Глава пятая Офисный компьютер

В конце лета 2005 года уважаемая корпорация RAND выступила с волнующим пророчеством относительно будущего американской медицины. Проведя «самый подробный анализ из всех когда-либо имевших место, ставший возможным благодаря преимуществам электронной медицины», они заявили, что американская система здравоохранения сможет сэкономить более 81 миллиарда долларов в год и повысить качество лечения, если больницы и практикующие врачи автоматизируют ведение медицинской документации. Экономия и другие выгоды, обнаруженные RAND с помощью имитационных компьютерных моделей, отчетливо говорят о том, что – как сказал один из руководителей этого центра, – «…правительству и другим органам, которые платят за здравоохранение, давно пора активно продвигать в эту отрасль информационные технологии» [1]. Последнее предложение в приложенном к заявлению докладе намекало на желательную срочность нововведений: «Настало время решительных действий» [2].

К тому моменту, когда появилось сообщение об исследовании, проведенном RAND, суета вокруг компьютеризации медицины уже достигла своего апогея. В начале 2004 года президент Джордж Буш президентским указом создал инициативный комитет по внедрению высоких информационных технологий, который должен был оцифровать бо́льшую часть американской медицинской документации в течение десяти лет. К концу 2004 года федеральное правительство выделило миллионы долларов в виде грантов на приобретение больницами автоматизированных систем. В июне 2005 года Министерство здравоохранения и социального обеспечения (United States Department of Health and Human Services, HHS) создало специальную группу – «Американское общество за внедрение информатики в здравоохранение». Она состояла из чиновников здравоохранения и промышленников и должна была способствовать продвижению программы перевода медицинской информации на электронные носители. Исследование, проведенное корпорацией RAND и показавшее в обоснованных цифрах все выгоды такого действия, усугубило суматоху и подстегнуло дальнейшие расходы. Газета The New York Times позже писала: «Это исследование способствовало взрывоподобному росту доходов электронной промышленности и побудило федеральное правительство потратить миллиарды долларов на установку информационных систем в больницах и врачебных кабинетах» [3]. Вскоре после своего избрания президентом Барак Обама в 2009 году в своем заявлении о дополнительном выделении 30 миллиардов долларов для субсидирования приобретения электронных систем ведения медицинской документации сослался на цифры, приведенные в исследовании RAND. Лихорадка инвестиций продолжалась – триста тысяч врачей и четыре тысячи больниц воспользовались щедростью вашингтонской администрации [4].

В 2013 году, когда Обама был избран на второй срок, RAND опубликовала следующий доклад, который своей тональностью несколько отличался от первого. Речь снова шла о перспективах внедрения информационных технологий в здравоохранение. Блестящие перспективы скрылись из вида. Тон статьи был скорбно-виноватым. «Несмотря на то что использование информационных технологий в здравоохранении возросло, – писали авторы второго доклада, – качество и эффективность оказания помощи больным улучшились ненамного. Исследование эффекта от внедрения информационных технологий приводит к противоречивым результатам. Плохо и то, что совокупные расходы на здравоохранение в США возросли с 2 триллионов долларов в 2005 году до 2,8 триллиона в году нынешнем». Системы, установленные врачами и больницами на деньги налогоплательщиков, не могут связаться друг с другом. Важные данные о пациентах мертвым грузом лежат в отдельных лечебных учреждениях и не могут быть оперативно переданы в другие заведения, где в данный момент находится больной. Однако дело в том, что одним из величайших благодеяний внедрения электронной документации, по мнению авторов исследования RAND, должна была стать доступность медицинской информации на каждого больного в любом месте и в любое время. Однако из-за того, что разные больницы используют несовместимые между собой системы электронной регистрации данных, эта задача решена не была. Выражая уверенность в конечном успехе этого предприятия, специалисты RAND, признают, что «розовый сценарий», описанный в первом докладе, не получился [5].

Другие исследования подтверждают выводы второго доклада корпорации RAND. Несмотря на то что системы компьютерного ведения медицинской документации получили широкое распространение в США и некоторых других странах (например, в Великобритании и Австралии), свидетельства об их преимуществах остаются весьма противоречивыми и спорными. В опубликованном в 2011 году обзоре группа британских ученых проанализировала более ста новейших исследований результатов внедрения компьютерных медицинских систем. Британцы заключили, что в вопросах качества лечения и ухода выявилась пропасть между теоретическими и реальными преимуществами. Исследование, которым воспользовались для внедрения компьютерных систем, было слабым и непоследовательным, в нем не содержалось убедительных доказательств в поддержку оптимального соотношения цены и качества этих технологий. «Что же касается перевода медицинской документации на электронные носители, – пишут британские исследователи, – то представленные на сегодняшний день работы носят отрывочный и бессистемный характер и не позволяют судить об ожидаемых преимуществах или рисках» [6]. В других исследованиях ученые рисуют более радужные перспективы. В обзоре, представленном в том же 2011 году группой сотрудников Министерства здравоохранения и социального обеспечения, авторы утверждают, что в подавляющем большинстве исследований говорится о значительных преимуществах внедрения информационных технологий в здравоохранение. Отметив тем не менее ограниченность исследований на эту тему, авторы обзора заключают: «Можно лишь предположительно говорить о том, что внедрение более совершенных и специфических для медицины компьютерных систем создаст большие преимущества» [7]. Впрочем, на сегодняшний день нет практических данных, которые бы подтвердили надежды на то, что автоматизация ведения медицинской документации позволит существенно снизить затраты на здравоохранение и повысить качество лечения больных.

Но если врачи и больные не заметили каких-либо выгод от внедрения компьютерной автоматики в медицину, то компании, создающие такую автоматику, получили гигантские прибыли. Например, корпорация Cerner, специализирующаяся на выпуске медицинских компьютерных программ, за период с 2005 по 2013 год утроила свои доходы с 1 до 3 миллиардов долларов. Cerner была одной из компаний, финансировавших первый доклад корпорации RAND в 2005 году. Другие спонсоры – General Electric и Hewlett-Packard – тоже были кровно заинтересованы в компьютерной автоматизации здравоохранения. Замена неисправных программ и связь между системами различных медицинских учреждений потребуют дополнительных работ, которые озолотят компании, занимающиеся информационными технологиями.


В этой истории нет ничего из ряда вон выходящего. Стремление во что бы то ни стало установить новые и непроверенные вычислительные системы, в особенности если это стремление подогревается широковещательными заявлениями специализированных компаний и аналитиков, почти всегда оборачивается большим разочарованием для покупателей и сверхдоходами для продавцов. Это отнюдь не значит, что внедрение автоматизации обречено на провал. По мере устранения неисправностей, отладки программ и снижения цен даже самые раздутые проекты в конце концов помогут экономить деньги, хотя бы за счет того, что отпадет необходимость нанимать людей, которым надо платить зарплату. (Вложения, конечно, быстрее окупаются и приносят бо́льшую прибыль, если компании тратят не свои деньги, а средства налогоплательщиков.) Этот сюжет снова повторяется в истории с компьютеризацией медицинской документации. Она позволяет добиться кое-каких преимуществ и выгод в некоторых сферах здравоохранения и улучшить качество лечения отдельных пациентов, особенно если оно требует согласованного участия специалистов разных профилей. Упорядочение и классификация данных клинического обследования пациента – это действительно реальная проблема медицины, и хорошо отлаженная и стандартизованная информационная система может способствовать ее решению.

Первый доклад корпорации RAND и поспешная реакция на него правительственных чиновников позволяют извлечь несколько ценных уроков, помимо необходимости настороженного отношения к неосмотрительным инвестициям в непроверенное программное обеспечение. Во-первых, к ссылкам на «имитационные компьютерные модели» надо относиться со здоровым скептицизмом. Моделирование – это всегда упрощение. Оно представляет окружающий мир не до конца реалистично, а выводы бывают подвержены необъективным трактовкам, зависящим от индивидуальных пристрастий авторов. Еще важнее то, что доклад и вызванные им последствия показали, насколько глубоко миф замещения внедрился в общественное восприятие и оценку автоматизации. Ученые мужи из корпорации RAND считали, что, переход от записей на бумаге к регистрации данных в компьютере будет простым, если не брать во внимание затраты на технические аспекты установки новых систем и обучение медицинского персонала. Замена ручных записей на автоматизированные никак, по мнению ученых, не повлияет на качество выполнения основной обязанности врачей – лечение больных. «Исследования показывают, что компьютеры могут сильно изменить процесс лечения больного, – пишет группа медицинских сотрудников в статье, опубликованной в 2006 году в журнале Pediatrics. – Несмотря на благие намерения улучшить качество лечения и ухода за счет компьютеризации, побочные эффекты и неучтенные последствия нарушения налаженного процесса могут, наоборот, ухудшить ситуацию» [8].

Корпорация RAND пала жертвой мифа замещения, так как ее сотрудники в недостаточной мере учли возможность отрицательных последствий электронной формы записи данных. Излишне оптимистичный анализ привел к чрезмерно оптимистичной политике. Профессора Джером Групмен и Памела Харцбанд, критикуя субсидии администрации Обамы на компьютеризацию, пишут, что доклад RAND 2005 года, по сути, проигнорировал недостатки электронной регистрации данных и не принял во внимание более ранние исследования, показавшие отсутствие каких бы то ни было преимуществ перехода от записей на бумаге к ведению документации на электронных носителях [9]. Допущение корпорации RAND о том, что автоматизация явится отличной альтернативой ручной регистрации данных, оказалось ложным, о чем давно предупреждали специалисты по эргономике. Тем не менее ущерб от неоправданных трат государственных денег и неряшливой установки оборудования был нанесен.

Системы электронной регистрации данных используются не только для составления и пересылки записей. В большинстве таких систем имеются приложения, облегчающие принятие решений, содержащие подсказки и советы врачам по поводу диагностики и назначения лечения. Информация, введенная врачом в компьютер, попадает затем в автоматизированную систему администрации лечебного учреждения, где автоматически назначаются анализы, выписываются счета и другие документы. Одним из неожиданных результатов явилось то, что больным назначаются более дорогостоящие анализы и методы исследования, чем это было до введения автоматизированных систем регистрации данных. Когда врач во время осмотра и обследования заполняет компьютерный формуляр, система автоматически рекомендует определенные диагностические процедуры (например, исследование глаз у больного сахарным диабетом, которое в данном случае может оказаться полезным). Отметив эту опцию на экране, врач не только одобряет проведение исследования, но и автоматически добавляет еще одну строчку в счет, предъявляемый лечебным учреждением страховой компании или больному. Эти подсказки, естественно, полезны, так как могут напомнить врачу об упущенных важных диагностических и терапевтических моментах. Но они же и вздувают цены, о чем, не стесняясь, пишут в рекламе продавцы автоматизированных медицинских систем [10].

Когда у врачей не было подсказывающих компьютерных программ, с больных зачастую не взимали плату за мелкие исследования и процедуры; их стоимость покрывали за счет стоимости визита либо годовой страховки. В автоматизированных системах стоимость любой процедуры автоматически плюсуется к общему счету. Одно то, что система делает какое-либо действие более легким или рутинным, уже меняет – пусть и немного – поведение врача. Он начинает зарабатывать немного больше, если следует указаниям автоматизированной системы, а значит, будет все в большей мере полагаться на ее решения и рекомендации. Некоторые специалисты опасаются, что экономический стимул может оказаться слишком сильным. В ответ на сообщения прессы о непредвиденном увеличении счетов в результате внедрения автоматизированных систем регистрации федеральное правительство организовало в 2012 году исследование, призванное выяснить, действительно ли автоматизированные системы способствуют вздуванию цен на медицинские услуги и даже прямому мошенничеству в рамках программы Medicare. В итоговом докладе, изданном в 2014 году, содержится предупреждение: «Лечебные учреждения могут использовать программы электронной медицинской регистрации для маскировки истинного авторства записей и искажения информации ради увеличения страховых выплат» [11].

Появились также свидетельства того, что введение электронных систем побуждает врачей к назначению ненужных анализов, что тоже способствует росту стоимости медицинских услуг. В одном из исследований, опубликованном в 2012 году в журнале Health Affairs, говорилось, что если врач имеет возможность, например, посмотреть на экране предыдущий рентгеновский снимок, то он назначит новое рентгеновское исследование с большей вероятностью, чем в том случае, если бы он не видел старый снимок. Во всяком случае, врачи, работающие с компьютерными системами регистрации, назначают исследования с визуализацией в 18 % случаев. А врачи, работающие «по старинке», – в 13 %. Одной из положительных сторон автоматизации и доступа к данным прежних исследований как раз считали снижение числа повторных обследований. «В спорных и пограничных ситуациях, – утверждают авторы, – простое нажатие клавиши вместо необходимости связываться со специализированным отделением для того, чтобы узнать результаты предыдущего исследования, побуждает врача сразу назначить новое исследование» [12]. Здесь мы снова видим пример того, как автоматизация меняет человеческое поведение и способы выполнения работы. Причем изменения непредсказуемы и часто происходят вопреки ожиданиям.


Внедрение автоматизации в медицину, так же как и другие отрасли, порождает проблемы, выходящие за рамки экономической эффективности. Мы видели, как появление стрелок на рентгеновских изображениях в одних случаях улучшает, а в других – ухудшает качество диагностики, так как меняет отношение специалистов к чтению снимков. По мере того как врачи все больше полагаются на компьютерные подсказки в своей повседневной работе, технология сильнее влияет на стиль обучения врача, на методы принятия решений и даже на поведение у постели больного.

Исследование работы врачей первичного звена оказания медицинской помощи, проведенное Тимоти Хоффом, профессором Школы общественного здоровья в Олбани, позволило выявить феномен, названный Хоффом «деквалификацией». Под этим термином автор имеет в виду «снижение качества медицинских знаний» и «распространение стереотипного отношения к больным». В 2007 и 2008 годах Хофф опросил 78 врачей различных лечебных учреждений северной части штата Нью-Йорк. Три четверти врачей пользовались в своей практике электронной системой регистрации медицинских данных, и большинство их высказали опасения в связи с тем, что компьютеризация приводит к небрежности и обезличиванию в лечении пациентов. Они констатировали, что, осмотрев больного, просто вводят в компьютер шаблонный текст, а при диктовке текста или написании его от руки они глубже вникали в суть проблемы и уделяли больше внимания вопросам диагностики и лечения. Действительно, сам процесс написания был своего рода «красным флагом», который в некоторые моменты заставлял остановиться и подумать, как лучше сформулировать и изложить мысль. Врачи признавались Хоффу, что обезличенный, стандартизованный текст электронной записи может ухудшить качество понимания состояния больного, а также подорвать способность врача принимать обоснованные решения по поводу диагностики и лечения [13].

Нарастающая зависимость врачей от систем механического воспроизведения или «клонирования» текста – это естественное следствие внедрения электронных записей. Традиционная практика диктовки и сочинения, каковы бы ни были ее преимущества, оказалась медленной и неуклюжей в сравнении с быстрыми методами «введения шаблонов», «перетаскивания мышкой» и «выбора нажатием клавиши мышки». Доктор Стивен Левинсон, написавший учебник о медицинской документации и счетах за медицинские услуги, находит все больше данных о том, что врачи используют старые тексты, вводя их в новые записи. «Если врач ведет записи в истории болезни или медицинской карте на компьютере, – говорит Левинсон, – то описания каждого визита повторяются слово в слово, не считая мелких вариаций, касающихся основных жалоб». Несмотря на то что такая «клонированная документация» не имеет никакого „клинического смысла”, она тем не менее очень широко используется благодаря своей быстроте и удобству, и не в последнюю очередь потому, что предусматривает проведение списка исследований, которые значительно удорожают лечение» [14].

То, что возникает клонирование документации, – это лишь один из нюансов. По словам одного терапевта, почти все содержание электронной записи – это «шаблон». «История заболевания в такой записи, – продолжает врач, – попросту отсутствует. Ее нет ни в моих записях, ни в записях других врачей». В результате среди разных медицинских специалистов и учреждений начинают циркулировать записи, лишенные практически значимого содержания. «Врачи теряют один из важнейших источников повышения квалификации – чтение записанных от руки данных осмотра и консультации, которые во все времена служили важным источником обучения для врачей общей практики. Из него они черпали не только сведения, полезные для лечения данного больного, но и многое из того, что касалось новых методов диагностики и лечения какого-то заболевания», – пишет Хофф. По мере того как эти тексты начинают во все большем масштабе воспроизводиться электронным способом, они теряют свое образовательное значение и ценность [15].

«Столкнувшись с ригидным компьютерным интерфейсом, – считает Даниэль Офри, врач-терапевт из нью-йоркского госпиталя “Бельвю” (Bellevue Hospital), – многие врачи, в конце концов, читают только записи о последних двух или трех визитах пациента. Все предыдущее для них – не более чем компьютерный хлам» [16].

Недавнее изучение последствий перехода от бумажной регистрации данных к электронным записям, проведенное в Вашингтонском университете (University of Washington), выявило, что электронный формат истории болезни затрудняет поиск интересующих врача записей. При записи на бумаге врач, читающий историю болезни, может по стилю того или иного специалиста найти важную информацию о больном. Электронные записи с их обезличенным форматом стирают эту малозаметную со стороны, но очень важную разницу [17]. Помимо этого, Офри опасается, что внедрение электронных записей повредит врачебному мышлению: «Система способствует дроблению информации, когда разные ее аспекты хранятся в не связанных друг с другом полях. Это затрудняет синтез сведений о заболевании данного пациента» [18].

Автоматизация записей в истории болезни создает новое явление, которое профессор медицинского факультета Гарвардского университета Бет Лаун называет «третьей стороной» в кабинете врача. В своей проницательной статье, написанной в 2012 году в соавторстве со студентом Дэйроном Родригесом, Лаун говорит о том, как компьютер соперничает с пациентом за внимание клинициста, подрывает его способность уделять больному внимание, нарушает общение с ним, изменяет отношение к нему и размывает понимание врачом своей профессиональной роли [19]. Каждый больной, которого осматривал врач, одновременно нажимавший клавиши, на собственной шкуре испытал хотя бы часть того отношения, какое описывает Лаун. Ученые обнаруживают эмпирические доказательства нарушения стиля общения между врачом и пациентом. В исследовании, проведенном в клинике Госпиталя ветеранов администрации, больные, которых обследовали вооруженные компьютерами врачи, сообщали, что сокращается время, в течение которого врач разговаривает с больным, осматривает и исследует его. Кроме того, общение становится обезличенным [20]. Врачи в целом соглашаются с мнением больных. В другом исследовании, проведенном в одном крупном лечебном учреждении Израиля, где системы электронной регистрации данных распространены больше, чем в США, ученые выяснили, что 25–55 % времени общения с больным врачи смотрят на экран компьютера. Более 90 % опрошенных израильских врачей говорили о том, что ведение электронных записей на приеме «нарушает полноценное общение с больным» [21]. Потеря способности к концентрации внимания согласуется с выводами психологов – такая работа отвлекает от выполнения других задач. «Одновременно обращать внимание на компьютер и на пациента – задача, непосильная для человека, так как он не склонен к многозадачности, – пишет Лаун. – И в результате врач отвлекается от больного» [22].

Назойливость автоматизации, подтвержденная множеством исследований, создает и еще одну проблему. Системы электронной регистрации данных и подобные ей предусматривают появление на мониторе предостережений, адресованных врачу. Эта функция, несомненно, помогает избегать опасных промахов и ошибок. Если, например, врач выписывает сочетание несовместимых между собой лекарств, программа напомнит о риске такого назначения. Однако в большинстве случаев они несущественны, избыточны и могут просто вводить в заблуждение. Эти предостережения направлены не столько на защиту больного, сколько на защиту производителя аппаратуры от судебных исков. (Компьютер приводит в кабинет врача третью сторону с ее коммерческими и юридическими интересами.) Исследования показывают, что практикующие врачи игнорируют девять из десяти таких сообщений. Это порождает феномен, известный под названием «утомление от предупреждений». Относясь к компьютеру, как к пастушку, который все время кричит: «Волки, волки!» – врачи иногда просто отключают эту функцию. Они так быстро перестают на нее реагировать, что подчас игнорируют и полезные предупреждения, которые предотвращают ошибки [23].

Медицинский осмотр или консультация – чрезвычайно сложная и интимная форма личного общения. Со стороны врача это требует тщательного подбора подходящих слов, сочувствия, слежения за мимикой и жестами и одновременно холодного анализа и суждения. Для того чтобы разобраться в сложной медицинской проблеме или жалобе больного, клиницист должен внимательно выслушать его рассказ об истории заболевания и одновременно, фильтруя услышанное, раскладывать его по диагностическим полочкам. Главное в этом деле – умение найти баланс между проникновением в личностную ситуацию конкретного больного и общими концепциями о заболевании и методами его объективной диагностики и лечения. В этом процессе неоценимую помощь врачу могут оказать контрольные таблицы и подсказки возможных решений. Но, как пишет в своей книге «Табличный манифест» хирург и колумнист The New York Times Атул Гаванде: «Блага регламентации не упраздняют необходимость в мужестве, уме и способности к импровизации. Лучшие клиницисты всегда будут отличаться осознанной отвагой» [24]. Правда, автоматизация может сократить потраченное на больного время и ускорить получение полезной информации, но она также может, как пишет Лаун: «Преждевременно сузить поле поиска и даже привести к ошибочной диагностике. Врачи могут в такой ситуации демонстрировать поведение человека, механически задающего вопросы, появляющиеся на экране компьютера, а не внимательного клинициста, следующего за нитью повествования больного» [25].

Особенно опасна эта рабская покорность компьютеру для молодых врачей, полагает Лаун, так как она блокирует возможность учиться самым сокровенным аспектам врачебного искусства, которые познаются в непосредственном общении с больным, а не из книг и программ. Кроме того, в долгосрочной перспективе длительное использование компьютеров в диагностике и лечении притупляет интуицию врача, проявление которой может спасти больного в ситуациях, когда его судьба решается в считаные минуты. В такие моменты врачу некогда методично рассуждать и от компьютера мало пользы. Врач должен мгновенно поставить диагноз и назначить лечение. Он должен действовать. Специалисты по когнитивной психологии утверждают, что в неотложных ситуациях врачи руководствуются не осознанным мышлением или набором формальных правил, а интуитивным знанием. Они просто «видят», что происходит с больным. На постановку диагноза и принятие решения о лечении уходит буквально несколько секунд. «Ключевые симптомы для распознавания болезни, – объясняет Джером Групмен в своей книге “Как мыслят врачи”, – сливаются в законченную картину, которую врач и распознает как специфическое заболевание или синдром… Это талант очень высокой пробы, в проявлении которого, – пишет Групмен, – мышление неотделимо от действия» [26]. Подобно другим формам ментального автоматизма, этот талант шлифуется только многолетней практикой, немыслимой без прямой и непосредственной обратной связи. Поставьте между врачом и больным компьютерный экран, и вы безнадежно отбросите их друг от друга.


Уцелевшим луддитам после плохо организованного восстания пришлось вскоре наблюдать, как стали явью их страхи. Всего за несколько лет изготовление тканей и многих других товаров перешло из рук ремесленников в руки крупной промышленности. Товары стали производить не в домах и не в деревенских мастерских, а на больших заводах и фабриках, которые – для привлечения рабочих и бесперебойной доставки сырья и других материалов – начали строить в городах или вблизи них. Туда же постепенно переселялись и ремесленники, порывая со своими семьями и положив начало урбанизации, которая, в свою очередь, вызвала отток из деревень рабочих рук, привела к изобретению молотилок и других сельскохозяйственных машин и механизмов. На новых фабриках устанавливали все более и более «умные» машины, резко увеличивающие производительность труда, одновременно сведя к нулю личную ответственность и самостоятельность работника, отныне не отвечавшего за качество готового изделия. Тонкое ремесло уступило место неквалифицированному фабричному труду.

Адам Смит одним из первых понял, как специализация фабрично-заводского труда приведет к деквалификации рабочих. «Человек, всю свою жизнь исполняющий на производстве нескольких простых операций, результаты которых всегда одни и те же, не имеет возможности применить свой интеллект или изобрести какое-либо новшество для устранения трудностей, ибо он с ними никогда не сталкивается, – пишет Смит в “Исследовании о богатстве народов”. – Вследствие этого человек теряет привычку к умственному усилию и становится тупым и невежественным, насколько может стать таковым человеческое существо» [27]. Смит считал деградацию навыков и умений ужасным, но неизбежным следствием эффективного во всех иных отношениях фабричного производства. В его знаменитом примере разделения труда на производстве булавок мастер, прежде самостоятельно изготавливавший каждую булавку, уступил место группе неквалифицированных рабочих, каждый из которых выполнял свою особую, но узкую задачу: «Один человек вытягивает проволоку, второй ее выпрямляет, третий обрезает, четвертый заостряет, пятый нарезает другой конец, чтобы привинтить к нему головку; для того же, чтобы изготовить головку, надо выполнить две или три разные операции; надевает головку на булавку особый рабочий, отбеливает ее другой; отдельной специальностью стало даже завертывание булавок в бумагу. Таким образом, процесс изготовления булавок распался на 17–18 отдельных операций» [28]. Ни один из рабочих не в состоянии изготовить булавку целиком, так как каждый выполняет свою, вполне определенную операцию, но все вместе они сделают за смену намного большее их количество, чем при способе изготовления ее от начала и до конца. Так как рабочим не требуется особых талантов или длительного обучения, владелец мануфактуры может нанимать людей, выбирая их из массы претендентов, и к тому же он избегает необходимости платить мастеру за опыт и квалификацию.

Смит, кроме того, хорошо понял, как разделение труда будет способствовать его механизации, каковая, в свою очередь, еще более усугубит деквалификацию рабочих.

Разбив процесс производства на последовательность четко очерченных «простых операций», можно легко создать машины, которые и будут их выполнять. Разделение труда в пределах одного предприятия облегчает его механизацию – установление машин, выполняющих последовательность операций. В начале ХХ века деквалификация фабрично-заводских рабочих стала осознанной целью промышленников, взявших на вооружение философию «научного управления», разработанную Фредериком Тейлором. Веруя вслед за Смитом, что величайшее процветание наступит только тогда, когда работу можно будет выполнять с минимальным участием человека, Тейлор рекомендовал владельцам заводов и фабрик составлять для каждого работника подробные инструкции по обращению с машинами, описав каждое движение, каждую мысль [29]. Оптимальная эффективность производства достижима только на пути стандартизации труда, каковую следует закрепить в правилах, законах и предписаниях, а также в самой конструкции машин [30].

Механизированная фабрика, в которой рабочий и машина сливаются в жестко управляемое и высокопроизводительное единство, становится апофеозом инженерного искусства и эффективности труда. Индивид превращается в шестеренку этой превосходно отлаженной системы. Как и предвидели луддиты, он жертвует предпринимателю не только квалификацию, но и личную независимость. Потеря самостоятельности – это нечто большее, чем экономическая потеря. Это потеря экзистенциальная, как писала Ханна Арендт в вышедшей в 1958 году книге «The Human Condition» («Условие человека»): «В отличие от инструментов ремесленника, которые на каждом этапе процесса остаются его слугами, машины требуют, чтобы рабочий служил им, согласовывал естественные биоритмы своего организма с механическим ритмом машины» [31]. Технология претерпела прогресс (если здесь подходит это слово) от простых инструментов, расширявших самостоятельность работника, до машин, резко ограничивших ее.

Во второй половине ХХ века отношения между работниками и машинами несколько усложнились. По мере роста компаний, ускорения технического прогресса и взрывоподобного увеличения расходов потребителей занятость приобрела новую, неведомую ранее структуру. В экономике умножилось число менеджеров, клерков и узких специалистов; наметилось увеличение числа рабочих мест в области оказания услуг. Машины стали очень разнообразными, приняв самые причудливые формы. Они использовались массово, как на работе, так и вне ее. Тейлоровские идеи о достижении эффективности за счет тотальной стандартизации, хотя и продолжали оказывать сильное влияние на производство, были тем не менее смягчены во многих компаниях, которые сознательно предоставляли людям некоторую инициативу. Работник, подобный бездумной шестеренке, перестал быть идеалом. Внедренный в эту ситуацию компьютер быстро взял на себя в том числе и роль тейлоровского контролера, следящего за качеством работы людей. Руководители компаний быстро сообразили, что программное обеспечение представляет собой мощное средство стандартизации процессов по соблюдению технологических норм. Однако в форме персонального компьютера этот же инструмент стал гибким личным орудием, предоставившим владельцу большую самостоятельность и свободу, одновременно порабощая и освобождая его.

По мере того как автоматизация, завоевывая все новые и новые позиции, распространилась с заводов в офисы, проблема деквалификации работников стала темой ожесточенных дискуссий в среде социологов и экономистов. В 1974 году масло в огонь этих споров подлил Гарри Браверман, бывший котельщик, ставший социологом. В своей книге «Labor and Monopoly Capital: The Degradation of Work in the Twentieth Century» («Труд и монополистический капитал: деградация труда в ХХ веке») он, рассмотрев современные ему тренды в занятости и технической оснащенности рабочих мест, утверждал, что большая часть рабочих занята рутинным трудом, который не требует ни ответственности, ни ума, ни каких-то особых навыков. Люди становятся придатками машин и компьютеров. «С развитием капиталистического способа производства, – писал Браверман, – параллельно снижению сложности труда деградировало само понятие квалификации. Ее мера сократилась настолько, что сегодня сотрудник считается квалифицированным, если его специальность требует нескольких дней обучения; если необходимо несколько месяцев обучения – работа считается необычно трудной, а труд, для выполнения которого надо учиться полгода или год, вообще вызывает трепетное почтение» [32]. Ремесленное ученичество, указывает автор для сравнения, продолжалось по меньшей мере четыре года, а иногда этот срок достигал и семи лет. Насыщенный фактами и тщательно аргументированный труд Бравермана стал популярным среди читающей публики. Марксистский взгляд на ситуацию в накаленной атмосфере шестидесятых и семидесятых годов врезался в нее, как шип в паз.

Однако аргументы Бравермана впечатлили отнюдь не всех [33]. Критики его работ – а их было великое множество – обвинили Бравермана в переоценке важности традиционного ремесленного труда, в то время как он составлял очень небольшую долю в общем производстве уже в XVIII–XIX веках. Критики считали также, что автор придает слишком большое значение навыкам ручного труда синих воротничков, пренебрегая опытом межличностного общения и аналитического мышления, которые вышли на первый план во многих видах деятельности. Критика указывает еще на одну, более важную проблему, которая осложняет любые попытки выявить и истолковать смещение критериев квалификации в современной экономике. Она может принимать самые разнообразные формы. Для сравнения способностей не существует верных и объективных критериев. Является ли сапожник XVIII века, тачавший обувь у себя дома на верстаке, более искусным работником, чем маркетолог, составляющий на компьютере планы продвижения продукции? Является ли штукатур более квалифицированным работником, чем парикмахерша? Если слесарь с судоверфи потеряет работу и выучится на мастера по ремонту компьютеров, то возрастет его профессионализм или нет? У нас нет критериев, определяющих верные ответы на эти вопросы. В результате не прекращается полемика о перспективах квалификации. Картина становится более четкой, если мы рассмотрим ее на примере конкретных профессий.

Проанализировав несколько случаев, мы увидели, что по мере усложнения машин деятельность рабочего становится проще и легче. Все уже успели забыть, что одно из важнейших исследований эффектов автоматизации было выполнено в пятидесятые годы профессором Гарвардской экономической школы (Harvard Business School) Джеймсом Брайтом. Он с исчерпывающей добросовестностью исследовал влияние автоматизации на рабочих в 13 отраслях промышленности – от машиностроительных заводов до пекарен. Изучив особенности этих отраслей, Брайт составил иерархию уровней автоматизации. Она начинается с простых ручных инструментов и, пройдя 17 уровней, заканчивается сложными саморегулирующимися машинами, оснащенными сенсорными механизмами, петлями обратной связи и электронными органами управления. Брайт проанализировал и изменения различных требований к квалификации в зависимости от степени автоматизации машин: физические усилия, умственные, сноровка, концептуальное понимание и т. д. Брайт показал, что повышение уровня профессионализма требуется только на самой ранней стадии автоматизации, когда на рабочих местах внедряются мощные ручные инструменты. По мере установки более сложных машин требования начинают снижаться, а потом, когда рабочий научится управлять автоматизированной саморегулирующейся машиной, нужда в каком бы то ни было мастерстве вообще практически отпадает. «Представляется, – писал Брайт в 1958 году в книге “Автоматизация и управление”, – что чем более автоматизированной становится машина, тем меньше работы остается на долю оператора» [34].

Чтобы продемонстрировать, как реально происходит деквалификация, Брайт приводит пример рабочего-металлиста. Если он использует простые инструменты – напильник и ножницы, – то главными требованиями к его мастерству являются знание свойств материала и сноровка в обращении с инструментами. После внедрения электрических инструментов труд рабочего усложняется, возрастает вероятность опасных ошибок. В этой ситуации необходима большая сноровка и внимание. Рабочий становится «машинистом», когда ручной инструмент заменяют механизмами, которые сами выполняют последовательность некоторых операций. Например, автоматические станки обтачивают детали, придавая им определенные трехмерные формы. В этом случае внимание, умение принять решение и ответственность целиком или частично переходят к машине. При этом резко снижаются требования к исполнителю, который теперь перестает контролировать работу автомата и корректировать его в случае необходимости. Машинист превращается в «машинного оператора». Если машины начинают сами программировать контроль за своей работой, то рабочий перестает прикладывать к производству какие бы то ни было умственные и физические усилия. Его работа сводится к надзору. Металлист становится передаточным звеном в системе «машина – управление предприятием». «В целом, – заключает Брайт, – эффект автоматизации вначале состоит в том, чтобы освободить рабочего от излишнего физического напряжения, а потом – в освобождении его и от всяких умственных усилий» [35].

В то время, когда Брайт писал свой труд, руководители предприятий, ученые и политики единодушно считали, что работа на автоматизированных машинах потребует от рабочих более высокой квалификации и уровня подготовки. Брайт, к собственному удивлению, обнаружил, что чаще всего происходит как раз противоположное: «Я был поражен тем, что ожидаемый эффект совершенствования навыков не наблюдается практически нигде. Напротив, накапливается все больше данных в пользу того, что автоматизация снижает требования к уровню квалификации рабочих». В 1966 году, в докладе, направленном в правительственную комиссию по автоматизации и занятости, Брайт описал результаты своего исследования и обсудил развитие техники, произошедшее в последующие годы. Он отметил, что прогресс автоматизации идет семимильными шагами, подстегиваемый быстрым внедрением в бизнес и промышленность высокопроизводительной вычислительной техники. Все данные свидетельствуют о том, что широкое применение компьютеров усилит тенденцию к деквалификации. «Этот урок, – отмечал Брайт, – совершенно ясен. Не обязательно верно, что сложное оборудование требует квалифицированного оператора. Его можно встроить в машину» [36].


На первый взгляд может показаться, что заводской рабочий, управляющий грохочущей машиной, не имеет ничего общего с высокообразованным профессионалом, который с помощью сенсоров или клавиатуры вводит в компьютер сложную информацию. Однако в обоих случаях мы видим человека, перекладывающего работу на плечи автоматизированной системы. Как показали работы Брайта и других ученых, ее сложность обусловлена распределением ролей и ответственности, а оно, в свою очередь, определяет, какие навыки и знания требуются от оператора, управляющего системой. Чем более высокая «квалификация» встроена в машину, тем в большей степени она контролирует работу, и, соответственно, для работника уменьшается возможность развивать свои таланты и применять самостоятельные интерпретации и суждения. Непосредственный результат объединенного труда человека и машины (и это важно подчеркнуть!) может быть превосходным по эффективности и качеству, но участие человека в нем зачастую становится номинальным. «Что, если цена думающих машин – это не умеющие думать люди?» – вопрошал в 2008 году Джордж Дайсон, специалист по истории техники [37]. Этот вопрос неизбежно станет очень острым, если мы и дальше будем перекладывать ответственность за анализ и принятие решений на плечи компьютеров.

Нарастающая способность компьютерных систем направлять мышление врача и брать на себя принятие решений в диагностике и лечении есть отражение стремительного прогресса вычислительной техники. При установлении диагноза врач привлекает для этого всю совокупность специализированной информации, накопленной им за годы дисциплинарного образования и ученичества, за годы чтения медицинских книг и журналов. До недавнего времени компьютеру было не под силу воспроизвести это глубокое, весьма специализированное и зачастую невыразимое словами знание. Однако неумолимый прогресс вычислительной техники, увеличение скорости выполнения операций, падение стоимости хранения и передачи информации в сети, прорывы в области конструирования искусственного интеллекта, распознавания машинами речи и образов резко и необратимо изменили ситуацию. Электронные машины ныне способны оценивать и анализировать текстовую и иную информацию. Выявляя корреляцию данных, симптомов или признаков, которые либо встречаются вместе, либо следуют друг за другом с высокой вероятностью, компьютеры теперь могут делать точные предсказания, вычисляя, например, вероятность того, что данный пациент с определенным набором симптомов и анализов страдает каким-то определенным заболеванием или имеет большие шансы им заболеть. Они могут и спрогнозировать, как отреагирует пациент на те или иные лекарства или лечебные мероприятия.

С помощью способов построения алгоритмов, например метода дерева принятия решений или метода нейронных сетей, которые помогают моделировать сложные статистические взаимоотношения различных явлений, компьютеры также помогают усовершенствовать технологию прогнозов, так как могут обрабатывать огромное количество данных и оценивать сведения о достоверности прежних показателей [38]. Статистический вес, который машины приписывают различным переменным, становится все более точным, расчеты вероятности все более верно отражают вероятности событий, происходящих в реальном мире. Современные компьютеры становятся разумнее, набираясь опыта, как люди. Некоторые специалисты по кибернетике уверены, что новые нейроморфные микрочипы с заложенными в них механизмами обучения будут способствовать появлению компьютеров нового поколения. Машины станут способны к более совершенному распознаванию деталей. Мы можем сколько угодно иронизировать по поводу их «сообразительности» и «интеллекта», но факт остается фактом – несмотря на отсутствие сочувствия, понимания и проницательности врача, эти машины тем не менее способны воспроизводить многие врачебные суждения на основе статистического анализа огромного объема цифровой информации. Многие старые дебаты о смысле понятия «интеллект» приобрели сейчас чисто академический интерес в свете неимоверной мощности современных компьютеров, умеющих в считаные секунды обрабатывать немыслимые для человека объемы информации.

Диагностические возможности ЭВМ будут улучшаться и дальше. Чем больше данных о конкретном пациенте в форме электронных записей, оцифрованных изображений и результатов анализов, о взаимодействии лекарств, а в недалеком будущем – и данных, считанных с личных биологических сенсоров и следящих за динамикой состояния приложений, тем тоньше будут становиться выводы и диагнозы. Шаблоны и схемы станут более совершенными и изощренными. Учитывая нынешнее стремление радикально улучшить качество здравоохранения, можно ожидать, что в медицине скоро возобладает философия Тейлора – стандартизация и оптимизация. Укрепятся позиции так называемой доказательной медицины, в которой и без того уже сильна тенденция замены личного врачебного суждения статистическими расчетами. Медики будут испытывать нарастающее давление со стороны автоматизации и со временем неизбежно уступят компьютерным программам часть своих прерогатив в установлении диагнозов и назначении лечения. В недалеком будущем многие из них окажутся в роли людей-датчиков, собирающих информацию для принимающих решение компьютеров. Врачи будут, осмотрев и обследовав больного, вводить полученные данные в ЭВМ, и именно последние возьмут на себя труд ставить диагнозы, назначать лечение и следить за его результатами. Благодаря неумолимому наступлению автоматизации, подчиняясь выявленной Брайтом иерархии, доктора обречены (по крайней мере, в некоторых сферах своей практики) на судьбу, постигшую в свое время фабрично-заводских рабочих.

Врачи не одиноки. Вторжение ЭВМ в элитные интеллектуальные профессии наблюдается повсеместно. Мы уже видели, как меняется мышление аудиторов под влиянием экспертных систем, определяющих риски и другие переменные величины. Финансисты, от представителей ссудных касс до менеджеров по инвестициям, уже зависят от систем, направляющих их решения, а Уолл-стрит находится под контролем вынюхивающих корреляции компьютеров и аналитиков, которые эти компьютеры программируют. Численность биржевых игроков и спекулянтов на Нью-йоркской бирже с 2000 по 2013 год уменьшилась со 150 тысяч до 100 тысяч, несмотря на то что фирмы Уолл-стрит стали получать еще более заоблачные прибыли. «Важнейшая цель брокерских и инвестиционных компаний – это автоматизация и избавление от биржевых маклеров», – сказал один из финансовых аналитиков корреспонденту компании Bloomberg. «Что же касается уцелевших биржевых игроков, то все, к чему сводится сегодня их деятельность, – это нажатие компьютерных клавиш» [39].

Это верно не только для торговли акциями и облигациями, но также и для работы с более сложными финансовыми инструментами. Эшвин Парамесваран, технический аналитик и бывший банкир, отмечает, что банки приложили значительные усилия для того, чтобы уменьшить требования к квалификации людей, осуществляющих ценообразование на финансовые деривативы. Системы купли-продажи постоянно изменялись таким образом, чтобы передать как можно больше информации компьютерным программам [40]. Предсказывающие алгоритмы стали проникать даже в недосягаемую для них прежде сферу венчурного капитала. Венчурные инвесторы всегда гордились своим нюхом и интуицией на выгодный бизнес и инновации. В наши дни такие выдающиеся венчурные компании, как Ironstone Group и Google Ventures, применяют программы для выяснения предпринимательского успеха и в соответствии с этим размещают свои инвестиции.

Та же тенденция наблюдается и в юриспруденции. В течение многих лет адвокаты зависят от компьютеров, с помощью которых они находят сведения о законах и готовят нужные документы. Однако с некоторых пор компьютерные программы стали играть более значимую роль в юридических конторах. Важный процесс поиска нужных документов, которым, по традиции, занимаются младшие юристы и помощники адвокатов, роясь в грудах корреспонденции, в электронных письмах и записях, теперь стал почти полностью автоматизированным. Компьютер способен перелистать за одну секунду тысячи страниц оцифрованной документации. Используя поисковые электронные программы, снабженные алгоритмами распознавания речевой стилистики, машины не только фиксируют важные слова и фразы, но и вычленяют последовательности событий, вникают в человеческие отношения и даже распознают личностные эмоции и мотивации. Один компьютер может заменить дюжину высокооплачиваемых профессионалов. Кроме того, усовершенствованы программы подготовки документов. Заполнив простой бланк, адвокат может теперь за пару часов составить сложный контракт, работа над которым в прошлом заняла бы несколько дней.

Большие перемены уже на пороге. Фирмы, создающие программное обеспечение для юридических контор, начали разрабатывать алгоритмы статистических прогнозов. Они основаны на анализе тысяч прецедентов и могут подсказать тактику адвоката на суде, порекомендовать место проведения процесса или варианты мирового соглашения, имеющие большие шансы на успех. Компьютерные программы скоро будут способны к суждениям, прежде требовавшим квалификации опытного адвоката [41]. Организованная в 2010 году группой профессоров права из Стэнфордского университета (Leland Stanford Junior University) компания Lex Machina предложила обзор программ, которые должны появиться в самом ближайшем будущем. Располагая базой данных из 150 тысяч дел по поводу споров об интеллектуальной собственности, компания проводит компьютерный анализ и прогнозирует исходы дел о патентах при различных сценариях процесса, принимая во внимание суд, личность председательствующего судьи и адвокатов, характеристики сторон, исходы подобных дел и другие факторы.

Алгоритмы прогнозирования все в большей степени влияют на решения, принимаемые капитанами бизнеса. Некоторые компании тратят миллиарды долларов в год на «кадровую аналитику» – программы, автоматизирующие принятие решений о найме на работу, заработной плате и продвижении по карьерной лестнице. Компания Xerox, например, целиком и полностью полагается на компьютеры при выборе кандидатов на работу в 50 тысячах центрах телефонного обслуживания. Кандидат садится за компьютер и в течение получаса заполняет анкету и проходит личностный тест, после чего машина выдает ему число набранных баллов, определяющее вероятность его соответствия роду деятельности, степень работоспособности и стиль отношения к работе. Компания приглашает на собеседование только тех кандидатов, которые набирают высокий балл при первичном компьютерном тестировании, отсеивая остальных [42]. Компания доставки посылок UPS использует программы прогнозирования составления маршрутных карт для своих водителей. В розничной торговле они применяются для оптимального размещения товаров на полках. Коммерсанты и рекламные агентства пользуются компьютерным прогнозированием для того, чтобы решать, где и когда размещать рекламу и надо ли при этом задействовать социальные сети. Менеджеры многих компаний начинают чувствовать себя придатками программ. Они лишь подписывают и украшают печатями решения, принятые компьютерами.

Смещение центра тяжести экономики с производства реальных товаров к потоку электронных данных привело к тому, что компьютеры в последние десятилетия ХХ века придали новый статус и осыпали золотым дождем людей, работающих с информацией. Люди, зарабатывающие на жизнь манипуляциями со значками и символами на экране, стали звездами новой экономики, в то время как фабрично-заводской труд, долгое время бывший опорой среднего класса, переместился в дальние страны или поручен роботам. Пузырь доткома, надувшийся в конце девяностых, когда за несколько лет всеобщей эйфории деньги хлынули из компьютерных сетей на личные счета маклеров, ознаменовал начало золотого века неограниченных экономических возможностей – того, что горячие поборники информационных технологий окрестили «долгим бумом». Но хорошие времена, как известно, преходящи. Теперь мы видим, как сбывается пророчество Норберта Винера: у автоматизации нет фаворитов. Компьютеры так же хорошо анализируют символы и управляются с потоками информации, как и манипулируют промышленными роботами. Даже люди, управляющие сложными вычислительными системами, теряют работу, уступая ее компьютерам, по мере того как происходит автоматизация вычислительных центров. Огромные серверные хозяйства таких компаний, как Google, Amazon и Apple, по сути дела, управляют собой сами. Благодаря виртуализации среды, техникой, использующей программное обеспечение для воспроизведения функций таких инженерных устройств, как серверы, можно управлять с помощью программ. Сетевые неполадки и неисправности приложений выявляются и устраняются автоматически, часто в течение нескольких секунд. Может оказаться так, что «интеллектуализация физического труда», как назвал этот феномен итальянский ученый Франко Берарди [43], происшедшая в конце ХХ века, станет предшественницей автоматизации интеллекта, наступившей в начале ХХI века.

Умозаключение о возможности имитации компьютерами человеческих знаний и суждений – занятие рискованное. Экстраполяции тенденций развития кибертехники могут оказаться пустыми фантазиями. Но даже если мы (вопреки экстравагантным утверждениям евангелистов от информатики) допустим, что у способности к полезному использованию корреляций и других методов статистического анализа есть пределы, то нам все же придется признать, что за последние годы компьютеры сильно далеко отодвинули эти барьеры. Когда в начале 2011 года суперкомпьютер IBM Watson победил в телевизионной игре Jeopardy! (русский вариант – «Своя игра»), разгромив в пух и прах двоих ее фаворитов, мы поняли, куда нас могут завести аналитические таланты компьютеров. Способность Watson отгадывать намеки казалась просто фантастической, но, по меркам современного программирования искусственного интеллекта, он не совершил, в общем-то, ничего особенного. Сначала он осуществлял поиск возможных ответов в базах данных, потом, пользуясь процедурами прогнозирования, определял, какой ответ, с наибольшей вероятностью, является правильным. Все дело в том, что всю эту колоссальную рутинную работу компьютер выполнил так быстро, что смог превзойти самых сообразительных и остроумных людей, в совершенстве владеющих приемами каламбуров, припоминания и удержания в памяти всяких пустяков.

Watson стал апофеозом новой прагматичной формы искусственного интеллекта. В пятидесятые и шестидесятые годы, когда цифровые компьютеры были еще в новинку, многие математики и инженеры, и не столь многочисленные, но примкнувшие к ним психологи уверяли себя и окружающих в том, что человеческий мозг работает так же, как своего рода цифровая вычислительная машина. В компьютере они видели метафору и модель разума. Следовательно, для того чтобы создать искусственный интеллект, надо было (по мнению этих людей) поступить очень просто: выяснить алгоритмы, согласно которым функционирует содержимое нашего черепа, и перевести их в компьютерные коды. Подход оказался бесплодным. Оригинальная попытка создания искусственного интеллекта провалилась. Выяснилось, что процессы, происходящие в мозге, не могут быть сведены к вычислениям, производимым в компьютерных чипах.[19] Нынешние ученые предприняли иной подход к созданию искусственного интеллекта – менее амбициозный, но зато более эффективный. Целью теперь не является воспроизведение процесса человеческого мышления – это пока остается за пределами наших возможностей. Воспроизводятся результаты мышления. Ученые смотрят на какой-то частный результат умственной деятельности, например на решение о приеме на работу, а затем программируют компьютер на достижение результата математическими методами. Работа Watson отличается от работы ума человека, играющего в «Свою игру», но он побеждает человека по очкам.

В тридцатые годы, работая над докторской диссертацией, британский математик и компьютерный первопроходец Алан Тьюринг пришел к мысли о «машине предсказаний». Это был своего рода компьютер, который, пользуясь набором ясных и понятных правил, обрабатывал хранилище данных посредством некоторых, невыясненных пока, приемов и отвечал на вопросы, которые обычно требуют от человека интуитивного знания. Тьюринг хотел выяснить, насколько можно интуицию заменить изобретательностью. В целях чистоты своего мысленного эксперимента он постулировал, что у способности машины к обработке огромных массивов чисел нет пределов и отсутствует верхняя граница скорости вычислений, а также неограниченно количество данных, которые машина может принять во внимание. «Мы сейчас не говорим о том, какого мастерства это потребует, – писал Тьюринг, – и поэтому будем считать, что и у него тоже нет границ» [44]. Тьюринг, как всегда, оказался провидцем. Он был одним из немногих в то время ученых, понявших скрытую интеллектуальность алгоритмов и предвидевших, что раскрепостить этот интеллект можно будет за счет увеличения скорости вычислений. Компьютеры, как и базы данных, всегда будут иметь определенные ограничения, но уже в таких механизмах, как Watson, мы видим прообраз «машины предсказаний» Тьюринга. То, о чем он только мечтал, современные инженеры делают в железе и пластике. Изобретательность вытеснила интуицию.

Невероятная способность Watson оперировать с базами данных может найти практическое применение в диагностике онкологических и иных заболеваний. Кроме того, IBM прогнозирует использование подобных компьютеров в юриспруденции, финансах и образовании. Испытывают такие системы и разведывательные организации – Центральное разведывательное управление США (Central Intelligence Agency, CIA) и Агентство национальной безопасности США (National Security Agency, NSA). Если автомобиль Google без водителя продемонстрировал способность компьютера воспроизводить наши психомоторные навыки и даже превзойти человеческие возможности ориентировки в реальном мире, то Watson показывает умение компьютера подменить когнитивные навыки человека и превосходит наши способности ориентировки в мире символов и идей.


Однако воспроизведение результатов мышления – это отнюдь не само мышление. Как подчеркивал еще Тьюринг, «всегда найдется место для спонтанных суждений, которые не являются результатом сознательного использования разума» [45]. Разумными нас делает не способность извлекать факты из документов и находить статистические закономерности в потоке данных, а возможность придавать вещам смысл, вплетать знания, полученные из наблюдений и опыта, в богатое понимание мира, каковое мы можем приложить к решению любой задачи. Именно это эластичное качество ума, охватывающее осознанное знание, разум и вдохновение, позволяет человеческому существу мыслить концептуально, метафорически, критически, спекулятивно, остроумно, проявляя чудеса логики и воображения.

Эктор Левек, специалист по информационным технологиям и робототехнике из Университета Торонто (University of Toronto), приводит пример простого вопроса, легко находящего ответ у людей, но над которым компьютер может задуматься надолго.


Большой шар падает на стол и пробивает его, потому что он сделан из пенопласта.

Что сделано из пенопласта – большой шар или стол?


Мы даем правильный ответ без всяких усилий, потому что понимаем, что такое пенопласт, знаем, что случается, когда мы что-то бросаем на стол, как выглядит стол и что подразумевается под словом «большой». Мы мгновенно схватываем контекст ситуации и смысл слов, которыми она описана. Компьютер, лишенный всякого понимания реального мира, вынужден считать язык данного высказывания абсолютно двусмысленным. Он ограничен своими алгоритмами. «Сведение интеллекта к статистическому анализу больших наборов данных может привести нас, – говорит Левек, – к системам, впечатляющим публику своей результативностью, но являющихся, по сути, идиотами, проявляющими незаурядные способности в какой-то узкой сфере». Компьютеры могут великолепно играть в шахматы или в «Свою игру», безошибочно распознавать лица или выполнять другие, четко очерченные ментальные задания, но они совершенно безнадежны вне границ этих заданий [46]. Точность работы компьютеров удивительна, но это всего лишь симптом узости их восприятия.

Даже в том, что касается вопросов, требующих вероятностных ответов, компьютеры не всегда оказываются на высоте. Скорость и очевидная точность их вычислений могут маскировать неполноту и погрешности обрабатываемых данных, не говоря уже о возможном несовершенстве алгоритмов обработки. Любая большая база данных содержит, наряду с надежными корреляциями, массу ложных корреляций. Несложно впасть в заблуждение из-за случайного совпадения или превратной ассоциации [47]. Более того, когда какой-то конкретный набор данных является основанием для принятия важных решений, эти сведения и их анализ становятся объектом не всегда честных манипуляций. В поисках финансовых, политических или социальных выгод люди часто будут пытаться подправить систему. Как пояснил в своей знаменитой, напечатанной в 1976 году статье Дональд Кэмпбелл: «Чем в большей мере какой-либо количественный социальный показатель используется для принятия социально значимых решений, тем в большей степени он становится объектом коррупционного давления, и тем в большей степени будет он искажать картину социальных процессов, для отслеживания которых его предполагали использовать» [48].

Погрешности в данных и алгоритмах могут сделать профессионалов, да и нас, простых смертных, жертвами наиболее злокачественной формы пристрастного отношения к данным автоматизированных систем. «Угроза заключается в том, что мы позволим себе бездумно положиться на результаты анализа, несмотря на возможность обдумать и понять, что в этих результатах что-то пропущено, – предостерегают Виктор Майер-Шенбергер и Кеннет Цукер в своей книге “Большие данные”, вышедшей в 2013 году. – Или мы можем приписать истинность данным, которые этого не заслуживают» [49]. Особая форма риска, связанного с использованием алгоритмов, вычисляющих корреляции, обусловлена тем, что они работают с данными о прошлом, чтобы предсказать будущее. В большинстве случаев поведение в будущем совпадает с нашими ожиданиями, и алгоритм работает, опираясь на уровень вероятности. Однако в тех редких случаях, когда условия отклоняются от предписанного алгоритмом образца, он может выдать абсолютно неверный прогноз. Такие случаи уже не раз приводили к катастрофам компьютеризированных хеджевых фондов и брокерских фирм. При всех своих дарованиях компьютеры до сих пор демонстрируют пугающее отсутствие здравого смысла.

Чем больше мы предаемся, по выражению ученого из корпорации Microsoft Кейт Кроуфорд, «цифровому фундаментализму» [50], тем сильнее становится искушение обесценить таланты, недоступные компьютерной имитации. Мы так сильно доверяем программным продуктам, что не придаем значения человеческой способности использовать знания, полученные из реального опыта, способные привести к оригинальным творческим решениям. Как показывают некоторые непредвиденные последствия внедрения электронного ведения документации в медицине, шаблоны и формулы неизбежно ведут к упрощенчеству и очень быстро становятся смирительной рубашкой для клинического мышления. Начиная с шестидесятых годов вермонтский врач и ученый Лоуренс Уид был горячим и красноречивым поборником использования компьютеров в медицине, так как они, по его мнению, могли помочь врачам принимать адекватные и осознанные решения [51]. Уида называют даже отцом электронного ведения медицинской документации. Однако теперь даже он предупреждает: «Нынешнее бездумное использование статистических знаний в медицине систематически вытесняет индивидуализированное знание и данные, действительно необходимые для лечения больных» [52].

Еще глубже тревога Гэри Клейна, психолога, изучающего механизмы принятия решений человеком. «Принуждая врачей следовать строгому набору правил, доказательная медицина может затормозить научный прогресс, – пишет Клейн. – Если больницы и страховые компании будут обязаны вводить электронные записи под угрозой судебного преследования, если неблагоприятные исходы лечения станут увязывать с малейшими отклонениями от утвержденных методов, то врачи, соединяющие в своей практике опыт и склонность к исследованиям, перестанут творчески подходить к своему делу и утратят интерес к совершению открытий» [53].

Если мы не проявим разумную настороженность, то автоматизация умственного труда, исказив природу и цель интеллектуального поиска, может подорвать саму основу нашей культуры: стремление познать мир. Алгоритмы прогнозирования могут творить сверхъестественные чудеса в обнаружении корреляций, но они абсолютно слепы и глухи к причинам наблюдаемых признаков и явлений. Но ведь именно раскрытие причин – методичное распутывание проблем, связанных с механизмами того или иного процесса, – расширяет границы человеческого познания. Если мы дойдем до того, что будем считать автоматизированное вычисление вероятностей достаточным средством достижения наших профессиональных и общественных целей, то рискуем потерять или, в лучшем случае, ослабить наше стремление искать объяснения, находить неизведанные пути, ведущие к мудрости и чуду. Зачем все эти хлопоты, если компьютер готов выдать ответ через одну или две миллисекунды?

В эссе «Рационализм в политике», опубликованном в 1947 году, британский философ Майкл Окшотт живо описал современного рационалиста: «В его сознании нет атмосферы, нет смены времен года и колебаний температуры; все его мыслительные процессы изолированы от любых внешних воздействий и протекают в пустоте. …Рационалист не интересуется ни культурой, ни историей; он не оттачивает и не проявляет личную точку зрения. Его мышление примечательно лишь быстротой, с какой он сводит богатство и разнообразие опыта к формуле» [54]. Этими словами Окшотта можно превосходно воспользоваться для описания компьютерного интеллекта: он невероятно практичен и производителен, но при этом полностью лишен любопытства, воображения и связи с окружающим миром.

Загрузка...