СВЧ-источникам проводились в группе П. С. Стрелкова. Источник пучка релятивистских электронов «Терек-1» в группе М. Д. Райзера был создан Г. П. Мхеидзе в 1972 году. Именно на этой установке (с параметрами: напряжение 670 кэВ, ток 5 кА и длительность импульса 40 не) М. Д. Райзером, Г. П. Мхеидзе, Л. Э. Цоппом (ФИАН), М. И. Петелиным, Н. Ф. Ковалевым и А. В. Сморгонским (НИРФИ) был впервые в мире реализован релятивистский СВЧ-генератор ЛОВ (названный карсинотроном) с мощностью свыше 300 МВт и кпд 14 %. Это было сенсацией. Американцы, имеющие лучшие, чем у нас, источники пучков, такого добиться не могли, в их релятивистских источниках СВЧ кпд не превышал нескольких процентов. Только через год, побывав у нас и взяв образец нашего ЛОВ, они смогли повторить наш результат.

Но и для нашей программы по СВЧ оружию и для меня лично полученный результат оказался переломным. Дело в том, что проблема сложения мощности от 196 элементов за время 10–10 с в это время сильно буксовала (она была решена только в 1978 году). Я же высказал мнение, что для решения всей проблемы СВЧ оружия миллисекундный источник СВЧ непригоден. Чтобы пробить броню и создать в ней сантиметровое отверстие, энергоподвод к цели должен происходить за время, меньшее времени теплоотдачи вследствие теплопроводности. Это же время порядка микросекунд. Следовательно, нам нужен был источник СВЧ микросекундной длительности; для получения необходимой энергии 10 кДж/см2 его мощность должна быть не менее 10 ГВт. Так появилась идея новой короткоимпульсной СВЧ установки, нового правительственного постановления, которое и вышло в 1976 году. Согласно этому постановлению, основными участниками кооперации были ИСЭ СО АН (Г. А. Месяц — источники релятивистских пучков), ИПФАН (А. В. Гапонов-Грехов — генераторы СВЧ) — эти институты создавались в соответствии с постановлением, и ФИАН (физика СВЧ воздействия). Научными руководителями работ были А. М. Прохоров и А. А. Кузьмин (директор Московского радиотехнического института — МРТИ).

При подготовке постановления я познакомился с проводимыми в лаборатории работами по СВЧ оружию и убедился в полной их несостоятельности. Более того, в обосновании нашей темы фактически отрицалась целесообразность создания длинноимпульсного СВЧ оружия. И действительно, начиная с 1977 года длинноимпульсная установка как бы заморозилась, широкая кооперация, нацеленная на создание на основе этой установки прототипа СВЧ оружия, практически перестала функционировать. А на этой установке (в основном силами сектора Г. М. Батанова в ФИАН и группы А. А. Кузовникова в МГУ) еще в течение нескольких лет проводились работы по исследованию нелинейного взаимодействия мощного СВЧ излучения с плазмой. Работы привели к очень интересным научным результатам, хотя и далеким от военного применения.

В это же время, с начала 1977 года, бурно развивались работы по созданию в МРТИ короткоимпульсной установки и ее моделей в ИСЭ СО АН и ИПФАН. Она еще подавала надежды быть прототипом будущего СВЧ оружия. Ведь по проекту предполагалось, что она должна обеспечить в сантиметровой области длин волн мощность до 1010 Вт при длительности импульса порядка 1–2 мкс, т. е. около 10 кДж в пятне порядка одного квадратного сантиметра, что и требовалось как расчетное значение критерия поражения. Другими словами, установка должна была дать возможность экспериментально подтвердить или опровергнуть расчетный критерий поражения цели мощным СВЧ излучением. Мне было любопытно узнать, была ли идея СВЧ силового оружия таким же блефом, как идея лазерного оружия? Была какая-то надежда, что нет! Думаю, что такая же надежда была и у А. А. Кузьмина (директора МРТИ), ибо он особое внимание уделял нашей теме, хотя в его институте были и более обильно финансируемые темы, например, по созданию пучкового корпускулярного (из электронов, протонов и мезонов) оружия силового действия. Бред какой-то, блеф, в стократ превосходящий блеф лазерного оружия. Это А. А. Кузьмин прекрасно понимал и все надежды возлагал на нашу тему.

Я не буду рассказывать об огромных трудностях, которые пришлось преодолеть при создании установки в МРТИ и модельных установок не только А. А. Кузьмину и В. Д. Селезневу (МРТИ), команде А. В. Гапонова-Грехова из ИПФАН (М. И. Петелину и Н. Ф. Ковалеву), инженерам Г. А. Месяца из ИСЭ СО АН (Б. М. Ковальчуку, С. П. Бугаеву), Г. А. Шнеерсону из ЛПИ и многим другим и, естественно, М. С. Рабиновичу и мне. Скажу только, что подходящая для исследования критерия поражения установка в МРТИ была создана в 1982 году и обошлась стране свыше 90 млн. долларов.

С гордостью мы пригласили Ю. Б. Харитона и показали ему эту уникальнейшую установку. Параметры пучка (уже тогда достигнутые): энергия — 3 МэВ, ток — до 100 кА при длительности импульса 2 мкс (общая энергия 600 кДж); параметры магнитного поля (уже тогда работающего): 90 кГс в объеме до 4 × 104 см3 при длительности импульса в несколько миллисекунд (общая энергия магнитного поля свыше 1 МДж); уже готовая камера взаимодействия с тремя фокальными плоскостями для определения критерия поражения в близких к натурным условиям, т. е. при давлении 10–7 Тор в объеме 400 м3. Было чем гордиться! Ю. Б. Харитон, увидев все это, произнес убийственные слова «Я думал, что только мы пускаем деньги на ветер (наверное, имел в виду лазерное оружие — А. Р.), оказывается, вы намного больше делаете это».

Эти слова меня очень смутили, я обалдел. Ведь говорят «Жираф большой — ему видней». Так и оказалось. Более 8 лет мы безуспешно пытались достигнуть запланированных параметров СВЧ излучения. Генератор работал и даже давал нужную мощность 5 × 109 Вт, но генерация через несколько десятков наносекунд срывалась, несмотря на то, что пучок без существенных искажений продолжал пронизывать электродинамическую систему генератора СВЧ. Очень скоро разобрались в причинах неудачи — взрыв поверхности электродинамической системы ЛОВ, что приводило к отказу ее функционирования. Таким образом, к 1990 году и на силовом СВЧ оружии был поставлен крест.

Однако уже к началу 90-х короткоимпульсные источники мощного СВЧ излучения получили новый стимул. Они оказались очень эффективными при воздействии на элементы телекоммуникационных систем, на порядок эффективнее мощного лазерного излучения. И это понятно, поскольку действие лазерного излучения сводится к тепловому воздействию, то оно пропорционально интенсивности потока, в то время как действие СВЧ излучения проявляется в виде полевого пробоя в элементах и эффект пропорционален электрическому полю в потоке СВЧ волны, вследствие чего это воздействие намного эффективнее. Таким образом, возникло и успешно развивается новое направление лучевого оружия — СВЧ оружие для функционального поражения. К сожалению, с помощью наших ученых оно сильнее развивается уже на Западе, поскольку у нас в 1991 году началась и до сих продолжается «перестройка», инициированная М. Горбачевым и продолженная Б. Ельциным. Правда, и здесь остается пока еще не до конца решенная проблема, которая была сформулирована еще в нашей теме, — проблема передачи короткого (наносекундного) импульса СВЧ на большие расстояния, порядка сотен километров. Не решена она и до сих пор.

В заключение я хочу кратко остановиться на плазменных источниках мощных импульсов СВЧ. Именно такие источники СВЧ, хотя они и уступают по мощности вакуумным (о них речь шла выше — релятивистский ЛОВ-карсинотрон), по моим представлениям, являются наиболее подходящими в качестве СВЧ оружия для функционального поражения. Работы по разработке и созданию релятивистских плазменных генераторов и усилителей СВЧ излучения велись в лаборатории физики плазмы вначале в ФИАН, а с 1976 года в ИОФАН и ведутся по сегодняшний день.

Теоретические работы проводятся М. В. Кузелевым и мною с учениками, а экспериментальные — П. С. Стрелковым, А. Г. Шкваруицом, О. Т. Лозой и их сотрудниками. В создании экспериментальных стендов (в основном ускорителей) большую помощь оказали сотрудники Г. А. Месяца из ИСЭ СО АН, в особенности Б. М. Ковальчук.

Не буду рассказывать обо всех наших успехах и неудачах при разработке релятивистских плазменных СВЧ генераторов и усилителей. Отмечу только, что первый генератор заработал в 1982 году, а первый усилитель — в 1999. Приведу параметры этих приборов на сегодняшний день и отмечу их преимущества перед релятивистскими вакуумными приборами, имея в виду не только СВЧ оружие для функционального поражения, но и другую важную оборонную проблему — проблему обнаружения летательных аппаратов-невидимок, изготовленных по технологии Stealth.

Достигнутая мощность релятивистского плазменного СВЧ генератора на сегодняшний день составляет 500 МВт при длительности импульса 100 нс и кпд 10 % и до 100 МВт при длительности импульса до 500 нс и кпд 10 %. Реализованы и стабильно работают усилители на частотах 12,9 ГГц (2,3 см) и 9,1 ГГц (3,3 см), входные мощности соответственно равны 75 кВт и 40 кВт, а выходные — 20 МВт и 8 МВт, т. е. усиление в обоих случаях превышало 20 дБ.

Приведенные параметры релятивистских плазменных генераторов и усилителей СВЧ почти на порядок меньше достигнутых в вакуумных релятивистских источниках. Однако их уникальность состоит в том, что в одном таком приборе можно реализовать как узкополосную (5 %), так и широкополосную (50 %) генерацию, причем с очень широкой полосой перестройки — от 4 до 28 ГГц, т. е. в 7 раз. Причем перестройка прибора, т. е. переход от одной частоты к другой в указанной области осуществляется за время ~30 мс. Это связано с тем, что частота генерации в плазменном приборе определяется плотностью плазмы, которая может меняться в пределах 1012–1013 см–3, причем это изменение происходит за характерное время рекомбинации ~30 мс. Отсюда следует, что уже сегодня реально создание плазменного генератора с таким же временем перестройки и работающего с частотой следования импульсов в 3 кГц. О таких возможностях вакуумных приборов и речи быть не может.

Нетрудно понять, что СВЧ генераторы с указанными параметрами позволяют быстро определить резонансную частоту наиболее сильного воздействия излучения на элементы телекоммуникационных систем и могут служить эффективным лучевым оружием для функционального поражения. Совершенно так же таким прибором можно быстро определить область частот видимости летательных аппаратов и обнаружить их. Жалко только, что в нашей стране это никому не нужно, и очень опасно, что такими источниками СВЧ усиленно интересуются западные страны.

О том, что западные специалисты уделяли и уделяют особое внимание СВЧ оружию функционального поражения свидетельствует приведенный ниже отрывок из книги высокопоставленного работника британских спецслужб Джона Колемана «Комитет 300, Тайны Мирового Правительства», Москва, изд. Витязь, 2000 (перевод с английского):

«Римский клуб», действуя по приказу Комитета 300 об устранении генерала Уль Хака, без угрызений совести пожертвовал жизнями ряда военнослужащих США, находившихся на борту самолета, включая группу «Оборонного разведывательного агентства» (US Defense Intelligence Agency), возглавляемую бригадным генералом Гербером Вассомом. Генерал Уль Хак был предупрежден турецкой секретной службой, чтобы не летал на самолетах, так как стало известно, что планируется взорвать его самолет в воздухе. Учитывая это, Уль Хак взял с собой группу военнослужащих из Соединенных Штатов в качестве «страхового полиса», как он объяснил узкому кругу приближенных советников.

В моей работе 1989 года «Террор в небе» я дал следующее описание происшедшего: «Незадолго до того, как «С-130» Уль Хака взлетел с пакистанской военной базы, рядом с ангаром, в котором стоял С-130, был замечен подозрительный грузовик. С диспетчерской башни дали предупреждение службе охраны, но пока успели что-либо предпринять, самолет уже взлетел, а грузовик уехал. Через несколько минут самолет неожиданно начал делать петлю Нестерова, а затем врезался в землю и взорвался. Объяснений подобного поведения С-130 не было, самолет имел отличную репутацию по безопасности полетов, а совместная пакистано-американская комиссия по расследованию катастрофы не обнаружила ошибок пилота или каких-либо механических или структурных неполадок. Неожиданная петля Нестерова — это, так сказать, признанная «торговая марка» самолета, пораженного импульсом ЭНЧ.

То, что Советский Союз имел возможность производить приборы, генерирующие высокоамплитудные радиочастоты, было известно на Западе по исследованиям советских ученых, работавших в отделении интенсивного релятивистского электронного излучения Института атомной энергии им. Курчатова. Среди этих специалистов были Ю. А. Виноградов и А. А. Рухадзе. Оба ученых работали в Институте физики им. Лебедева, который специализируется на электронных и рентгеновских лазерах.

То, что здесь написано, разумеется, чушь: никакого СВЧ оружия функционального поражения в 1988 году (в год гибели Зия Уль Хака) СССР не обладал. Но сегодня такое возможно, и я не уверен, что на Западе такое оружие не создано. В России, я уверяю, его нет.

Открытое письмо в Президиум Российской Академии наук

«Независимая газета», 25 июня 2003 г.


В 1998 году Президиум Российской Академии наук создал «Комиссию по борьбе с лженаукой». Сам факт создания такой комиссии вызвал большое недоумение в научной среде. Практика создания подобных комиссий не нова. Во времена средневековья существовала инквизиция, призванная бороться с инакомыслием не только в вопросах веры, но и устройства природы. При советской власти существовали научные комиссии для борьбы с чуждыми коммунистическому мировоззрению теорией относительности и квантовой механикой, затем боролись с генетикой и кибернетикой. Результаты борьбы известны. Анализ работы предыдущих комиссий приводит к выводу, что так или иначе под флагом борьбы с «лженаукой» на самом деле боролись с чуждой идеологией, т. е. с системой философских взглядов. А с какой идеологией призвана бороться ваша комиссия? Зачем вообще РАН (по своему статусу организации общественной) заниматься организацией «охоты на ведьм»? Дошло ведь до того, что ваша комиссия требует от президента России официальных полномочий «ставить на место недобросовестных журналистов». По сути дела комиссия добивается права цензуры всей информации, относящейся к научной тематике. В условиях демократии такими полномочиями не обладает и сам Президент. Не забывайте, что мы живем в начале третьего тысячелетия, в свободной, демократической России.

В чем же истинная причина особого внимания Президиума РАН к так называемой «лженауке»? Ведь все «лжеученые», вместе взятые, тратят бюджетных средств для удовлетворения своего «лженаучного» любопытства в масштабах, не сравнимых с бюджетными затратами отдельных «истинных» ученых. А то, что они свои результаты не скрывают от других, за это их только благодарить надо. Не верите в результаты исследований — проверяйте и доказывайте обратное. Имеете аргументированное возражение — публикуйте, благо научные журналы нынче не перегружены. Академия наук обладает уникальными возможностями по изложению своей точки зрения по любой научной проблеме, ведь подавляющее большинство научных журналов и изданий находится под патронажем РАН. Более того, публикация статей в отечественных научных журналах стала возможной в двух случаях: либо если результаты несущественно отличаются от уже известных, либо при условии протекции кого-нибудь из влиятельных академиков. Поэтому жалобы на то, что у комиссии по борьбе с лженаукой нет общественной трибуны, можно сравнить лишь с жалобами жителей Прибайкалья на отсутствие пресной воды.

А ведь именно публикация в научном журнале корректной, научно аргументированной и доброжелательной критики тех или иных взглядов «недобросовестных ученых» была бы встречена с полным пониманием научной общественностью. Вместо этого комиссия способствует созданию атмосферы нетерпимости к новым идеям и неприятия неожиданных результатов, нагнетая истерию в научной среде именно через средства массовой информации.

Так, количество публикаций в СМИ председателя комиссии академика Э. П. Круглякова стало заметно превышать число его научных работ. Поверхностность и однобокость, обусловленные низкой научной компетенцией в затрагиваемых им темах, одиозность и отсутствие широкой научной эрудиции приводят к тому, что большая часть публикуемых им материалов напоминает скорее базарную склоку, нежели аргументированную научную позицию. Многие доводы, приводимые Э. П. Кругляковым в дискуссиях и отдельных выступлениях, не просто не точны, а настолько ошибочны, что кроме улыбки и сочувствия ничего вызвать не могут. С нашей точки зрения такое положение вещей наносит вред прежде всего престижу самой Академии наук.

Обращаясь к вам как к руководящему органу РАН, мы призываем еще раз задуматься над тем, нужна ли вообще эта комиссия по борьбе непонятно с чем. Монополии на истину ни у кого нет и быть не может. Процесс познания бесконечен. Представления и идеи, кажущиеся ошибочными сегодня, могут оказаться в итоге верными. Более того, как следует из истории науки, именно так всегда и происходило. С кем же вы боретесь? Без свободы научного творчества нет и не может быть никаких достижений в науке.

Считаем, что позиция Президиума РАН, занятая в отношении «холодного синтеза» является глубоко ошибочной. Основываясь на результатах исследований различных научных групп, на сегодняшний день можно утверждать, что при электромагнитных процессах в конденсированных средах наблюдается явление низкоэнергетической трансформации ядер химических элементов. Нам представляется, что явление носит ярко выраженный коллективный характер и происходит за счет слабых взаимодействий, а не за счет сильных, как предполагалось ранее. Явление трансформации происходит в строгом соответствии с основными законами сохранения (энергии, барионного, электрического и лептонного зарядов). Неясным остается лишь, за счет какого конкретного механизма наблюдаются столь высокие сечения взаимодействия. Здесь будет уместно вспомнить слова Анри Пуанкаре: «Один надежно установленный экспериментальный факт весит больше, чем мнение всех ученых, вместе взятых». Без изменения позиции РАН невозможно своевременно организовать планомерные научные исследования, а прогресс в этой области наблюдается столь бурный, что это может вновь привести к непривычному отставанию России в очередной (которой уже по счету?) области науки и технологий уже в ближайшем будущем.

По нашему мнению, на сегодня в российской науке сложилась затхло-религиозная атмосфера. С каждыми выборами в Академию усиливается административное крыло, поскольку членами Академии становятся во все возрастающем масштабе директора и ректоры институтов, а такие серьезные и известные ученые, как В. Летохов остаются за ее бортом. В Академии процветает кланово-бюрократическая система распределения «квот на научные исследования». И именно по этой причине не в последнюю очередь многие настоящие ученые уехали из страны, а не только из-за материальных трудностей, как принято считать в кругах людей, далеких от науки. Так зачем же целенаправленно нагнетать атмосферу в научной среде, усложняя и без того непростую жизнь отечественных ученых?


С уважением, д. ф. — м. н., профессор А. А. Рухадзе,

д. ф. — м. н. Л. И. Уруцкоев

Всех наук великий цензор, или много шума из ничего

И умным кричат: "Дураки, дураки!"

Б. Окуджава

Статья опубликована с небольшими изменениями в «Независимой газете» 25 июня 2003 г. под названием «Охота на академических ведьм»


Эта статья — отклик на публичную дискуссию о состоянии современной науки, которая развернулась на страницах российской академической печати («Вестник РАН», «Поиск»). Поскольку редакция рассчитывала на «откровенный разговор», то мы и решились на откровенное письмо, правда, без особых надежд на публикацию. Следует отметить, что сам факт того, что такая дискуссия возможна, вселяет определенный оптимизм. Статья академика Натальи Петровны Бехтеревой — достойный образец того, как настоящий ученый должен уметь решительно и аргументированно, с одной стороны, и уважительно к оппоненту — с другой, отстаивать свою позицию.

Изложение нашей собственной позиции нам хотелось бы начать с общефилософской проблемы познаваемости и непознаваемости окружающего нас мира. Итогом общеизвестной философской дискуссии, которая в Х1Х-XX веках имела место по этому поводу, стал вывод: мир познаваем. Бурный рост научных достижений стал яркой иллюстрацией правильности сделанных выводов. Технологический прорыв, начавшийся с середины XX столетия, привел к «головокружению от успехов» не только у рядовых членов общества, но и среди ученых. И здесь, как нам представляется, таится угроза фундаментальной науке, ибо именно в период расцвета технологий начинается кризис фундаментальных представлений (или, как сейчас принято говорить, парадигмы). У этой закономерности есть свое достаточно простое и общеизвестное объяснение. Дело в том, что результаты, полученные с помощью новых методов и более совершенных и точных приборов, придуманных и построенных на базе существующих представлений и технологий, рано или поздно начинают входить в противоречие с общепринятой парадигмой. Но достижения и успехи науки представляются столь очевидными, а расхождения с представлениями столь незначительными, что первоначально возникает инстинктивное желание «замести все эти мелочи под ковер». И накопление «нестыковок» продолжается до тех пор, пока ученые не наталкиваются на результат, который качественно не удается осознать в рамках существующих представлений. Так в науке бывало не раз и, наверное, так будет всегда. По-видимому, таков объективный путь познания истины. Ученые, полагающие, что здание науки «в основном построено», очень похожи на путников, которые, уютно расположившись в придорожной корчме на ночлег, полагают, что дорога закончилась.

Все изложенное выше ни в коей мере не может претендовать на оригинальность и новизну, более того, является хрестоматийной истиной и многим может показаться, что не стоило бы об этом и говорить. Но, на наш взгляд, очень даже стоит, так как общее настроение в академических кругах таково, что, похоже, исторические уроки не усвоены. Казалось бы, всем уже набили оскомину разговоры о попытках борьбы с теорией относительности и квантовой механикой, генетикой и кибернетикой и все согласны с тем, что это было ошибкой. И как результат — создание комиссии РАН по борьбе с «лженаукой». Слегка модернизированной, но отличающейся от прежних комиссий не более, чем один вирус гриппа отличается от другого. По форме — это та же безапелляционность критики при отсутствии веских научных аргументов, та же трескучесть в попытке придания «борьбе» статуса национальной проблемы, а по сути — желание сохранить незыблемость существующих представлений.

К настоящему времени в физике сложилась достаточно парадоксальное положение: основатели современной физики (А. Эйнштейн, Л. де Бройль, П. Дирак, Э. Шрёдингер), как следует из их поздних работ, гораздо сильнее сомневались в незыблемости основ своих теорий, чем их современные последователи. Более того, классики предвидели такое положение вещей. В подтверждение своих слов позволим себе процитировать малоизвестное высказывание Луи де Бройля, которое было опубликовано к 100-летию А. Эйнштейна: «В силу того что по самой логике своего развития система научных исследований и научного образования непременно отягощается громоздкими административными структурами, заботами финансирования и тяжеловесным механизмом регламентаций и планирования, становится более чем когда-либо необходимым охранять свободу научного творчества и свободную инициативу оригинальных исследований, поскольку эти факторы всегда были и останутся самыми плодотворными источниками великого прогресса Науки» (25 апреля 1978 г.).

Так давайте попробуем разобраться в том, какие именно проблемы попали в поле зрения современной комиссии по борьбе с «лженаукой».

Это прежде всего медицина. Достаточно забавно наблюдать, как физики-теоретики, составляющие подавляющую часть комиссии, проявляют трогательную заботу о здоровье населения страны. Мы не обладаем знаниями в области медицины и поэтому не беремся судить, сколько заболеваний лечит и лечит ли вообще тот или другой прибор. На наш взгляд, главное, чтобы он не наносил вреда здоровью людей. И причем здесь «лженаука»? Потребители сами разберутся, помогает ли этот чудо-прибор или нет. Разве мало нам с экранов телевизоров рекламируют и более бесполезных вещей?

А вот в 1986 году, когда к 29 апреля стал понятен масштаб чернобыльской трагедии, именно академики-физики должны были, проявив настойчивость и мужество, убедить М. С. Горбачева в недопустимости первомайской демонстрации в Киеве. Вот это была бы настоящая забота о здоровье населения страны.

Что касается физиологических и биологических исследований, то Н. П. Бехтерева в своей статье от 25 июня 2003 года предельно ясно изложила суть разногласий с председателем комиссии по борьбе с лженаукой академиком Э. П. Кругляковым. Хотелось бы только добавить, что если Эдуард Павлович хочет пообсуждать биологические и физиологические проблемы с точки зрения физики, то ярким примером для подражания может быть замечательная книга Эрвина Шрёдингера «Что такое жизнь с точки зрения физика-теоретика». Правда, для этого необходимо иметь высокую профессиональную компетенцию в обсуждаемом вопросе и широкую общую научную эрудицию. В противном случае дискуссия скорее будет напоминать базарную склоку, чем свидетельствовать о наличии серьезной научной позиции. Но, как нам представляется, отсутствие именно такой позиции убедительно показывает уровень большинства публикуемых Э. П. Кругляковым материалов. А многие доводы, приводимые Эдуардом Павловичем в дискуссиях и отдельных выступлениях не просто не точны, а настолько ошибочны, что кроме улыбки и сочувствия ничего вызвать не могут. И такое положение вещей, с нашей точки зрения, наносит вред прежде всего престижу самой Академии наук.

В число неблагонадежных попал также известный математик А. Т. Фоменко. В одном из своих интервью Э. П. Кругляков выразил свое отношение к нему следующими словами: «С сожалением могу добавить: есть в Академии академик-математик А. Т. Фоменко, широко известный своими, мягко говоря, странными сочинениями по поводу новой хронологии». Давайте попытаемся разобраться, в чем же обвиняют А. Т. Фоменко. А суть дела состоит в том, что А. Т. Фоменко, основываясь на результатах радиоуглеродного анализа различных исторических памятников, построил модель, которая вошла в противоречие с общепринятой хронологией. В чем истинная причина расхождения, на сегодняшний день сказать трудно: то ли в результаты анализа вкралась какая-то систематическая ошибка, то ли под влиянием каких-то непонятных факторов изменялся привычный для нас период полураспада. Нельзя исключить и возможность того, что историческая хронология искажена преднамеренно. Ведь сейчас на наших глазах американские историки существенно переписывают историю Второй мировой войны. Да что там американские, «царь-кровопийца» Николай II и вождь мирового пролетариата В. И. Ульянов (так учили в школе, по крайней мере, нас) переписаны, один — в святого, а другой — в губителя России. Так что история, к сожалению, непредсказуема. И нам кажется, что, прежде чем обрушивать огонь критики на А. Т. Фоменко, быть может, академикам-историкам стоило бы разобраться с нашим недавним историческим прошлым.

Но, конечно же, передним краем борьбы с «лженаукой» является проблема «торсионных полей». И нельзя не согласиться с тем, что критические высказывания Э. П. Круглякова по этому поводу далеко не беспочвенны. Но, быть может, комиссии по борьбе с «лженаукой» в этом вопросе стоит изменить тактику и дать возможность А. Е. Акимову в порядке дискуссии опубликовать результаты его экспериментов в научном журнале. И, наверное, тогда научное сообщество само составит мнение о проблеме. А то получается так, что критических замечаний много, а что именно критикуется, понять невозможно, так как А. Акимов ничего не может опубликовать в доступном ему научном журнале. Попутно хотим отметить, что практика рецензирования научных статей сейчас достигла такой высоты виртуозности, что можно смело утверждать, что ни И. Ньютон, ни Дж. К. Максвелл, ни тем более А. Эйнштейн не смогли бы сейчас опубликовать ни одной своей работы.

Нам представляется, что совсем другой вопрос — это работы Г. И. Шипова. Понятно, что если ученый по тем или иным причинам неудачно назвал выведенное им уравнение, то этот факт никак не может влиять на правильность и неправильность самого уравнения. Поэтому хотелось бы понять, что так не нравится комиссии по борьбе с «лженаукой» в работах Г. И. Шипова: постановка задачи, ошибка в вычислениях или трактовка результатов?

Ознакомившись с научными трудами Э. П. Круглякова и понимая сколь далека область его научных интересов от проблем общей теории относительности, мы прекрасно осознаем, что для него весьма затруднительно дать аргументированный критический анализ работ Г. И. Шипова. Быть может, другие члены комиссии возьмут на себя этот труд и опубликуют его результаты в научном журнале. Первая попытка такой публикации в журнале «Успехи физических наук» оказалась весьма неубедительной и больше похожа на разбор сочинения школьника, допустившего стилистические огрехи и неточность в высказываниях.

Нам вообще не очень понятно, почему дискуссия на страницах научного журнала воспринимается научным обществом исключительно как выяснение личных отношений. Представляется, что квалифицированная, но доброжелательная критика — совершенно нормальное явление в научном мире, более того, просто необходимая составляющая процесса познания. Исходя из собственного опыта, можем сказать, что достаточно жаркая, но уважительная дискуссия с Ж. Лошаком (учеником де Бройля) очень многому научила нас, позволив уяснить достаточно тонкие места квантовой механики и электродинамики. А ему в свою очередь она позволила намного лучше понять тонкости экспериментов одного из нас (Л. Уруцкоева). Так что от нормальной дискуссии выигрывают все.

Относительно экспериментальных работ по преобразованию «титана в золото», хотели бы заметить, что их результаты опубликованы в научной печати. И будем весьма признательны комиссии по борьбе с «лженаукой», если она опубликует свои критические замечания также в научном журнале.

Пользуясь случаем, хотим публично задать два вопроса академику Э. П. Круглякову как председателю комиссии по борьбе с «лженаукой» и как бывшему секретарю парторганизации.

1. Эдуард Павлович, ответьте, пожалуйста, как, по Вашему мнению, «научный коммунизм» — это наука или лженаука? Ответ не очевиден. Если да, то тогда получается, что Академия наук 70 лет «пригревала» лженауку. Если наука, то тогда почему мы не пользуемся ее достижениями?

2. В своих выступлениях Вы так часто подчеркиваете свое бескорыстие и корыстолюбие всех остальных, что невольно напрашивается нескромный вопрос. А не объясняется ли вся эта шумиха по борьбе непонятно с чем просто попыткой создания очередной бюрократической структуры в рамках Академии наук с целью возглавить ее?


Д. ф. — м. н., профессор А. А. Рухадзе,

д. ф. — м. н. Л. И. Уруцкоев

Как я познакомился с Кириллом Петровичем Станюковичем

«Condenced Matter Phisics», 2004, vol. 7, N 3 (Украина) — номер, посвященный памяти Ю. Л. Климонтовича


Этот рассказ в основном о Ю. Л. Климонтовиче, в меньшей степени о В. П. Силине, обожаемых мною людях, и совсем немного о К. П. Станюковиче[42]. Ю. Л. Климонтовича, с которым я дружил с начала 1959 года и до его внезапной смерти в конце 2002 года, на нашем семинаре теоретического отдела ИОФАН в шутку (а в каждой шутке большая доля истины) называли последним Больцманом современной физики. В. П. Силина же, моего учителя, я (и, думаю, не только я) вообще считаю самым могучим интеллектом, с которым мне пришлось общаться. Но и К. П. Станюкович был не последним физиком. Чего стоит одно только уравнение состояния вещества при взрыве — уравнение Ландау-Станюковича!

С Ю. Л. Климонтовичем я познакомился вначале 1959 года в доме у Силиных, частым гостем которых был и Ю. Л. Климонтович. В то время Юрий Львович и Виктор Павлович дружили и очень плодотворно работали в области кинетической теории флуктуаций в плазме. Ох, уж эти флуктуации, именно они и оказались яблоком раздора и привели к охлаждению отношений между ними. При этом каждый из них был не виноват и по-своему прав.

А дело было, мне кажется, так. Юрий Львович в начале 1960 года получил из ЖЭТФ на рецензию статью Ю. А. Романова и Г. Ф. Филипова по построению квазилинейной теории колебаний плазмы исходя из кинетического уравнения Власова с просьбой Е. М. Лифшица «портфель ЖЭТФ переполнен, и нужно по возможности строго отнестись к рецензированию». Такие просьбы были обычным делом, поскольку в те годы портфель ЖЭТФ действительно был переполнен. Юрий Львович статью держал довольно долго, и на это у него были предостаточные основания. Ведь уравнение Власова не содержит флуктуаций, а при построении квазилинейной теории приходилось усреднять по случайным фазам (либо по времени, как позже писал А. А. Веденов в сборнике «Вопросы теории плазмы» (Атомиздат, 1963. Вып. 3. С. 203). В конце концов Юрий Львович дал положительную рецензию и статью опубликовали, причем, что весьма важно, после ее одобрения семинаром М. А. Леонтовича, на котором она докладывалась в мае 1960 года (ЖЭТФ. 1961. 40, № 1. С 123; статья поступила в редакцию после доработки в мае 1960 г.). Но в том же году на эту же тему появились две статьи А. А. Веденова, Е. П. Велихова и Р. 3. Сагдеева[43]: первая, посвященная линейной теории плазменных неустойчивостей (УФН. 1961. 73, № 4. С. 701), и вторая, посвященная нелинейной теории (Ядерный синтез. 1961. 1, № 2. С. 82). Совпадения, конечно, бывают, но в данном случае полученные в указанных работах уравнения квазилинейной теории совпадают с точностью до обозначений. Правда, проблема эта была актуальной, и не случайно в это же время в научной литературе появился ряд статей, посвященных выводу кинетического уравнения для плазмы с учетом тепловых флуктуаций (Lennard J. // Ann. Phys. 1959. 10. P. 390; Balescu R. // Phis. Fluids. 1960. 3. P. 52; Константинов О. В., Перель В. И. // ЖЭТФ. 1960. 39. С. 861; Силин В. П. // ЖЭТФ. 1961. 40. С. 1769). Уравнения квазилинейной теории были весьма сходны с полученными в этих работах, но только вместо тепловых флуктуаций в них фигурировали надтепловые флуктуации.

Так или иначе две статьи (Ю. А. Романова — Г. Ф. Филиппова и А. А. Веденова — Е. П. Велихова — Р. 3. Сагдеева) появились в печати в один и тот же год, причем первая из них с опозданием на год. К тому же очень вероятно, что первая еще в рукописи стала известна авторам второй статьи. Не говоря уже о том, что они слышали доклад по первой работе на семинаре Леонтовича. Важно напомнить, что в это время роль главного редактора по теоретическим работам в ЖЭТФ исполнял М. А. Леонтович, который, кстати, прекрасно понимал проблему необходимости развития теории флуктуаций в кинетике (ЖЭТФ. 1935. 5. С. 211), а А. А. Веденов, Е. П. Велихов и Р. 3. Сагдеев были его учениками. Может быть, не так уже банально звучит русская пословица «Свои дети по-другому пахнут».

Всю эту историю я слышал от Виктора Павловича Силина и понимаю его обиду на Юрия Львовича. Хотя Ю. Л. Климонтович ни в чем не виноват: во-первых, он не знал о работе А. А. Веденова, Е. П. Велихова и Р. 3. Сагдеева, а во-вторых, вопрос о правомерности введения флуктуаций в кинетическое уравнение Власова и до сих пор остается спорным.

А теперь вернусь к К. П. Станюковичу. Это было на защите докторской диссертации Ю. Л. Климонтовича в начале 1960-х. Успешная защита отмечалась на его квартире по Ломоносовскому проспекту. Была поздняя весна, теплые дни конца мая, и я пришел на празднование с опозданием в красной фланелевой клетчатой рубашке без пальто. Почему-то дверь открыл К. П. Станюкович, уже изрядно выпивший. Увидев меня в красной рубашке, он воскликнул: «Если дурак, зачем вывеска?» Я как грузин этого вынести не смог, схватил этого маленького толстого человечка за грудки и хотел показать ему «дурака». Но тут вмешался хозяин, Юрий Львович, и я отступил. Это было мое первое знакомство с Кириллом Петровичем Станюковичем, которое после перешло в солидарность — мы часто единым фронтом выступали за незаслуженно обиженных физиков-теоретиков.

Однако я хотел рассказать не о нем, а о Ю. Л. Климонтовиче и В. П. Силине, об их искренней дружбе, которая оборвалась и невольно привела к разрыву очень плодотворного сотрудничества этих двух воистину талантливых физиков-теоретиков в расцвете их творческих сил.

Мыльно-пузырьковые технологии

«Российские физики десятилетиями тратили деньги на проекты, реализовать которые было невозможно», — Анри Рухадзе, академик РАЕН.


«Политический журнал», № 18(21), 31 мая 2004 г. Интервью записал А. И. Лотов.


«Мезонная фабрика в Пахре — уникальный инструмент для исследований в области ядерной физики высоких энергий. Понимая, что для ее создания денег никто не даст, в свое время Отделение ядерной физики АН СССР обратилось в правительство с предложением создать мезонную пушку, чтобы сбивать мезонами американские спутники. Каждый из подписантов этой бумаги понимал, что придумать большего абсурда невозможно, однако тогдашний министр обороны Дмитрий Устинов попался на эту удочку. 24 декабря 1970 г. вышло постановление о создании нового научно-исследовательского центра. Академики понимали — когда выяснится, что мезоны в качестве космического оружия не годятся, деньги у них обратно не отберут».

В сказанном есть большая доля правды. Практика подобных взаимоотношений между учеными и правительством в СССР была типовой. Основы ее были заложены еще при Иосифе Сталине. В январе 1942 года, когда немцы во второй раз оказались под Москвой, генералиссимус понял, что без научных технологий современную войну не выиграть. Американцы и немцы взялись за разработку атомной бомбы. Чтобы не отстать от них, «отец народов» вложил в военную науку и в создание высоких технологий огромные деньги, и это себя полностью оправдало.

Вскоре, однако, необходимость в физических исследованиях резко спала. К середине 1950-х стало ясно, что новой глобальной войны в ближайшее время не будет. Однако к этому времени по обе стороны океана уже существовали огромные исследовательские центры, которые научились тратить деньги. Чтобы задействовать их, научная элита в СССР и в США раздувала слухи о разработках потенциальным противником новых видов сверхоружия. В результате мы получали на науку огромные деньги, создавали гигантские, никому не нужные установки, которые нередко и вовсе не работали.

Я не обвиняю ученых, которые на эти деньги покупали приборы, вычислительную технику, создавали исследовательские стенды, развивая науку. Но государству они наносили экономический ущерб. Гонка вооружений привела нас к экономическому соревнованию с Америкой, выиграть которое мы не могли.

«Великий реформатор» Никита Хрущев попытался реформировать науку. Его приоритетом стала ракетная техника. В эту область инженерной науки он вложил огромные деньги, в результате чего мы значительно обогнали американцев. Хрущев сократил зарплаты ученым, резко уменьшил численность армии, пустил под нож авианосцы, почти прекратил авиационные атомные разработки и втянул страну в Карибский кризис. Однако политический век этого лидера оказался недолгим, и когда на смену ему пришел Леонид Брежнев, в СССР началась эпоха новых идей и сверхдорогих оружейных псевдонаучных проектов. Так, в рамках очередного научного блефа были начаты работы по созданию самолета-невидимки. Американцы для решения этой задачи изменили геометрию самолета, сделав его корпус с острыми углами (последние не видны радару). Наши же ученые предложили сделать самолет, корпус которого от радиолокаторов скроет плазма. Такой самолет был создан в НИИ тепловых процессов. Более того, он был даже показан на авиасалоне в Жуковском. Однако использовать это новшество оказалось невозможно: плазменный агрегат требовал электропитания мощностью в один мегаватт, в то время как силовая установка самолета способна выдать во внешние сети не более 100 киловатт, т. е. на порядок меньше, чем требовалось.

Ученые, которые во имя развития науки отдавали себя на неосуществимые проекты, не были какими-то монстрами. На глазах у всего народа страна тратила массу денег на столь же неразумные политические проекты. Это подталкивало физиков к естественному выбору — а почему бы и нам не сделать того же на благо науки? И пошли на блеф. Блефовали едва ли не все, даже такие гениальные физики, как Нобелевские лауреаты академики Николай Басов и Александр Прохоров и конструктор знаменитого зенитно-ракетного комплекса С-300, дважды Герой соцтруда академик Борис Бункин. Они понимали, что идут на обман, но продолжали строить гигантские, никому не нужные лазерные монстры.

В результате мы опередили американцев и в этом. Однако поддерживать заданный темп наша экономика уже не могла. Осознав это, американцы стали провоцировать нас, заявляя о своих новых супердорогих военных программах, хотя тратили они на них намного меньше, чем декларировали. Многие сообщения были откровенной дезинформацией. Откликнувшись на них своими научными разработками, мы помогли политикам окончательно разорить страну и привести ее к полному развалу. Последней каплей в этом процессе стала стратегическая оборонная инициатива (СОИ), основанная на использовании лазерных, рентгеновских, корпускулярных и СВЧ-пушек для уничтожения спутников. И наши, и американские ученые прекрасно понимали, что ничего подобного построить нельзя, однако тратили они намного меньше, чем мы. Посетив одну из установок, созданных в рамках отечественного варианта СОИ, а именно установку для мощного СВЧ-излучения, «отец» атомной бомбы академик Юлий Харитон сказал: «Я думал, что только мы пускаем деньги на ветер. Оказывается, вы это делаете успешнее. Ведь ракету или спутник можно сбить только другой ракетой, а лучом сбить ее нельзя. Это бред!». При этом он сам таким же бредом занимался, разрабатывая у себя лазерное оружие. Та установка, кстати, наиболее приближенная к созданию космического СВЧ-оружия, обошлась государству в 90 миллионов долларов. Для ее монтажа построили специальное здание без окон, вытянувшееся вдоль Варшавского шоссе на сто двадцать метров. Над землей оно поднялось на три этажа, еще два прятались под землей. Правительственная комиссия приняла эту установку в 1982 г. Когда десятью годами позже я привез иностранцев, чтобы показать им предмет моей гордости, установка стояла в замерзшей на полметра воде.

Отмечу, что и все остальные проекты, о которых я говорю (а в истории советской науки их были десятки), стоили не меньше. Особенно преуспел на почве создания псевдонаучных проектов академик Евгений Велихов. Он активно участвовал в МГД-проекте, который был инициирован председателем Госкомитета по науке и технике академиком Владимиром Кириллиным, и получил большой кусок пирога. С самого начала все понимали, что это блеф, но построили для реализации этой идеи огромные институты. Позже Велихов добавил к этому проекту новый, столь же «успешный» — зондирование поверхности земли МГД-генераторами с целью определения залежей полезных ископаемых. Лазерное оружие тоже его конек — столь же дорогая глупость. Позже на Всесоюзной конференции «За избавление человечества от угрозы ядерной войны» он весьма скептически высказался о лазерах: «Их возможности должны быть увеличены примерно в десять миллионов раз, прежде чем они станут эффективным противоракетным оружием»… Однако сам он именно за такую разработку и взялся. Будучи квалифицированным физиком, Е. Велихов прекрасно отдавал себе отчет, что берется за то, чего сделать нельзя.

Еще один раздутый им псевдопроект — исследование поверхности физических объектов с целью определения их характеристик. Свойства поверхности определяют, например, начинку компьютеров — какие чипы в них использованы. На это тоже были пущены огромные деньги, но ничего не вышло. Столь же бесплодной и дорогостоящей была выдвинутая Велиховым идея всеобщей компьютеризации средних школ. В рамках проекта был разработан восьмиразрядный компьютер «Корвет», который должны были поставить на поток, чтобы в течение нескольких лет насытить все отечественные средние школы. Деньги ухнули, построили и запустили соответствующие заводы, а школы так и остались ни с чем. Порок этой идеи состоял в том, что процесс компьютеризации должен идти снизу, а не сверху. Школа была не готова к тому, чтобы принять, эксплуатировать и обслуживать такой парк вычислительной техники, не было ни учебников, ни учителей.

Особняком в ряду псевдопроектов стоит миф о получении управляемой термоядерной реакции. Он служил прикрытием разработок термоядерной бомбы. На самом деле, если бы «термояд» был действительно нужен, его давно бы сделали. Однако дело стоит на месте. Сейчас говорят, что Д-Т-реакции, в которых рождаются нейтроны, для этой цели не пригодны, лучше якобы перейти к реакциям, где нейтронов не будет, т. е. от тяжелой воды надо переходить к литию. Для этого нужно создать плазму с температурой не в сто миллионов градусов, которые еще не достигнуты, а втрое больше. На самом деле и этот параметр реализуем, просто не нужен сам термояд. Такая энергетика пока еще не востребована.

Трудно судить, так ли обстояло дело в остальных областях науки, но совершенно точно, что аналогичный механизм был задействован и в биологии. Сужу об этом по разработкам, которые так или иначе были связаны с физикой. Например, психотропное оружие, в отличие от биологического оружия, распространяющего сибирскую язву, было туфтой. Как и идея снабдить милиционеров источниками сверхнизкочастотных акустических колебаний, которые вызывают у человека мгновенный шок и непреодолимую депрессию. Или воздействие на людей СВЧ-излучения, изменяющего состав крови. Физика, однако, по сравнению с другими науками в смысле псевдопроектов оказалась в особом положении, поскольку имела многочисленные рычаги воздействия на правительство и могла качать такие деньги, которые химикам, например, и не снились. Правда, в последнее время масштабные псевдонаучные проекты появились и в химии. Сколько сил и денег было вложено, к примеру, в разработку разных аккумуляторов! Уж когда было обещано, что скоро все автомобили перейдут с бензина на аккумуляторы, но ничего подобного не произошло. В лучшем случае машина на батарейках проедет километров сто…

Сейчас речь пошла о водородной энергетике. Химики пытаются создать аккумуляторы, в которых можно накапливать водород. А потом, соединяя его с кислородом, которого в атмосфере хоть отбавляй, получать электроэнергию. Процесс экологически чистый, потому что в результате его образуется только вода. Однако рабочим веществом в таком аккумуляторе служит палладий, который в тысячу раз дороже золота. Не знаю, подешевеет ли со временем палладий, но американцы выделили под проект 500 миллионов долларов. Владимир Патанин под наш вариант проекта выделяет 35 миллионов долларов, столько же обещает добавить наше правительство. Интуитивно подозреваю, что это очередной блеф!

Неосуществимость суперпроектов советских физиков для правительства не была тайной. Оно шло на все эти расходы сознательно. Ученых было много, их надо было чем-то занять, создать для них рабочие места, чтобы утечка мозгов не привела их в военно-промышленный комплекс Запада. В российских работах по надуванию мыльных пузырей было занято около двух миллионов человек. Когда эти проекты были прекращены, все они остались без работы.

Сейчас политика правительства изменилась. На тот же самый термояд выделяется настолько мало денег, что ученым не хватает даже на пропитание самих себя. Видимо, решив, что ученых не стоит доводить до крайности, правительство стало платить им зарплату, не отличающуюся по размеру от пособия по безработице. В результате научная молодежь ринулась на Запад, заполняя там научные центры, а оставшаяся в науку не идет. Когда старики вымрут естественным путем (а ждать осталось недолго), проблема с наукой решится сама собой. Думаю, что через год-другой Академии наук уже не будет. Отраслевую науку эта участь уже постигла. Например, в ЦНПО «Вымпел», где раньше было занято около 60 тысяч человек, ныне работает максимум 10 тысяч. Сошли на нет все могущественные министерства, которые независимо от Академии наук развивали науку. Те из ученых, кто мог, уехали на Запад, а тех, кто остался, с каждым годом становится все меньше. Последние, как и прежде, живут за счет все тех же псевдопроектов. Ими стали все существующие российские гранты по естественным наукам, ибо, получая эти мизерные деньги, никто из ученых на них ничего путного сделать не может.

Впрочем, не стоит останавливаться на мелочах, вернемся к глобальным псевдопроектам. Европа уже давно находится в оппозиции к Америке. Люди на этом континенте привыкли жить более экономно и рационально. Поэтому в оголтелой гонке вооружений между СССР и США они не участвовали и от этого сильно выиграли. Не только в том смысле, что меньше потратились, — именно им достались плоды от наших гиперпроектов. Европейцы получили возможность задаром приобрести все наши ключевые научные разработки. Их фирмы покупают наше лучевое оружие, которое из всех существующих видов оказалось самым перспективным.

Когда в 1980-е годы стало ясно, что лучевым оружием ракету не собьешь, возникло другое направление разработок — функциональное воздействие. СВЧ-излучение способно нарушить логику работы системы или провести ее перепрограммирование. Это направление имеет под собой хорошую базу. Компьютеры, которые управляют самолетом, ракетой, кораблем и сознанием людей, идут по пути уменьшения энергопотребления. Сейчас их энергочувствительность достигает десяти наноджоулей на квадратный сантиметр. Компьютер потребляет такую же энергию, и такая же по величине энергия способна вывести его из строя. Зачем, спрашивается, сбивать ракету, если достаточно нарушить систему ее управления? Это очень просто. Чип размером в несколько десятков микрон, попадая в зону действия СВЧ-поля, меняет свою проводимость и, следовательно, работоспособность. Поэтому с 1980-х годов возникла новая идеология лучевой войны — функциональное поражение систем управления. Ученые Москвы, Нижнего Новгорода, Урала и Сибири, знакомые с этой технологией, сегодня успешно продают ее на Запад. Французы и англичане закупают нашу военную технику совершенно открыто. Сейчас этот процесс стали немного зажимать, но поздно — все уже продано.

О том, как работает эта техника, можно прочесть, например, в книге профессионального разведчика Джона Коулемана «Комитет 300». В ней он рассказывает, как убили президента Пакистана Мухаммеда Зия Уль-Хака. Последний знал, что на него готовится покушение и всюду таскал за собой десять американских генералов, надеясь, что с ними он в безопасности. Тем не менее, когда в Карачи вместе со всей этой свитой президент сел в самолет, тот после взлета вошел в штопор и упал. Все погибли. Свидетели этой катастрофы обратили внимание, что сразу после случившегося припаркованный близ аэропорта грузовичок удрал оттуда с бешенной скоростью. Есть подозрение, что самолет был сбит установленным на этом грузовике лучевым оружием, которое, как пишет доктор Коулеман, «разрабатывалось в СССР Анри Рухадзе и Юрием Виноградовым». Указывался и адрес, где велись эти разработки, но в этом Коулеман ошибся.

Еще раз об отрицательном индексе

В ряде статей, опубликованных в 2004 году в журналах «Вестник РАН» (74, № 11), «Успехи физических наук» (174, №№ 4, 6, 9) и других научных изданиях, затрагиваются вопросы, касающиеся использования индекса цитирования и некорректных приемов при цитировании научных работ. Поэтому мы решили в нынешний «год физики» продолжить обсуждение темы «отрицательного индекса», начатое в части III нашей статьи «Недоразумения и недобросовестность в науке». Мы считаем, что работники науки должны высказывать свое отношение к той нравственной атмосфере, которая складывается в сфере их основной деятельности, и надеемся, что такое мнение разделяет большинство научного сообщества.

«Снова к основам» — так назывался текст за подписью М. Компана, опубликованный 15 декабря 2003 г. в информационном бюллетене «Перспективные технологии» («ПерсТ») с указанием номера выпуска 23 на титуле и 22 на остальных листах, который был снабжен подзаголовком «Левши выходят из тени» и повествовал о так называемых материалах-левшах (left-handed materials). Ниже полностью воспроизводится весьма примечательный фрагмент этого текста.

Придуманные российским физиком В. Г. Веселаго в 1960-е годы [2] (Веселаго В. Г. // УФН. 1967. 92, вып. 3. С. 517 и ссылки в ней), эти вещества по некоторым своим свойствам действительно должны вести себя как антиподы привычных материалов. В 2000–2003 гг. прошла вторая волна публикаций, вызванная первой успешной (хотя и очень искусственной) реализацией «левшей», например [3] (Shelby R. A., Smith R. A., Schultz S. // Science. 2001. 292. P. 77). К этому сроку о первой волне публикаций уже помнили единицы, так что вторая волна для многих явилась неожиданным открытием. Отметим, что авторы открытия 2000 г. ссылались на работы В. Г. Веселаго, что давало повод гордиться успехами отечественной физики. Тогда же, в 2000 г., «ПерсТ» опубликовал интервью с Виктором Георгиевичем [4] (ПерсТ. 2000. 7, вып. 11. С. 1). В публикации упоминались некоторые парадоксальные свойства этих материалов, например: обратный знак эффекта Доплера, преломление света в обратную сторону (словно он испытывает отражение от нормали к поверхности) и уж совсем противоестественный обратный знак вектора Пойнтинга (так что волны должны бежать в сторону источника, возбуждающего волны).

Прежде чем комментировать этот фрагмент, приведем следующую выдержку из четвертой лекции Л. И. Мандельштама от 5 мая 1944 г., опубликованную в томе V собрания его трудов:

Пусть все эти условия выполнены и, следовательно, энергия перемещается с групповой скоростью. Но мы знаем, что групповая скорость может быть отрицательной. Это означает, что группа (и энергия) движется в сторону, противоположную направлению распространения фазы волны. Возможны ли такие случаи в действительности?

В 1904 г. Лямб придумал некоторые искусственные механические модели одномерных «сред», в которых групповая скорость может быть отрицательной. Сам он, по-видимому, не считал, что приведенные им примеры могут иметь физическое применение. Но, как оказывается, существуют и вполне реальные среды, в которых для некоторых областей частот фазовая и групповая скорости действительно направлены навстречу друг другу. Это получается в так называемых «оптических» ветвях акустического спектра кристаллической решетки, рассмотренных М. Борном. Возможность подобного явления позволяет с несколько иной точки зрения подойти и к таким, казалось бы, хорошо известным вещам, как отражение и преломление плоской волны на плоскости раздела между двумя непоглощающими средами. Протекание этого явления, при разборе которого о групповой скорости обычно вообще не упоминают, существенно зависит от ее знака.

Далее Л. И. Мандельштам приводит вывод формул Френеля для случая отрицательной групповой скорости и затем подчеркивает:

Вопросы, которые мы разобрали, являются чрезвычайно общими — это вопросы распространения колебаний. Как я уже подчеркнул, они относятся к колебаниям самого разнообразного типа. По существу, я бы сказал, это геометрия волнообразного движения, не связанная с той или иной физической природой объекта. Правда, распространение энергии уже несколько выходит из этого круга, так как это вопрос динамический.

При сравнении с этими выдержками из лекции Л. И. Мандельштама становится очевидной некомпетентность и недобросовестность автора текста в «ПерсТ», не потрудившегося хотя бы взглянуть на упоминаемые им же самим ссылки в статье [2], в том числе и на работу Л. И. Мандельштама, и не прочитавшего, по-видимому, даже статьи [2], в которой В. Г. Веселаго на с. 519 поясняет, что в дальнейшем он будет пользоваться термином «левое вещество» исключительно для краткости, имея в виду, что этот термин эквивалентен термину «вещество с отрицательной групповой скоростью».

В. Г. Веселаго мог бы подсказать восторженному М. Компану, бравшему у него интервью в 2000 г. для публикации в «ПерсТ», что искусственная среда с отрицательной групповой скоростью уже более чем полвека используется в лампах обратной волны (ЛОВ) и что в анизотропных средах, о которых написал М. Компан, несовпадение направлений фазовой и групповой скорости известно уже почти двести лет. Например, для двухосного кристалла еще в 1832 г. была предсказана У. Р. Гамильтоном и в 1833 г. экспериментально обнаружена X. Ллойдом так называемая коническая рефракция, при которой падающий на границу раздела луч распадается на бесконечное число лучей, направленных по образующим конуса с вершиной в точке падения луча на грань.

Но Виктор Георгиевич ничего этого не сделал и не выразил своего неприятия ложных утверждений М. Компана о том, например, что «американцы открыли необычный материал, выдуманный Виктором Веселаго». Между тем эти самые «американцы» в своей статье в Phys. Rev. Lett. (2000. 84, N 18. P. 4184) совершенно недвусмысленно пишут, что сконструированный ими материал «выдумал» отнюдь не В. Г. Веселаго: «Среда из расщепленных кольцевых резонаторов, недавно введенная Пендри и др. (IEEE Trans. MTT. 1999. 47. P. 2075), дала нам возможность сделать материал с отрицательной магнитной восприимчивостью, из которого левая среда может быть сконструирована, как это показано ниже». В то же время эти же авторы на той же 4184-й странице «Phys. Rev. Letters» со ссылкой на УФН 1967 г. (английская версия — 1968 г.) пишут, что Веселаго «теоретически исследовал электромагнитные свойства среды с одновременно отрицательными ε и μ и заключил, что такая среда имела бы качественно особые свойства для распространения волн, обязанные обращению знака групповой скорости, включая изменения эффектов Доплера и Черенкова, аномальную рефракцию и даже превращение радиационного давления в растяжение».

Подобное цитирование, без каких-либо упоминаний работ Л. И. Мандельштама и В. Е. Пафомова, который в 1959 г. (ЖЭТФ. 1959. 59, вып. 6) первый рассмотрел эффекты Доплера и Черенкова в случае отрицательной групповой скорости, может быть связано с тем, что американцы, по-видимому, и на самом деле думают, что до всего этого В. Г. Веселаго дошел своим умом и все перечисленные результаты принадлежат именно ему. В отличие от американцев В. Г. Веселаго эти работы знает — они цитируются в его статье 1967 года. Однако в последующих публикациях В. Г. Веселаго в «УФН», (2002. 172, № 10; 2003. 173, № 7) ссылка на В. Е. Пафомова при упоминании эффектов Доплера и Черенкова уже отсутствует — в полном соответствии с процитированным ранее указанием С. И. Мысловского в журнале «Письма в ЖТФ» (2003. 29, вып. 1) на то, что «основополагающей работой в теории отрицательно преломляющих сред следует считать работу В. Г. Веселаго, опубликованную в 1960-е годы». Прискорбно и то, что ссылок на работу В. Е. Пафомова не оказалось в публикациях К. Ю. Блиоха, Ю. П. Блиоха (УФН. 174, № 4) и В. М. Аграновича (УФН. 174, № 6), хотя в первой из этих публикаций затрагивается вопрос о цитировании предшественников в работах Пендри (J. B. Pendry).

Нам неизвестны работы, в которых бы обращалось внимание на явно неадекватное цитирование предшественников в статьях В. Г. Веселаго и других увлеченных этим потоком авторов.

Недостаточное внимание к нарушению норм научной этики при цитировании научных работ может содействовать развитию некоего специфического процесса, который способен приносить вполне определенные плоды для заинтересованных в этом деятелей.

9 ноября 2004 г. Президиум РАН постановил присудить премию имени В. А. Фока 2004 года Веселаго Виктору Георгиевичу (МФТИ Минобрнауки России) за цикл работ «Основы электродинамики сред с отрицательным коэффициентом преломления» со следующим обоснованием:

«В этом цикле, начатом еще в 1966–1967 гг. В. Г. Веселаго указал на весьма необычные электродинамические свойства сред, которые характеризуются одновременно отрицательными значениями электрической и магнитной проницаемостей. Эти свойства могут быть полностью объяснены и описаны, если принять, что такие вещества обладают отрицательным значением коэффициента преломления n. В своих первых работах В. Г. Веселаго особо подчеркнул, что электродинамика веществ с отрицательным значением n представляет несомненный общефизический интерес и очень логично дополняет привычную нам электродинамику веществ с положительными величинами n. Однако в то время еще не были известны вещества с отрицательными значениями n, и именно это обусловило достаточно спокойную реакцию на первые публикации В. Г. Веселаго, хотя значимость этих результатов уже тогда было очевидна. Положение резко изменилось в 2000 г., когда группа ученых из университета Сан-Диего (США) создала искусственный композитный материал, обладающий отрицательными значениями диэлектрической и магнитной проницаемости и соответственно отрицательным значением п. Уже в первых экспериментах группы американских ученых были подтверждены основные свойства этих материалов, указанные В. Г. Веселаго в его работах. Важно подчеркнуть, что американские ученые полностью сослались в своих публикациях на статьи В. Г. Веселаго и сейчас он является общепризнанным основателем этого направления. Сейчас эта тематика бурно развивается, количество публикаций в ней измеряется сотнями в год, ежегодно проводятся международные конференции по данной тематике, причем В. Г. Веселаго получает многочисленные приглашения на участие в них в качестве приглашенного докладчика. Эксперименты, проведенные в этой области, подтвердили предсказания В. Г. Веселаго о том, что плоскопараллельная пластина, выполненная из материала п = — 1, обладает фокусирующими свойствами подобно обычной выпуклой линзе. В настоящее время В. Г. Веселаго продолжает развивать данное направление. Им, в частности, обобщен принцип Ферма на случай распространения электромагнитной волны сквозь среду с отрицательным п. Можно с полным основанием утверждать, что заложенные В. Г. Веселаго основы нового направления являются выдающимся вкладом в электродинамику сплошных сред. Свидетельством этого служит начавшийся процесс проникновения электродинамики сред с отрицательным преломлением в учебно-научную литературу».

Процитированное «обоснование» показывает, к чему может приводить всего-навсего неадекватное цитирование. Если бы В. Г. Веселаго и другие вовлеченные в этот процесс авторы в своих публикациях всегда должным образом ссылались на Л. И. Мандельштама и других предшественников и вольно или невольно не способствовали проникновению ложных представлений в научное сообщество, то всей этой неприглядной истории могло и не быть. Мы считаем, что этот случай должен получить надлежащую оценку научного сообщества, поскольку в нем проявились не только некомпетентность и недобросовестность, но и неуважительное отношение к выдающимся ученым Л. И. Мандельштаму и В. А. Фоку, именами которых отечественная наука действительно может гордиться.


А. А. Рухадзе, А. А. Самохин

Сокращенный вариант этой статьи опубликован в газете «Научное сообщество», № 2, 2005 г.

Загрузка...