Глава VI. Лазерный луч

В предыдущих главах этой книги речь шла об отдельных областях спектра солнечного излучения — видимом свете, ультрафиолетовых и инфракрасных лучах, различающихся длиной волны и энергией квантов. Действие их на организм было различным именно в силу этих особенностей. Излучение лазеров — искусственного Солнца, созданного руками человека, относится к тому же оптическому диапазону, что и свет настоящего Солнца. Различий в длине волны, частоте колебаний, энергии квантов между излучением лазера и светом Солнца нет. И все же отличие существует, и настолько разительное, что с открытием лазеров в оптике появилась новая глава. Посвятим и мы последнюю главу книги о солнечном луче особенностям его рукотворного собрата.

До сих пор мы рассматривали только один физический механизм излучения квантов света: скачкообразный возврат возбужденного (т. е. обладающего избыточной энергией) электрона в основное, невозбужденное состояние. Избыточная энергия высвечивается при этом в виде кванта излучения, величина которого точно соответствует разности энергетических уровней (возбужденного и основного). Но есть, оказывается, еще один способ высвечивания — так называемое вынужденное, или стимулированное излучение, принципиальную возможность которого еще в 1905—1917 гг. предсказал Эйнштейн. Сущность этого явления, лежащего в основе лазерного излучения, состоит в следующем.

Возбужденный электрон нередко растрачивает некоторую часть своей избыточной энергии в виде мелких квантов инфракрасного излучения, соответствующих энергетическим уровням колебания и вращения атомных ядер. При этом возбужденный электрон переходит на промежуточный метастабильный (триплетный) уровень возбуждения. Чтобы вернуться в исходное основное состояние, электрон, угодивший в триплетную «яму», должен проделать довольно сложный путь: сначала вернуться на главный (синглетный) возбужденный уровень,— а для этого нужно приобрести растраченную ранее энергию,— и затем скачком возвратиться на невозбужденный уровень, отдав избыточную энергию в виде кванта излучения. Таков «обычный», уже знакомый нам механизм.

Но электрон, пребывающий на метастабильном уровне, т. е. в состоянии неустойчивого равновесия, может столкнуть также квант света, пролетающий мимо, если он обладает энергией, точно соответствующей разнице энергий метастабильного и основного уровней атома. Мы встречаемся здесь вновь с разновидностью явления электронного резонанса. В результате вынужденной разрядки метастабильного возбужденного состояния электрон возвращается в невозбужденное, основное состояние, а вместо одного кванта мы имеем два кванта, обладающие одинаковой энергией, длиной волны (а значит, и частотой) и, что самое удивительное, одинаковой фазой колебаний (см. рис. 20), и распространяющиеся в одном направлении.

Рис. 20. Схема вынужденного излучения атомов
а — поглощение фотона с переходом атома в возбужденное состояние; б — спонтанный возврат атома в основное состояние с излучением фотона; в — вынужденное излучение с образованием двух фотонов, обладающих одинаковой энергией, частотой и фазой колебаний

Свет — это диалектическое единство прерывности и непрерывности, корпускулярных и волновых свойств. В обычных температурных источниках света возникающие фотоны движутся хаотически, освобождаются несинхронно и отличаются определенным, более или менее выраженным, статистическим распределением частот и длин волн. Поэтому излучение обычных источников (в том числе и Солнца) полихроматично, ибо содержит всегда довольно широкий набор длин волн — «разноцветное» свечение; оно некогерентно, так как каждый квант излучается как бы сам по себе, вне связи с другими, и распространяется поэтому непараллельно с другими квантами и не в одной с ними фазе колебаний.

Стимулированному излучению присущи совершенно новые свойства. Вследствие явления резонанса квант «вынуждающий» и квант «вынужденный» имеют одинаковую (или, строго говоря, очень близкую) энергию, длину волны и частоту колебаний. Лазерное излучение поэтому в высокой степени монохроматично. Конечно, и в свете обычных источников можно искусственно выделить интересующую нас узкую спектральную область, если, например, луч Солнца с помощью мощной призмы развернуть в полосу спектра и затем весь спектр, кроме избранной узкой полосы, экранировать и поглотить. Но какую бы узкую часть спектра мы ни старались выделить, она будет содержать лучи с несколькими различными частотами и длинами волн. Кроме того, по мере повышения монохроматичности пучка лучей интенсивность его резко падает, вплоть до ничтожной величины.

Принципиальная особенность вынужденного излучения, первая, но не единственная, и состоит в том, что практически все стимулированное свечение относится к очень узкому интервалу частот. Монохроматичность новых источников света несравненно выше всего, что можно было получить до создания лазеров.

Кстати, слово лазер (LASER) происходит от первых букв слов английской фразы Light Amplification by Stimulated Emission of Radiafion (что можно перевести как усиление света путем вынужденного испускания излучения).

Вторая, не менее удивительная особенность стимулированного излучения — пространственная и временная когерентность. Квант, столкнувший электрон с уровня возбуждения, и квант, возникший при этом соскоке, имеют не только одинаковую величину. Они и двигаются в одном направлении, распространяясь в пространстве параллельно; и волновые колебания, сопутствующие их движению, совершаются синхронно во времени, однофазно. Выделить в потоке солнечного света или излучения искусственных источников когерентную часть — еще более сложно, чем с помощью монохроматора выделить узкий спектральный пучок. Поэтому явление когерентности света физики и оптики стали изучать практически только после открытия лазеров. Эти кардинальные особенности лазерного излучения сделали возможным появление еще целого ряда удивительных свойств нового вида свечения.

Концентрация лучистой энергии во времени и пространстве

Почему вынужденное излучение не наблюдается обычно? И что нужно сделать, чтобы лазерный луч зажегся? На первый из этих вопросов ответить относительно просто. Чтобы получить вынужденное излучение, иными словами, чтобы добиться усиления приходящего извне света нужной частоты, необходимо иметь вещество, в котором большое количество электронов находилось бы на высших электронных уровнях возбуждения. А как этого добиться? Быть может, простым нагревом?

При повышении температуры, как известно, увеличивается количество атомов, энергия которых достаточно высока, чтобы забросить электрон на один из возбужденных уровней. Но эти переходы кратковременны, независимы друг от друга и, следовательно, хаотичны. В каждый данный момент все-таки подавляющее большинство электронов оказывается на основном, невозбужденном уровне.

Что произойдет в этом случае с квантами внешнего излучения, частота колебаний которых совпадает с разницей энергетических уровней вещества? Они попросту поглотятся веществом, израсходуются на возбуждение его электронов. Следовательно, для получения вынужденного излучения нужно сначала добиться перехода на уровень возбуждения большей части электронов вещества, достичь, выражаясь языком специалистов, инверсной (т. е. обратной) заселенности энергетических уровней. Если большинство электронов пребывает на уровне возбуждения, прохождение квантов резонансной частоты вызовет их массовый и одновременный соскок на основной уровень. Иными словами, инверсная заселенность — необходимое условие усиления света за счет вынужденного излучения.

Эти рассуждения, вытекающие в сущности из работ Эйнштейна, позволили в 1940 г. советскому физику В. А. Фабриканту предположить, что вынужденное излучение можно использовать для усиления светового потока. В годы Великой Отечественной войны эти работы прервались и возобновились только в 1951 г. Они завершились заявкой на изобретение. Однако дальнейшие шаги в направлении создания оптических квантовых генераторов (лазеров) суждено было сделать другим ученым — Н. Г. Басову и А. М. Прохорову в СССР, Ч. Таунсу в США. Первый действующий лазер был построен Т. Майманом в США в 1960 г.

В качестве рабочего вещества для возникновения вынужденного излучения в первых лазерах использовали стержни из искусственного рубина — кристалла окиси алюминия с небольшой (0,05—0,5%) примесью атомов хрома, придающих кристаллу красный цвет. Они-то и играют главную роль в возникновении стимулированного излучения, так как их электроны способны при возбуждении довольно длительно (3·10-3 сек) задерживаться на метастабильном уровне.

Если рубиновый стержень поместить внутрь спирально изогнутой мощной лампы (чаще всего ксеноновой), то такой рубиновый сердечник будет довольно равномерно освещаться лампой. Из широкого спектра свечения лампы какая-то одна группа частот окажется резонансной: при мощной вспышке лампы электроны атомов хрома одновременно (пусть на короткие доли секунды) взлетят на уровень возбуждения. Чтобы это произошло, вспышка ксеноновой лампы осуществляется разрядом батареи конденсаторов.

Итак, высший уровень возбуждения в атомах хрома заселен электронами. Дальше события развиваются молниеносно. Квант резонансной частоты (то ли высвеченный криптоновой лампой, то ли возникший в атоме хрома при разрядке метастабильного состояния), пролетая мимо возбужденного электрона, вызывает и его разрядку, освобождая второй, подобный себе квант. Если каждый из этих фотонов разрядит еще по одному возбужденному атому, количество фотонов снова удвоится. Налицо усиление света за счет вынужденного излучения.

Но лазер — детище второй половины XX в.— способен на большее. Если у торцов рубинового стержня установить зеркала (или нанести непосредственно на торцы, отражающий слой серебра), поток света, усиленного в стержне, отразится от зеркала, вернется в кристалл, отразится от второго зеркала и т. д. При каждом отражении интенсивность света возрастает за счет разрядки возбужденных атомов хрома. А возбуждение последних поддерживается периодическими импульсами ксеноновой лампы, которые как бы накачивают в кристалл энергию электронного возбуждения. Отсюда и название — «лампа накачки».

Интенсивность света в такой системе могла бы возрастать очень сильно. Но перегрев стержня прекращает генерацию вынужденного излучения. Поэтому в конструкции рубинового лазера — самого распространенного типа оптических квантовых генераторов в наши дни — предусмотрены, во-первых, охлаждение стержня и, во-вторых, своевременный отвод лучистой энергии. Одно из торцевых зеркал делается полупрозрачным, и когда лихорадочно (со скоростью света!) мечущийся внутри стержня от торца к торцу поток излучения достигает гигантской плотности, он вырывается наружу в виде мгновенного (длительностью в тысячные доли секунды) всплеска излучения невиданной яркости.

Рубиновый лазер генерирует излучение в красной области спектра с длиной волны 6943 А (небольшая часть излучения приходится на волну 6929 А). В энергию лазерного импульса преобразуется лишь небольшая часть энергии, излучаемой лампой накачки. Иными словами, коэффициент полезного действия рубинового лазера невелик — около 1%. Но это сравнительно небольшое количество лучистой энергии (мощность современных рубиновых лазеров колеблется от 1—2 до нескольких сот ватт) концентрируется прежде всего в пространстве — в узкий, практически не расходящийся пучок, а также во времени — в короткий импульс излучения. Если лазер генерирует лучистую энергию мощностью 1 Вт (т. е. 1 Дж. в секунду) [Джоуль равен 107 эрг.] и импульсы излучения продолжительностью в 0,001 сек следуют друг за другом с интервалом в 1 сек, то во время каждого импульса концентрация энергии в пучке достигает 1000 Дж. Особенности лазерного излучения, прежде всего его монохроматичность и когерентность, облегчают задачу концентрирования пучка в пятно ничтожного диаметра. Расчеты показывают, что предел концентрации — размер, соответствующий половине длины .волны света, т. е. для рубинового лазера минимальный возможный диаметр пятна — 0,2 мкм. Практически достигнутый предел — несколько меньше 1 мкм.

При такой фокусировке светового луча плотность энергии на единицу площади еще более фантастически возрастает, достигая совершенно невероятных величин, не осуществимых никаким иным способом. Но и это еще не предел — мощность лазерных установок непрерывно возрастает. Кроме того, есть еще один резерв — уменьшение длительности каждого отдельного импульса.

В обычном рубиновом лазере полупрозрачное зеркало препятствует слишком раннему разряду; световой импульс вырывается наружу лишь после достижения какой-то критической плотности светового потока. Если затвор на выходе из кристалла сделать более плотным, концентрацию световой энергии можно еще более увеличить. Но зато и импульс прервется раньше — так что особого выигрыша получить не удастся. Очевидно, выход состоит в том, чтобы сделать затвор переменной плотности: когда световой поток внутри кристалла достигнет предельной плотности, достаточно «раскрыть шлюз», и разрядка даст гигантский импульс еще невиданной концентрации.

Такие лазеры (с переменной, или модулированной добротностью) уже созданы. Общее количество излучаемой энергии в них не увеличивается; возрастает лишь ее концентрация во времени за счет сокращения длительности импульса до 10-12 сек и даже ниже. С помощью лазеров такого типа удается, например, достичь температуры 1—2 млн. градусов и выше — задача, совершенно неосуществимая большинством других способов. Правда, это повышение температуры невообразимо кратковременно и совершается в ничтожном объеме вещества. Но это уже реальность сегодняшнего дня, перед которой меркнут не только зеркала Архимеда, но и пламя самых мощных дуговых печей.

Лазерный луч находит себе применение в опытных установках термоядерной энергетики — с его помощью особенно удобно в кратчайшее время поднять температуру плазмы до предела, за которым становится возможным и энергетически выгодным слияние легких ядер. Можно предполагать, что когда использование термоядерной энергии станет реальностью и из стен лабораторий выйдет на простор промышленной энергетики, лазер займет достойное место в качестве одной из важнейших деталей процесса. Но это лишь одно из бесчисленных реальных применений искусственного Солнца.

...и невозможное становится возможным

Рассказ об удивительных способностях лазерного луча не окончен. Монохроматичность и когерентность и особенно концентрация энергии достигают в лазерном луче невиданных размеров. А количественные изменения рано или поздно приводят к появлению новых признаков, свойств, явлений — нового качества. Таков всеобщий закон объективной диалектики природы, неоднократно подтверждавшийся и подтверждающийся по мере развития научного познания. Лазерный луч — еще одно тому доказательство.

Как влияет мощный световой поток на свойства вещества? Как ведет он себя в прозрачной среде, которая его не поглощает? Над этими вопросами впервые задумался выдающийся советский физик-оптик, будущий президент Академии наук СССР Сергей Иванович Вавилов. В то время, 30—50 лет назад, источники света были маломощными, о лазерах и не мечтали. Законы оптики казались незыблемыми, как египетские пирамиды. Г. Г. Слюсарев в своей книге «О возможном и невозможном в оптике», вышедшей на самом пороге лазерного века, категорически утверждал: невозможно сжигание предметов на большом расстоянии; невозможно получение параллельных пучков светового излучения, переносящих энергию на значительные расстояния; явления преломления и отражения света обратимы (за вычетом рассеяния и поглощения) и т. п.

Лазерный луч ниспроверг все эти и многие другие, дотоле незыблемые твердыни, открыл новую главу науки о свете, получившую название «нелинейной оптики». Лишь С. И. Вавилов пророчески предвидел возможность нелинейных явлений при использовании очень мощных световых потоков. Удивительные физические особенности лазерного излучения нашли выражение в целом ряде новых оптических явлений. Выше уже шла речь о том, что луч лазера можно сфокусировать в пятнышко менее микрона в диаметре. Обычный, немонохроматический луч сфокусировать в точку принципиально невозможно: каждая волна, каждый диапазон частот образует в этом случае свой фокус, а общее пятнышко окажется достаточно большим (явление хроматической аберрации). Луч лазера, сделав невозможное возможным, ниспроверг один из запретов классической оптики.

Но революция в оптике, начатая с созданием оптических квантовых генераторов, этим не ограничивается. Один из классических законов оптики, экспериментально найденный Столетовым и сформулированный Эйнштейном, утверждает, что выбить электрон из металла (фотоэлектрический эффект) может свет определенной частоты и длины волны. Если длина волны света становится больше какой-то величины (так называемого красного порога), то фотоэффект не наблюдается, сколько бы мы ни увеличивали интенсивность освещения. Эйнштейн дал объяснение этому явлению с позиций квантовой теории: каждый фотон света самостоятельно и независимо от других фотонов взаимодействует с электроном, отдавая ему свою энергию. Если этой энергии достаточно для преодоления внутриатомного взаимодействия — электроны вылетают, образуя фототок. Если энергия каждого кванта недостаточна для выбивания электрона — эффекта не будет, как бы много фотонов с малой энергией ни падало на металл. Итак, считалось твердо установленным, что увеличением количества света нельзя компенсировать недостатки его качества, нельзя преодолеть красный порог.

С открытием лазеров рухнул и этот запрет. Сверхплотное и когерентное излучение оптических квантовых генераторов взаимодействует с веществом иначе, чем обычный свет. Фотоны в лазерном луче летят столь плотным потоком, что они могут одновременно реагировать с одним атомом, с одним электроном. Становятся возможны двух- и многофотонные процессы (еще один наглядный пример перехода количества в качество), исчезает красный порог: одновременное действие двух фотонов соответствует эффекту одного фотона с удвоенной частотой колебаний (с вдвое более короткой волной). Кванты красного света слишком малы, чтобы вызвать фотоэффект. Но ЛУЧ рубинового лазера — тоже красный — вызывает интенсивную фотоионизацию, вплоть до полного отрыва электронов от ядер, с превращением вещества в плазму.

Согласно строгим квантовым законам, открытым Н. Бором, атом поглощает и испускает излучение строго определенных частот, энергия квантов которого точно соответствует разности энергетических уровней атома. Многофотонные процессы, характерные для лазерного излучения, ниспровергли и этот запрет: теперь важно, чтобы энергия суммы фотонов (двух, трех или более) соответствовала разности уровней. В связи с этим закон сохранения и превращения энергии, полностью сохраняя силу, приобретает новую форму.

Сорок лет назад С. И. Вавилов и В. Л. Левшин наблюдали первый нелинейный эффект — изменение коэффициента поглощения вещества под действием света. В обычных условиях, сколько бы света ни падало на вещество, его поглощающая способность остается прежней — своеобразная бочка Данаид! Но ведь возбужденный атом, поглотивший электрон, приобретает новые квантовые, а значит, и оптические свойства. Поглотить еще один квант того же света он уже обычно не может. Пока число таких возбужденных атомов в веществе относительно невелико, их изменившиеся свойства внешне не проявляются. Но мощный световой поток и в этом случав должен привести к качественно новым явлениям. В опыте Вавилова и Левшина при поглощении урановым стеклом света мощной искры прозрачность стекла под влиянием сильного освещения возрастала.

С открытием лазера стало ясно, что опыт Вавилова — не исключение: мощный световой поток как бы прокладывает себе дорогу в веществе, изменяя дотоле незыблемую константу — коэффициент поглощения. Новый эффект самоканализации сразу же нашел применение. Для получения гигантских импульсов в лазерах с модулированной добротностью стали применять не механические, а оптические затворы: при достаточно высоком уровне возбуждения кристалла возникают нелинейные явления, и затвор, дотоле непрозрачный, открывается сам.

Аналогичная судьба постигла еще одну константу классической оптики — показатель преломления. Свет, как известно,— электромагнитные колебания, электромагнитное поле. Синхронность, однофазность световых колебаний в лазерном луче и большая плотность энергии в нем создают напряженность электрического поля до миллионов вольт на сантиметр. Такое поле оказывает сильное влияние на электроны атомов вещества, через которое проходит луч. Если частота и амплитуда колебаний электронов близки к частоте световых колебаний, то проходящий лазерный луч, вызывая резонансные колебания электронов вещества, изменяет, модулирует себя: возникает волна удвоенной частоты. Подбор кристаллов делает возможным превращение невидимого света неодимового лазера (лежащего в ближней инфракрасной области с длиной волны 10·600 А) в видимый ( = 5300 А) зеленый луч; а красный свет рубинового лазера может быть таким же образом превращен в ультрафиолетовый с коэффициентом полезного действия, близким к 50%!

Принцип удвоения частоты уже используется практически для получения лазеров, работающих в ультрафиолетовой и видимой частях спектра. Тот же эффект при прохождении в кристалле двух разных световых потоков дает более сложный эффект взаимной модуляции; рождаются две новые волны: одна с частотой, равной сумме, другая — разности частот первичных волн. Это явление используется для получения радиоволн, ультракоротких и миллиметровых.

Изменение показателя преломления вещества под влиянием мощного светового потока приводит к еще одному необыкновенному явлению: лазерный луч, проходящий в однородной прозрачной среде, самофокусируется! При этом плотность лучистой энергии в пучке света еще более возрастает. И если в прозрачной среде попадаются хоть малейшие неоднородности, поглощение в них хотя бы ничтожной части энергии вызывает растрескивание, разрыв стекла или другого прозрачного материала.

В свое время выдающемуся русскому физику П. Н. Лебедеву пришлось потратить годы и проявить поистине ювелирное мастерство, чтобы доказать реальность светового давления. А лазер и здесь сделал невозможное возможным, сложное и абстрактное — простым и наглядным. Лазер мощностью всего 0,25 вт — лилипут в мире великанов — в состоянии удерживать на своем луче, направленном вертикально вверх, стеклянный шарик диаметром 0,025 мм. А в фокусе луча мощного импульсного лазера давление превышает тысячу тонн на квадратный сантиметр! Перечень революционных свойств лазерного луча можно было бы продолжить. К их числу относится, например, возникновение в веществе ультра- и гиперзвуковых колебаний. Но и сказанного достаточно, чтобы понять, что с созданием оптических квантовых генераторов в учении о свете открылась новая глава.

Луч-исследователь и луч-труженик

Мы познакомились пока с устройством лишь одного, правда, наиболее распространенного лазера — рубинового. Но сегодня семья лазеров уже весьма многочисленна и продолжает расти не по дням, а по часам. Познакомимся же с наиболее интересными ее членами.

Если заменить рубин бариевым стеклом с добавкой ионов элемента неодима, мы получим лазер, излучающий в ближней инфракрасной области, с длиной волны 10600 А (1,06 мкм). Неодимовый лазер более экономичен, его КПД более 4% и значительно превышает таковой рубинового лазера. Из неодимового стекла можно получать стержни любой величины и создавать лазеры большой мощности — до нескольких тысяч джоулей. В качестве активного вещества — рабочего тела лазеров используется также стекло с добавкой атомов иттербия, гадолиния, гольмия, тербия и других редкоземельных элементов. Лазер на кристалле флюорита, активированном диспрозием, излучает на волне 2,35 мкм, на кристалле иттрий-алюминиевого граната, активированном неодимом, излучает на той же волне, что и лазер на неодимовом стекле — 1,06 мкм, но не в импульсном, а в непрерывном режиме при комнатной температуре. Существуют и другие типы лазеров.

В жидкостных лазерах в качестве активного вещества используются растворы окислов и комплексных соединений все тех же редкоземельных металлов. Жидкостные лазеры удобны тем, что они проще в изготовлении, не нуждаются в специальной системе охлаждения (достаточно обеспечить циркуляцию жидкости в установке); подбирая растворенные соединения, можно легко изменять длину волны излучения. Однако мощность жидкостных лазеров невелика. Жидкостные лазеры на красителях обладают свойством плавно изменять частоту генерируемых световых колебаний (в определенных пределах).

Газовые лазеры работают в непрерывном режиме. Одно из их достоинств — необыкновенная даже в мире лазеров монохроматичность — она еще в 100 тыс. раз выше, чем у рубинового лазера. Гелий-неоновый лазер излучает на волне 6328 А красный свет. Аргоновый — в сине-зеленой области (4880 и 5145 А). Углекислотный лазер, обладающий высоким коэффициентом полезного действия — до 15—25%,— излучает в длинноволновой инфракрасной области (10,6 мкм). Наконец, лазер на азоте — первый ультрафиолетовый лазер с длиной волны 3371 А.

Особую группу образуют полупроводниковые лазеры. Хотя активное вещество в них представляет собой твердое тело, но принцип генерации света отличается от такового у твердотельных лазеров: вместо световой накачки используется электрическое возбуждение. Их кпд наиболее высок — до 60—70%. В магнитном поле удается изменять частоту излучаемого ими света. Мощность полупроводниковых лазеров пока невелика.

Работы по созданию новых типов лазеров ведутся во многих странах. И если вспомнить, что первый лазер был создан всего в 1960 г., нельзя не признать, что сделано уже немало. Лазер прочно вошел в арсенал науки, техники, промышленности, сельского хозяйства и медицины. Рассмотрим коротко, что уже дает и может дать человечеству в самом ближайшем будущем использование лазерного луча.

Высокая концентрация лучистой энергии в лазерном импульсе, а также возможность фокусировки луча позволяет создать столь значительное, хотя кратковременное и локальное, повышение температуры, что самые тугоплавкие вещества, рекордсмены прочности испаряются, попав в фокус излучения. Это свойство лазерного луча широко и разносторонне используется в технике.

Пробивание отверстий малого диаметра в таких твердых материалах, как алмаз, корунд, особо прочные сорта стали, металлокерамические изделия, лазерный луч производит несравненно проще, быстрее, производительнее и дешевле, чем любые другие инструменты. Для получения сверхтонкой проволоки, например, нагретые заготовки металла протягиваются через крохотные отверстия в алмазной фильере. Сверлить эти отверстия до последнего времени удавалось лишь с помощью алмазного же порошка, на что уходило много времени и дорогостоящего сырья. Лазерный луч сокращает время пробивания отверстия с 2—3 дней до 2—3 минут; он сверлит отверстия очень малого размера (до 0,009 мм), получить которые другим способом невозможно. В результате производительность труда и экономия материалов увеличиваются в тысячи раз. Отечественная установка «Квант-9» обладает всеми этими преимуществами, пробивая отверстия тоньше волоса.

В микроэлектронике, производстве интегральных схем лазерный луч осуществляет травление, т. е. удаляет крохотные излишки металла; повышает точность изготовления прецизионных сопротивлений, испаряя избыточный материал; производит резку и пайку тончайших проводов и деталей внутри вакуумных приборов, не нарушая вакуума. Советская установка «ТИЛУ-1» дает в год сотни тысяч рублей экономии.

Лазерный луч, испаряя в ничтожные доли секунды крохотную частичку вещества, образует облачко пара. Через секунду-другую оно рассеивается, и если не упустить времени, то на фотопластинке спектрографа это облачко оставит след в виде набора линий, по которым специалисты определят элементарный состав изучаемой пробы. Лазерный микроанализ успешно работает в биологии, медицине, позволяет определить химический состав участка хромосомы или человеческого волоса, сыворотки крови или ткани опухоли; в криминалистике (примесь какого-либо вещества позволяет установить происхождение и принадлежность вещественного доказательства); в живописи (химический состав краски может подсказать возраст картины); в геологии (где серийный анализ проб облегчает по следам металла отыскание его месторождения) и т. п.

Лазерный луч под контролем ЭВМ осуществляет автоматическую резку металла, раскрой стальных и алюминиевых листов, тканей и кожи, причем выполняет все эти операции несравненно быстрее и точнее человека. Для резки наиболее удобны лазеры непрерывного действия, например углекислотные.

Сварка металлических швов — одна из новых областей применения лазера. Чтобы луч плавил металл, а не испарял его, нужно было увеличить длительность лазерного импульса с десятитысячных до сотых долей секунды. Для этого пришлось замедлить разряд конденсаторов и растянуть свечение лампы накачки. При переходе от точечной сварки к сварке швов сферические фокусирующие зеркала заменили цилиндрическими, и луч лазера стал собираться не в точку, а в линию. Советские сварочные лазерные установки «СУ-1», «СЛС-10», «Квант-10», «УЛ-2» обеспечивают высококачественную скоростную (до 2—5 см/сек) сварку металлов, сваривают золото и кремний, золото и германий, алюминий и никель, тантал и медь.

Широки возможности использования лазерного излучения в связи в качестве средства передачи информации. Радиоволновой диапазон, используемый для радио- и телесвязи, в настоящее время переполнен. Интенсивно развивающееся цветное телевидение сулит новые трудности, так как объем передаваемой информации резко возрастает и требует увеличения диапазона занимаемых частот.

Частота видимого света в миллион раз выше частоты радиоволнового диапазона, и область оптических частот принципиально может вместить соответственно больший объем передаваемой информации. Для того чтобы луч мог переносить информацию, нужно его пометить, т. е. изменить, промодулировать. Естественно, что луч правильной, когерентной структуры, в котором все волны идут «в ногу», строго синхронно и синфазно, для приобретения информационного значения нуждается в минимальных метках-модуляциях и в состоянии перенести несравненно больший объем сведений, чем луч обычного света, и без того отличающийся несинхронной и некогерентной структурой, несущий всякого рода искажения. Вот почему излучение лазера — идеальное средство связи. Модуляция частоты лазерного света в пределах всего 1% создает диапазон, достаточный, по подсчетам специалистов, для передачи по крайней мере 1 млрд. телефонных разговоров, не мешающих друг другу.

Каким же образом можно промодулировать лазерный луч? В обычной радиотелефонной связи звуковые волны нашего голоса, падающего на микрофон, порождают электрический ток переменной интенсивности, модулирующий основной радиосигнал, В телевидении роль модулятора выполняет электронный луч, интенсивность которого меняется в зависимости от яркости отдельных строк и участков изображения. Простейший способ модуляции лазерного луча осуществляется с помощью оптического затвора, степень пропускания которого меняется с приложенным напряжением, колеблющимся за счет сигналов от микрофона. В этом случае модулируется интенсивность лазерного луча, но может изменяться и частота.

Преимущество лазерной связи — это также малая расходимость, строгая направленность луча; отсюда высокая экономичность (радиостанция излучает по всем направлениям) и возможность работы на одной волне многих излучателей. Наконец, высокая частота колебаний лазерного луча делает возможной передачу на одной волне тысяч телепрограмм и миллионов телефонных разговоров, не мешающих друг другу.

Но на пути практического создания лазерных систем связи есть по крайней мере два серьезных и пока не преодоленных препятствия. Во-первых, световой луч в атмосфере подвержен влиянию дымки, тумана, облачности, пыли, и это снижает надежность связи, вызывая рассеяние световых волн. Инфракрасное излучение в этом отношении более надежно, так как меньше ослабляется атмосферными помехами. Экспериментальные системы лазерной связи на короткие расстояния существуют, в том числе и в Москве. Однако серьезную конкуренцию существующим системам связи лазерный луч сможет составить лишь в том случае, если для его распространения будет создана система труб с достаточно высоким вакуумом — своеобразных световодов, светорелейных линий. Возможно, система лазерной связи будет поднята в высокие слои атмосферы или в космос, свободный от атмосферных помех.

Во-вторых, препятствием для дальней лазерной связи является кривизна земной поверхности. Длинные радиоволны преодолевают это препятствие за счет дифракции, короткие — отражаясь от ионосферы. Лазерный луч — световой, и он распространяется строго прямолинейно, т. е. в пределах видимости. Это препятствие можно преодолеть, лишь пользуясь одним из двух названных выше способов.

Что касается существующих типов лазеров, то импульсные (твердотельные и жидкостные) установки не годятся для связи — импульсный сигнал труднее модулировать, «нагружать» информацией. У полупроводниковых лазеров область излучаемых частот слишком широка. Газовые лазеры хороши, но мощность их пока невелика. Таким образом, предстоит еще немалый путь, чтобы принципиальную возможность воплотить в реальное техническое решение. Но путь тот будет пройден — сомнений в этом нет. Уже в ближайшие годы возможно создание лазерных систем связи между искусственными спутниками земли, космическими кораблями и орбитальными станциями, а также между самолетами, летящими на большой высоте. А существующие экспериментальные системы уже сейчас обеспечивают связь в пределах примерно полутора десятков километров.

Ведутся работы и над конструкциями лазерного телевизора. Японские ученые, особенно интенсивно работающие в этой области, нашли, что вместо электронно-лучевой трубки — самой громоздкой части современного телевизора — можно использовать кристалл двуокиси теллура, модулируя отклонение светового луча путем воздействия ультразвуковых колебаний, изменяющих показатель преломления кристалла. Японская фирма «Хитати» уже демонстрировала в г. Осака на всемирной выставке «Экспо-70» экспериментальную систему цветного телевидения, в которой проекция на огромный экран (3X4 м) осуществляется с помощью трех лазеров — криптонового (красного) и двух аргоновых (зеленого и синего). Видеосигналы передаются от обычной цветной телекамеры, усиливаются и модулируют лазерные сигналы. Благодаря применению лазеров цветовая передача изображения резко улучшается. Горизонтальная и вертикальная развертка обеспечивается системой из 40 зеркал.

Другая важная область практического использования лазерного излучения — производство точных и прецизионных измерений: расстояния до Луны (с помощью установленного на Луне отражателя точность повышена до 50 м), дрейфа континентов (с помощью отражателей и специального спутника), движения ледников, толщины облачности, для геодезических измерений, определения расстояния до цели. Луч лазера может быть использован и для обнаружения пожаров — дым и токи нагретого воздуха способны слегка отклонять его траекторию. Установка лазера в сейсмоопасном месте (на коренных породах) может облегчить предсказание землетрясений — по отклонению пятикилометрового луча. Наконец, лазерный визир используется при прокладке трубопроводов через водохранилища и реки, при бурении тоннелей и скважин. Лазерный визир использовался и при строительстве Останкинской телебашни — для своевременного выявления отклонений от вертикальной линии.

Специалистами широко обсуждаются перспективы передачи энергии на большие расстояния с помощью лазерного луча. В качестве световодов испытываются стеклянные волокна с полированной зеркальной поверхностью (волоконная оптика) и кварцевые трубки, заполненное четыреххлористым этиленом. Но потери энергии в таких световодах довольно значительны. Реальна также опасность их разрушения поглощенным светом. Передача же без световодов принципиально возможна главным образом за пределами плотных слоев атмосферы.

В военном деле лазерный луч используется для обнаружения и уничтожения самолетов и ракет противника, в системах наведения и самонаведения на цель ракет, бомб, снарядов, для скрытого ведения воздушной разведки в ночное время, аэрофотосъемки (инфракрасный лазер). Лазер может быть деталью дистанционного взрывателя и, наконец, сжигать на расстоянии военные объекты, в том числе движущиеся,— задача, привлекавшая внимание людей еще в древности и воплощенная в фантастических проектах — сначала в зеркалах Архимеда, а затем в «Гиперболоиде инженера Гарина» А. Н. Толстого.

Большое будущее, видимо, ожидает лазер еще в одной области применения: в голографии. Этот вид объемной фотографии, содержащей всю информацию о предмете («голо» — по-латыни весь), был теоретически предсказан в 1948 г. английским физиком Д. Табором. Если зафиксировать на фотопластинке дифракционную картину, возникшую при прохождении света мимо препятствия в виде точки, а затем пропустить через пластинку точно такой же пучок света, на экране вновь возникнет та же точка. Но теоретические предположения Габора осуществить было невозможно — пучок света с его хаотической структурой воспроизвести вторично не удавалось.

Лазерный луч и в этом случае сделал невозможное возможным. Монохроматичный и когерентный свет лазеpa проходил через предмет, дифрагируя на отдельных его точках, и падал на фотопластинку. На ту же пластинку падала часть лазерного пучка, прошедшая предварительно через систему призм или зеркал в обход предмета. Фотопластинка, содержащая в причудливом переплетении дифракционных колец и линий всю информацию о предмете (она-то и называется голограммой), при подсвечивании аналогичным лазерным лучом дает на экране объемное изображение предмета. Более того, каждый кусок разбитой голограммы также способен при подсветке дать объемное изображение всего предмета. Использование этого принципа сулит качественно новые возможности для кино и телевидения. Однако технические трудности значительны, и на их преодоление потребуется, вероятно, пять—десять лет.

Принцип голографии может найти применение и в цветном телевидении, и в особой конструкции микроскопа. Направления использования лазеров в будущем трудно исчерпать. Остановимся подробнее на некоторых возможностях их применения в биологии и медицине.

Луч лазера и живая ткань

Монохроматическое излучение оптических квантовых генераторов в отличие от полихроматического, широкополосного излучения Солнца и искусственных источников света может избирательно поглощаться определенными структурными элементами тканей, клеток, некоторыми хромофорными группами, пигментами. Поэтому, подбирая соответствующую длину волны, можно в принципе оказывать воздействие очень тонкое, специфическое. Лазерный луч может стать, и со временем станет, орудием направленного воздействия на организм, средством управления жизненными процессами, в особенности, когда врач будет располагать целым арсеналом лазеров, генерирующих излучение в разных областях оптического диапазона. Разумеется, для таких тонких избирательных воздействий на организм нужно использовать нефокусированное излучение сравнительно малой интенсивности, не вызывающее не только испарения, но и ожога ткани.

Световое излучение лазера вызывает в живой ткани сдвиги, присущие в обычных условиях лишь гораздо более высокоэнергетическому ионизирующему и ультрафиолетовому излучению,— выбивание электронов, образование ионов и свободных радикалов. Главное в этом эффекте лазерного луча принадлежит мощным электромагнитным полям. Действие поля сказывается лишь непосредственно в пределах облучаемых участков и в сочетании с нелинейным двуфотонным взаимодействием порождает фотоэлектрический эффект, хотя энергия каждого в отдельности кванта для этого недостаточна. Поэтому мощному излучению рубинового лазера оказываются присущи некоторые биологические эффекты, наблюдавшиеся ранее только при воздействии рентгеновских и гамма-лучей,— возникновение свободных радикалов и вследствие этого — изменение структуры отдельных азотистых оснований ДНК, появление мутаций и т. п. Под влиянием нелинейных эффектов возможно изменение прозрачности сред глаза и отсюда появление в стекловидном теле пузырьков газа (очагов локального испарения в участках пониженной прозрачности), а со временем — и помутнения хрусталика, так называемой катаракты.

При импульсном режиме работы лазеров в облучаемом веществе нередко образуются механические колебания атомов и молекул. Когерентное импульсное излучение как бы раскачивает молекулы, и они начинают колебаться с ультра- и даже гиперзвуковой частотой. Образующиеся при этом упругие волны распространяются в живой ткани гораздо дальше и глубже, чем проникают световые волны, усиливают действие лазера и делают его более распространенным.

Кожа и другие ткани организма имеют сложную структуру; они состоят из слоев клеток различного строения, обладающих разными механическими свойствами. При прохождении ультразвуковых волн молекулярные и клеточные слои колеблются, резонируют неодинаково. Поэтому между молекулами биополимеров, между клеточными слоями возникают микроскопические разрывы, просветы, полости. Это явление называется кавитацией (от латинского кавитас — полость). Разрывы возникают на очень короткое время (ничтожные доли секунды), но сопровождаются определенным нарушением структуры и функции живой ткани.

Очень большое значение имеет присутствие в клетках пигмента. Беспигментные клетки почти не поглощают лучей рубинового и неодимового лазеров (наиболее распространенных и в основном использующихся пока в биологии и медицине) и потому мало чувствительны к ним. Луч, прожигающий отверстие в стальном листе толщиной 1—5 мм, не вызывает никаких заметных повреждений в клетках кожи, лишенных пигмента. Но присутствие гранул меланина делает клетку особенно «привлекательной» для луча лазера, и в крохотный промежуток времени такая клетка испаряется, исчезает, тогда как ее беспигментные соседки остаются невредимыми. В белой незагоревшей коже луч лазера проникает поэтому на большую глубину и больше рассеивается, не давая сильного местного поражения. Имеет значение и степень кровенаполнения ткани. Прилив крови облегчает поглощение лазерного луча гемоглобином; страдают при этом в первую очередь клетки крови, а также стенки сосудов.

А теперь познакомимся непосредственно с картиной лазерного поражения живой ткани. Ожог и мгновенное испарение части вещества кожи в месте падения лазерного луча завершаются образованием кратерообразного углубления. Дно кратера обожжено, покрыто тонким слоем сухой омертвевшей ткани. Все произошло в считанные доли секунды. Но случившееся — не конец, а начало процесса. Мгновенное испарение вещества, закипание жидкостей тела вызывает быстрое и резкое повышение давления в клетках облученной ткани. Как волны от упавшего в воду камня, во все стороны от облученного участка распространяется ударная волна. Чем меньше продолжительность лазерного импульса, тем более мощная волна распространяется по ткани. Обычно она не вызывает серьезных повреждений. Но если ударная волна распространяется внутри замкнутой полости — черепа, грудной, брюшной — она вызывает более или менее сильный ушиб мягких тканей (мозга, легкого, сердца) о твердые костные стенки полости. Возникают кровоизлияния.

Если лазерный импульс большой мощности проникает внутрь глаза (оболочка глазного яблока достаточно жестка), происходят частичное испарение стекловидного тела с образованием пузырей в нем, кровоизлияния в сетчатку и ее отслойка, а при особо мощной ударной волне — даже разрыв глазного яблока. Лазерный импульс, упавший на лобную кость мыши, вызывает мгновенную гибель в результате ушиба мозга ударной волной и массивных кровоизлияний. В то же время кожа лба, кость остаются неповрежденными. У более крупных животных лобная кость толще, и мозг не повреждается.

Другой фактор распространения лазерного поражения — ультразвуковые упругие колебания. Степень их опасности и особенности действия изучены недостаточно.

Итак, можно говорить о двух основных формах взаимодействия лазерного луча с живой тканью. При большой концентрации лучистой энергии на первый план выдвигается чисто тепловое действие — ожог, испарение, выгорание ткани. В этом случае длина волны лазерного излучения значения не имеет. При нефокусированном облучении в малых дозах основное значение имеет избирательное поглощение лучистой энергии теми или иными хромофорными группами. При этом лучи разной длины волны поглощаются разными веществами ткани и вызывают различные биологические эффекты. Однако в обоих случаях главные события разыгрываются в клетках, снабженных пигментом или иным хромофором. Белки и нуклеиновые кислоты — основные компоненты живых тканей — непосредственно не поглощают излучения рубинового и неодимового лазера. Чтобы возник биологический эффект, необходимо присутствие фотосенсибилизатора — красителя, переносящего поглощенную энергию света на молекулы биополимеров. И там, где такой посредник имеется, эффект лазерного луча сильнее и развивается при значительно меньших дозах облучения. Вот почему легко разрушаются в поле лазерного облучения красные клетки крови — эритроциты, пигментированные клетки кожи, клетки печени, а беспигментные клетки способны переносить без ущерба воздействие весьма значительных количеств лучистой энергии.

Глаз и кожа под лучом лазера

Глаз — наименее защищенный, наиболее уязвимый орган в условиях лазерного воздействия. Проникший внутрь глаза лазерный луч беспрепятственно проходит прозрачные среды глаза, которые фокусируют его (как и любой луч) на сетчатку. Фокусирующие свойства глаза создают в определенной точке сетчатки очень большую плотность лучистой энергии, даже если луч лазера маломощен и попадает в глаз не прямо, а будучи отражен от стен, предметов и т. п. Основные слои сетчатки также почти совершенно прозрачны для лучей лазера. Но внутренний, пигментный слой полностью их поглощает. В точке на сетчатке, где фокусируется свет лазера, пигментный эпителий и слой светочувствительных палочек и колбочек мгновенно выгорает, оставляя после себя плоский белый рубец диаметром около 1 мм (погибшие клетки замещает соединительная ткань). Одно-два таких пятнышка, особенно если они локализуются не в области желтого пятна, быть может, и не окажут серьезного влияния на функции зрения. Но при повторных ожогах число таких участков возрастает, и постепенно может наступить слепота.

При ожоге сетчатки часть ее вещества испаряется; в этом случае также образуются пузырьки, которые нарушают зрение еще больше, чем локальные повреждения сетчатки. На радужной оболочке, содержащей пигмент, при попадании луча также возникает участок омертвения, замещающийся в дальнейшем рубцом из соединительной ткани. Рубец вызывает сужение зрачка или изменение его формы. Могут образоваться и сращения между радужкой и роговицей или хрусталиком. При попадании луча на склеру поражаются сосуды из-за поглощения лучей гемоглобином. Образуются тромбы или кровоизлияния.

Инфракрасное излучение неодимового лазера в большей степени поглощается прозрачными средами глаза и при многократном воздействии может вызвать катаракту. А длинноволновое излучение углекислотного лазера может привести к ожогу роговицы и конъюнктивы, к обгоранию ресниц.

Учитывая все сказанное выше, следует помнить, что при работах с лазерными установками наиболее важно защищать глаза. Ни при каких условиях не следует смотреть на лазерный луч. Для уменьшения опасности воздействия отраженного света необходимо устранить в соответствующих лабораториях и цехах всякого рода зеркальные, гладкие поверхности. Стены, потолки и приборы должны быть покрашены матовой, поглощающей лазерные лучи краской. Персонал должен пользоваться защитными очками, помня при этом, что каждый тип лазеров отличается особой спектральной характеристикой и требует особых защитных стекол.

Кожа — гораздо менее чувствительный к действию света орган, чем глаз, самой природой созданный для защиты тела от разнообразных вредных воздействий. Однако не все защитные механизмы кожи в полной мере выполняют свое назначение в условиях лазерного облучения. Меланин — универсальный защитный барьер против любого лучистого перегрева — в этом случае играет обратную роль. «Принимая огонь на себя», он резко увеличивает чувствительность клеток кожи к лазерному воздействию. Однако в некоторых случаях и эта особенность пигментных клеток находит себе применение. Так, лазерный луч оказался идеальным средством удаления татуировок: выжигая пигмент, он оставляет в неприкосновенности клетки кожи. А при лечении пигментных опухолей кожи — меланом — и сосудистых опухолей — ангиом — лазерный луч ведет себя, как самый осторожный, бережный хирург, не задевающий ни одной здоровой клетки.

Если кожа белая, незагоревшая, луч лазера может вызвать в ней серьезные изменения, лишь достигнув сосочкового слоя кожи с его сосудами. Луч аргонового лазера особенно хорошо поглощается гемоглобином. Но если увеличивать дозу облучения, то можно, конечно, достичь предела устойчивости даже белой кожи. Он разный при различной продолжительности импульса, фокусировке лучей, спектральном его составе. Но концентрация энергии порядка 30—50 дж/см2 уже вызывает ожог первой и второй степени, а с увеличением дозы — третьей и четвертой.

Первыми научились использовать чудесный луч офтальмологи — специалисты по глазным болезням. Отслойка сетчатки — один из самых страшных недугов, обычно заканчивающийся слепотой. Причина отслойки — чаще всего кровоизлияние в расположенной глубже сосудистой оболочке. Сетчатка, лишенная привычной связи с подлежащими слоями и нормального питания, погибает. Последним словом лечения отслоек сетчатки в долазерный период было использование мощных световых вспышек. Сконцентрированная специальным рефлектором вспышка ксеноновой лампы вызывала очаговый ожог сетчатки, как бы «приваривала» ее к глубже лежащим слоям. Серия таких рубцов по периферии отслоившегося участка прекращала кровоизлияние и возвращала сетчатку на место. Но использование ксеноновой лампы вызывало боль и неприятные ощущения в глазу, да и процедура была длинной, зрачок от яркого света сокращался, и после каждого импульса нужно было делать перерыв.

С помощью лазера совершилась революция в лечении отслоек сетчатки. Каждый импульс лазера столь краток, что ни боли, ни сокращения зрачка не наступает. Лечение стало безболезненным, гораздо более эффективным и быстрым. Лазерный луч успешно применяется и для разрушения небольших пигментных и сосудистых опухолей глаза. Иногда с его помощью прожигают отверстие в радужной оболочке — чтобы заменить зрачок, закрытый рубцом. Пионерами применения лазера в лечении глазных болезней в СССР стали сотрудники Института глазных болезней им. В. П. Филатова в Одессе во главе с членом-корреспондентом АМН СССР Н. А. Пучковской.

Весьма заманчива для хирургов идея «лазерного ножа». Разрезы тканей световым ножом уже не раз производились на подопытных животных. Очень важно, что луч аргонового лазера, чаще всего используемый в этих исследованиях, вызывал мгновенное закрытие просвета разрезанных кровеносных сосудов сгустками свернувшейся крови. Нож, который сам останавливает кровотечение,— это ли не мечта! Детали бескровной хирургии, наиболее удобные конструкции лазерного ножа изучаются доктором медицинских наук Б. М. Хромовым в Ленинграде.

Особенно перспективным кажется использование лазерного ножа для удаления злокачественных опухолей. Пигментные опухоли — меланомы наиболее удобны для таких операций. Но и беспигментные опухоли могут разрушаться под лучом, если в них предварительно ввести краситель — метиленовый синий, янус зеленый, малахитовый зеленый и т. п. Чем интенсивнее и глубже окрашивается опухоль, тем легче и быстрее она разрушается.

В Киевском институте проблем онкологии АН УССР под руководством академика АН УССР Р. Е. Кавецкого создано отделение лазерной терапии опухолей, где уже накоплен немалый опыт клинического применения лазеров в онкологии. Ведутся исследования в этом направлении также в Москве, в Институте онкологии им. А. А. Герцена и в Институте экспериментальной и клинической онкологии. Пока лазер используют для лечения поверхностно расположенных опухолей, в основном кожных. Но медики готовятся к применению лазерного луча при операциях на мозге и печени.

Лазеры найдут применение также и в стоматологии. Лазерный луч может очень быстро и, главное, безболезненно вскрывать полость больного зуба, избавляя больного от неприятной встречи с бормашиной. Лазерный импульс так короток, что ощущение боли просто не успевает развиться. Особенно удобно пользоваться лазером при лечении кариозных зубов, при удалении пломб и коронок. Наконец, луч может сделать зубы более устойчивыми к кариесу, сплавляя в одно целое элементы зубной эмали. Время внедрения лазеров в стоматологию настало. Уже проведены (и у нас, и за рубежом) эксперименты на зубах животных и удаленных человеческих, разработаны конструкции, обеспечивающие безопасное подведение лазерного излучения в полость рта больного. Лазер, очевидно, станет новым эффективным орудием в руках врача.

Взгляд в будущее

В наше время писателям-фантастам особенно трудно. Наука, техника, производство шагают вперед столь быстрыми темпами, что-то, что вчера казалось неосуществимой мечтой, миражем, волнующим воображение, сегодня становится обыденной деталью заводского пейзажа или хирургической операционной. Алексей Толстой не дожил до создания гиперболоидов. Мечты современных писателей становятся реальностью несравненно быстрее.

Первый лазер был построен в 1960 г. А сегодня нет отрасли человеческой деятельности, где бы он не нашел применения или не планировался для использования. Завтрашний день лазерной связи — это не только увеличение диапазона частот, но и объемное цветное телевидение и кино (на основе голографии)^ и гигантские многометровые дневные телеэкраны, и использование лазерного луча в качестве звукоснимателя. Завтрашний день лазерной энергетики — это гигантские термоядерные реакторы с лазерным подогревом плазмы, и передача энергии без проводов, и заоблачные космические электростанции.

Будущее лазерной биологии и медицины — это тончайшие операции на хромосомах и отдельных генах (ведь диаметр лазерного ножа можно довести до десятой доли микрона!), способствующие выведению новых сортов растений, новых пород животных с нужными свойствами. Это управление процессами жизнедеятельности, лечение многих болезней, оздоровление организма путем подбора лазерных лучей нужной длины волны. Но самые яркие, неожиданные возможности использования чудесного луча еще впереди.

Загрузка...