Интегральные схемы (ИС) являются элементами современных цифровых устройств. Применение ИС освобождает разработчика от необходимости проектирования схем из таких дискретных элементов, как транзисторы, диоды и резисторы. Благодаря микроэлектронной технологии на крошечном кусочке (кристалле) кремния можно изготовить огромное число эквивалентных дискретных элементов. Получающаяся интегральная схема оказывается не только намного компактнее своего аналога из дискретных элементов, но и значительно дешевле и гораздо надежнее.
Сделаем одно замечание, которое, наверняка, обрадует новичков в области цифровой схемотехники: чтобы успешно применять интегральные схемы, совсем необязательно знать их подробное внутреннее устройство. Нужно только знать основополагающие правила, касающиеся напряжений питания и требований к входным и выходным сигналам. В цифровой схемотехнике для нас представляют первоочередный интерес логические функции компонентов, а не их электрические характеристики.
Все современные цифровые системы построены на интегральных схемах, в которых на кусочке кремния образованы сотни и тысячи компонентов. Количество отдельных полупроводниковых элементов на кристалле обычно связывается со степенью интеграции, численные характеристики которой приведены в табл. 1.1.
Конструктивное оформление. Самый распространенный тип корпуса для интегральных схем — пластмассовый корпус с двухсторонним расположением выводов или контактов (типа DIP). Число контактов на корпусе зависит от сложности интегральной схемы и, в частности, от числа требуемых внешних связей. Например, обычные логические элементы выпускаются в корпусах с 14 и 16 контактами, а корпуса микропроцессоров и сложных вспомогательных схем имеют 40 контактов и более. Широко распространенные корпуса микросхем и нумерация контактов показаны на рис. 1.1.
Рис. 1.1. Нумерация контактов на корпусах интегральных схем. Контакт 1 находится слева от выемки; иногда его отмечают течкой.
Здесь изображен вид микросхем сверху, т. е. так, как они выглядят на печатной плате со стороны компонентов. Такой вид, наверное, самый естественный, но все же иногда нумерация контактов вызывает путаницу. Контакты микросхем нумеруются последовательно, начиная с выемки, в направлении против часовой стрелки.
Например, при рассмотрении 14-контактного корпуса сверху контакты 1 и 14 находятся соответственно слева и справа от выемки.
Идентификация. При знакомстве с интегральными схемами сразу же возникает вопрос об их идентификации или маркировке. Чтобы помочь нам решить этот вопрос (а иногда — чтобы запутать нас!), фирмы-изготовители наносят маркировку на наружной части корпуса. Обычно она состоит из номера типа микросхемы (включая общепринятое кодирование), названия фирмы (обычно в виде начальных букв) и классификации микросхемы.
Довольно часто маркировка содержит информацию о типе конструкции, дате выпуска и специальных характеристиках микросхемы. К сожалению, эта в принципе полезная информация часто приводит к путанице из-за отсутствия единого стандарта.
Каждая интегральная схема относится к тому или иному логическому семейству (серии). Термин «семейство» просто означает тот вид полупроводниковой технологии, который используется при изготовлении микросхемы. Именно технология определяет такие важнейшие характеристики конкретной микросхемы, как напряжение питания, рассеиваемая мощность, скорость переключения и помехоустойчивость.
В настоящее время наиболее распространены два основных логических семейства: КМОП (комплементарная, металл-оксид-полупроводник) и ТТЛ (транзисторно-транзисторная логика). Второе семейство имеет несколько подсемейств, включая популярный вариант маломощной ТТЛ с диодами Шотки (LS-TTL). Для любознательных читателей на рис. 1.2 показаны внутренние схемы двухвходовых элементов И, выполненных по КМОП- и ТТЛ-технологиям. Несмотря на очевидное их различие, обе схемы выполняют одну и ту же логическую функцию.
Рис. 1.2. Внутреннее устройство двухвходовых логических элементов И, выполненных по КМОП- и ТТЛ-технологиям:
а — КМОП-элемент; б — ТТЛ элемент
Из обычных ТТЛ-микросхем наиболее широко представлено семейство 74. Маркировка микросхем этого семейства начинается с цифр 74, например 7400, 7408, 7432 и 74121; его еще часто называют стандартным ТТЛ-семейством. Разновидности аналогичных микросхем малой мощности с диодами Шотки имеют в середине буквы LS, например 74LS00, 74LS08, 74LS32 и 74LS121.
Популярные КМОП-микросхемы образуют часть семейства 4000, и их номера начинаются с цифры 4, например 4001, 4174, 4501 и 4574. Иногда маркировка КМОП-микросхемы начинается не с цифры, а с буквы. Буква А обозначает устаревшую (небуферированную) серию, а буква В — улучшенную (буферированную) серию. Комбинация UB обозначает небуферированную микросхему серии В.
В некоторых случаях в середине кода ТТЛ-микросхем встречаются буквы, приведенные в табл. 1.2.
Большинство ТТЛ- и КМОП-семейств рассчитаны на работу с напряжением питания +5 В. Для ТТЛ-микросхем необходима довольно жесткая стабилизация напряжения, обычно ±5 % (т. е. диапазон допустимых напряжений составляет от 4,75 до 5,25 В). Тем не менее многие ТТЛ-микросхемы могут работать и при большем разбросе питания, например от 4 до 5,5 В. В частности, одна из фирм рекомендует использовать в своих изделиях для питания ТТЛ-микросхем три последовательно включенные сухие батареи с напряжением 1,5 В каждая. Неудивительно, что одной из наиболее частых причин отказа в этих изделиях оказывается «севшая» батарея.
Несмотря на то что логическая функция элемента остается одной и той же при напряжении питания 4 и 5 В, переключательные свойства элемента зависят от напряжения питания. При его уменьшении значительно возрастает задержка распространения, т. е. время прохождения изменения логического значения со входа на выход. Во многих устройствах это обстоятельство несущественно, но такие схемы, как счетчики и делители частоты, при понижении напряжения питания работают неустойчиво.
Сделаем замечание и о предельном значении напряжения питания для ТТЛ-микросхем: абсолютное максимальное напряжение составляет +7 В. Даже при небольшом превышении этого значения ТТЛ-микросхема сразу же выходит из строя.
Для КМОП-схем допускается изменение напряжения питания в гораздо более широких пределах. Подавляющее большинство их устойчиво работают в диапазоне от +3 до +15 В. Это обстоятельство, а также ничтожный потребляемый ток (КМОП-элемент в устойчивом состоянии потребляет всего несколько микроампер) способствуют применению КМОП-схем в устройствах с батарейным питанием. В большинстве портативных KMX)П-устройств не требуется стабилизация напряжения питания, они устойчиво работают при снижении напряжения до +3 В.
Как и у ТТЛ-схем, быстродействие КМОП-схем ухудшается при понижении напряжения питания. При напряжениях питания +9, +12 или +15 В быстродействие КМОП-схем примерно в 2 раза выше, чем при типичном напряжении питания +5 В.
ТТЛ-схемы потребляют значительно больший ток, чем их КМОП-эквиваленты. Например, типичный ТТЛ-элемент потребляет ток около 8 мА, что в 1000 раз больше, чем в эквивалентном КМОП-элементе при рабочей частоте 10 кГц.
Стабилизаторы. В большинстве блоков питания ТТЛ-и КМОП-устройств применяются монолитные трехточечные стабилизаторы. Они обеспечивают хорошую стабилизацию напряжения питания, ограничение тока и тепловое защитное отключение. Типичные корпуса стабилизаторов показаны на рис. 1.3.
Рис. 1.3. Типичные корпуса монолитных трехточечных стабилизаторов напряжения.
На практике наиболее широко применяются стабилизаторы, перечисленные в табл. 1.3.
Типичный блок питания. На рис. 1.4 показан типичный блок питания для ТТЛ/КМОП-схем со стабилизированным выходным напряжением +5 В. Понижающий трансформатор Т1 подает переменное напряжение на мостовой выпрямитель D1—D4. Напряжение на вторичной обмотке трансформатора обычно составляет около 9 В; после выпрямления на сглаживающем конденсаторе С1 получается постоянное напряжение примерно 12 В.
Номинальное напряжение стабилизатора +5 В подается на выход. Дополнительные конденсаторы С2 и СЗ небольшой емкости (не электролитические) обычно монтируются около выводов стабилизатора. Они обеспечивают эффективную развязку на высоких частотах и подавляют высокочастотную нестабильность, которая может возникнуть из-за паразитных монтажных реактивных сопротивлений.
Рис. 1.4. Схема типичного блока питания для цифровых схем (номерами обозначены контрольные точки):
FS1 — предохранитель
Меры безопасности. До обсуждения вопросов поиска неисправностей в блоках питания напомним о мерах предосторожности при работе с ними.
Большинство цифровых схем работают с низким напряжением питания и вполне безопасны; однако имеющееся в блоке питания сетевое напряжение опасно для жизни. При работе с блоками питания необходимо всегда соблюдать следующие правила.
1. Выключайте питание и отсоединяйте сетевой шнур при выполнении:
• демонтажа оборудования;
• проверке плавких предохранителей;
• установке и удалении внутренних модулей;
• пайке компонентов;
• проверке монтажных проводников, исправности обмоток трансформаторов, мостовых выпрямителей и т. д.
2. При измерении переменных и постоянных напряжений в блоке питания соблюдайте необходимые меры предосторожности:
• избегайте прямого контакта с цепями входного сетевого напряжения, проверяйте правильность и надежность заземления оборудования;
• пользуйтесь инструментами с изолированными ручками;
• устанавливайте нужный диапазон измерительного прибора до производства требуемых измерений;
• при сомнении в правильности своих действий выключите питание, отсоедините сетевой шнур и хорошенько подумайте.
Поиск неисправностей в типичном блоке питания, показанном на рис. 1.4, не вызывает особых затруднений так как в нем мало элементов, «склонных» к отказам (стабилизатор, трансформатор и др.).
На рис. 1.4 для удобства читателей отмечены в кружках четыре контрольные точки. Отметим, что самый быстрый способ локализации неисправности необязательно связан с проверкой напряжений или сигналов от входа к выходу или наоборот. Мы рекомендуем такую последовательность проверок и измерений.
1. Проверьте, лучше всего с помощью цифрового мультиметра, что выходное напряжение в точке 1 находится в диапазоне от 4,75 до 5,25 В. Если это не так, переходите к шагу 2, а если выходное напряжение укладывается в указанный диапазон, считайте, что блок питания исправен.
2. Отсоедините выход +5 В от схемы и повторите предыдущее измерение. Если напряжение в точке 1 оказывается в диапазоне 4,75—5,25 В, то отказ вызван схемой, а в стабилизаторе сработало ограничение по току. (Довольно часто подобный отказ возникает из-за наличия дефектной микросхемы, которая чрезмерно нагревается. Ее можно обнаружить, если прикоснуться к микросхеме Если напряжение в точке 1 находится вне диапазона 4,75—5,25 В, проверьте сетевой предохранитель в точке 2. Сгоревший предохранитель замените на исправный и повторите шаг 1. Если предохранитель сразу же перегорает, убедитесь с помощью омметра, нет ли короткого замыкания в выпрямителе D1—D4, конденсаторе С1 и микросхеме IС1[1].
3. Если предохранитель исправен, проконтролируйте мультиметром вторичное переменное напряжение трансформатора T1 в точке 3: оно должно находиться в диапазоне от 7 до 12 В. В противном случае отсоедините шнур питания, проверьте тумблер S1 и целостность первичной обмотки трансформатора (неисправность вторичной обмотки маловероятна).
4. Если вторичное напряжение такое, как и должно быть, измерьте постоянное напряжение на конденсаторе С1. Когда оно необычно мало или равно нулю, проверьте с помощью омметра выпрямитель D1—D4. В одном направлении его сопротивление должно быть бесконечно большим, а в другом — равно нулю.
Если постоянное напряжение на конденсаторе С1 находится в диапазоне 9—14 В, замените стабилизатор IС на заведомо работоспособный и повторите всю процедуру сначала.