Здесь и далее цитаты даны в переводе автора.
Семихатов А. Всё, что движется: Прогулки по беспокойной Вселенной. От космических орбит до квантовых полей. – М.: Альпина нон-фикшн, 2023, ISBN 978–5–00139–749–6. Я пользуюсь случаем поблагодарить читателей за внимание, вопросы и присланные исправления; на глупую оплошность в формулировке закона Кеплера в первом тираже раньше всех мне указал Сергей Мамон, а небольшую «прогулку по опечаткам» предпринял Яан Партс.
Собственно, на квантовую теорию поля как общую схему, а также на Стандартную модель, описывающую все известные поля и их взаимодействия (мы говорим о ней в главе 25). Известно, что Стандартная модель не является полным описанием природы, поэтому расхождение между теоретическим и экспериментальным значениями неудивительно; удивительно, наоборот, что оно столь мало.
Имеется несовместимость квантовой механики с теоретическими представлениями о гравитации (на данный момент это общая теория относительности Эйнштейна), но мяч здесь на стороне теории гравитации: в ней нет ничего квантового, и проблема видится в том, чтобы построить квантовую теорию гравитации. По замыслу она должна заменить общую теорию относительности там, где та отказывает (в центре черных дыр, например); на данный момент представляется, что определяющие квантовые принципы останутся при этом в силе. Другой аспект – осознаваемая сейчас необходимость расширения Стандартной модели, в основе которой лежит квантовая теория поля (развитие квантовой механики в согласии со специальной теорией относительности). Под неполнотой Стандартной модели понимают наше незнание о каких-то полях и взаимодействиях, по-видимому имеющихся в природе; речь здесь идет о теории конкретных полей, а не о фундаментальных квантовых основах. Представление о возможных пределах применимости квантовой механики дает, кроме того, возникающий в ряде обсуждений вопрос о ее роли в возникновении Вселенной – что, пожалуй, выходит за границы сколько-нибудь точно установленного современного знания и уж заведомо за границы этой книги.
Если нам непременно хочется, чтобы за Демокритом осталось сбывшееся предсказание неделимых частиц в основе мира, то вполне можно решить, что он предсказал электрон, а заодно, может быть, и все кварки и лептоны из Стандартной модели элементарных частиц, а мы в XIX в. просто ошиблись, назвав словом «атом» (т. е. «неделимый») неправильную вещь – составной объект.
Заряды противоположных знаков притягиваются друг к другу, поэтому избыток зарядов одного знака, как правило, вызывает приток противоположных, так что в итоге достигается электрическая нейтральность, т. е. полный заряд равный нулю. Здесь, кстати, подразумевается довольно многое, что, возможно, могло бы быть устроено иначе в какой-нибудь другой вселенной: что зарядов «плюс» и «минус» в целом поровну и, более того, что заряды электрона и протона в точности противоположны, несмотря на очень сильно различающееся устройство этих двух носителей; что, да, одноименные отталкиваются, а разноименные притягиваются; и, главное, что электрический заряд сохраняется: нельзя создать положительный заряд, не создав где-то неподалеку отрицательного.
Никакие другие силы, действующие между протонами ядра и электронами, не могут обеспечить их совместного проживания. Гравитационное притяжение между ними составляет фантастически малую величину, учет которой никакого смысла не имеет.
Уточнения про энергию в квантовой механике последуют в главе 3, а затем мы еще раз вернемся к ее особой роли в главе 9.
У слова «квантование» есть и другое значение: построение квантового описания исходя из неквантового. Из того, что встретится далее в этой книге, так говорят, например, о переходе от «обычной» колебательной системы к квантовой или от классического поля к квантовому.
В общепринятой терминологии «вражда» – это «некоммутативность эрмитовых операторов в гильбертовом пространстве, соответствующих физическим величинам». Отсюда, пожалуй, сразу видна предпочтительность моего изобретения – слова «вражда» и производных от него.
Положение – точка в пространстве, описываемая тремя величинами в какой-нибудь системе координат. Скорость представляет собой вектор, т. е. тоже три величины – длины проекций вектора на три оси координат. Выбрав прямоугольную систему координат с осями x, y, z, мы имеем вражду между соответствующими компонентами: координата вдоль оси x враждует с компонентой скорости вдоль той же оси x, но прекрасно «дружит» с компонентами скорости вдоль оси y и оси z. Аналогично и для других направлений: координата y враждует только с компонентой скорости вдоль оси y, а координата z – только с компонентой скорости вдоль оси z.
Общепринятое название – оператор, но мне не хочется перегружать текст новыми словами.
По Бору, истинность или ложность высказывания о какой-либо величине, относящейся к квантовому миру, зависит от используемого прибора, поэтому такие высказывания непременно должны включать в себя сведения об устройстве экспериментальной установки и об исходе эксперимента.
Степень раскрутки может принимать значения 0, ħ, ħ√2, ħ√2 · 3, ħ√3 · 4, ħ√4 · 5 и т. д. За ними стоит математический объект, который только при таких значениях и существует. Частичной (неполной!) визуализацией этого математического объекта являются «электронные облака», которые служат незаменимым подспорьем для целого ряда качественных рассуждений в химии. Никакой электрон, разумеется, облаком не является, а картина облаков никак не отвечает на вопрос, «что делают» электроны в атоме или молекуле; вместо этого она визуализует ответ на вопрос, где чаще, а где реже можно обнаружить электрон при взаимодействии с каким-либо внешним агентом, например высокоэнергетическим гамма-квантом.
Здесь требуются два уточнения. Во-первых, у атомов одного элемента имеются изотопы, различающиеся числом нейтронов в атомном ядре. Само по себе это важно, но для нас сейчас интересно в минимальной степени. Во-вторых, и это существенно, атомы одного элемента одинаковы по своей электронной структуре в одних и тех же условиях. Помещение атома в магнитное поле вызывает сдвиг «энергетических ступенек» для его электронов, причем величина сдвига зависит от того, какие атрибуты вращения взяли себе эти электроны. В результате интервалы между различными ступеньками изменяются, а потому изменяются длины волн, которые атом может поглощать и излучать. Это дает потрясающий метод измерения характеристик магнитного поля на расстоянии, начиная от магнитного поля Солнца и много дальше в космосе.
По поводу единственности способа сборки простых молекул также имеется важное уточнение, касающееся изомерии. В ряде случаев есть несколько вариантов сборки – например, два варианта могут быть зеркальным отражением друг друга. Такая и даже более богатая вариативность играет свою роль в химии (и в том числе в химии живого), но при этом неизменным остается тот факт, что различные варианты дискретны: между ними нет плавных переходов.
Дискретность колебаний атомов в молекуле также определяет длины волн света, испускаемого и поглощаемого молекулами. Молекулярные спектры сложнее атомных. В них видны и электронные линии (отражающие, как и в атоме, перескоки электронов между своими энергетическими ступеньками), и собственно колебательные линии, группирующиеся в полосы вблизи каждой электронной линии; имеется, кроме того, и еще более тонкая вращательная структура, определяемая дискретными значениями, которые принимают «атрибуты вращения». Наблюдение всех подробностей требует тут более высокого разрешения, чем в случае атомных спектров. Именно по молекулярным спектрам – научившись преодолевать значительные практические сложности – мы, например, ищем биомаркеры в атмосферах экзопланет.
Примеры двухатомных молекул – фтороводород (при растворении в воде становится плавиковой кислотой), хлороводород (при растворении в воде становится соляной кислотой), угарный газ и окись азота.
Шаг между значениями, которые может принимать энергия колебаний, определяется тем, что в классическом мире было бы частотой колебаний: если бы квантовые правила перестали действовать, мы могли бы говорить о том, как часто колебательная система такого сорта возвращается к одному и тому же положению. Чем больше эта частота, тем шире расположены энергетические ступеньки в квантовой колебательной системе.
Точный смысл, в каком понимается такая неопределенность, – не самый простой вопрос. Можно думать о среднем (квадратичном) отклонении при многократно повторяемых измерениях, проводимых над одинаково приготовленными системами.
Как уже отмечалось, связаны между собой неопределенности вдоль одного и того же направления: неопределенность положения вдоль x обратно пропорциональна неопределенности скорости вдоль того же направления x, и аналогично для направлений y и z в прямоугольной системе координат.
Это не самое точное и не самое лучшее пояснение к механизму туннелирования, но точное объяснение потребовало бы нескольких понятий, с которыми мы знакомимся только в последующих главах, да и то вместе с неожиданно длинным списком математических фактов.
Иногда уточняют, что это так называемое остаточное сильное взаимодействие: оно действует между протонами и нейтронами, которые сами являются составными объектами, сложенными каждый из трех кварков. Собственно сильное взаимодействие занимается тем, что неразрывно связывает эти тройки кварков путем обмена промежуточными агентами, называемыми глюонами. Протоны и нейтроны связаны друг с другом тоже благодаря сильному ядерному взаимодействию, но агентами, переносящими взаимодействие между ними, работают пи-мезоны, каждый из которых сложен из кварка и антикварка.
Туннелирование электрона из атома в довольно специальных условиях, созданных электромагнитным полем проходящего лазерного импульса, – ключевой (хотя и не единственный) элемент в схеме генерации импульсов сверхмалой, аттосекундной продолжительности; это тема Нобелевской премии по физике 2023 г.
После того как два протона сблизились благодаря туннелированию, дальнейший синтез альфа-частицы еще не гарантирован: он, в свою очередь, управляется квантовыми вероятностями в совсем другом процессе – превращения протона в нейтрон благодаря слабому ядерному взаимодействию. Как бы то ни было, все эти вероятности, вместе взятые, обеспечивают неспешное горение Солнца.
В разных других интервалах длин волн лежат (от длинных к коротким) радиоволны, волны в вашей микроволновке, терагерцевые (субмиллиметровые) волны, за которыми идет уже упоминавшееся инфракрасное излучение и видимый свет, а далее ультрафиолет, рентгеновские лучи и жесткое гамма-излучение.
При каждой температуре есть длина волны, на которой нагретое до данной температуры тело излучает наиболее интенсивно, тогда как для более коротких и более длинных волн интенсивность заметно спадает. Закон излучения описывает это численно. Речь в этом законе идет об «абсолютно черном теле». Этот термин может ввести в заблуждение: он означает тело, которое ничего не отражает, а только излучает свет, причем по той единственной причине, что оно, тело, имеет определенную температуру; (абсолютно) черным оно является только при абсолютном нуле. Солнце – неплохой пример «абсолютно черного тела».
Квантование света – сколь бы экстраординарной ни выглядела эта идея в 1905 г. – объясняло странный факт: свет с большей длиной волны не выбивает электроны из материала, даже если этот свет очень яркий, т. е. совокупно доставляет к поверхности много энергии. Дело оказалось в том, что если каждый выбиваемый из материала электрон получает необходимую для этого энергию только от одного фотона, то пока энергии фотонов малы – свет длинноволновый, – электроны попросту не получают достаточной энергии, чтобы вырваться наружу, и остаются внутри материала. Увеличение яркости света не меняет ситуации, пока длина волны та же: неважно, сколько фотонов падает на поверхность, если ни один не может передать электрону нужной энергии. А вот при уменьшении длины волны картина меняется: каждый фотон несет больше энергии, получая которую электрон вылетает наружу, причем со все большей энергией по мере дальнейшего уменьшения длины волны.
Еще один «квантовый шаг» в том же 1913 г. сделал Бор, распространив идеи дискретности на модель атома. Модель сводилась к постулатам о том, какие орбиты «разрешены» для электрона в атоме, все еще представляемом как подобие планетной системы. При этом понятие «разрешены» получало довольно искусственное обоснование. Модель работала для простейшего атома – водорода; она показала, что необходимо мыслить неординарно, но не годилась ни для одного более сложного атома. Последовавшая затем Первая мировая война затруднила обмен идеями (и не только его), и развитие квантовой теории возобновилось уже в 1920-е гг.
Нобелевскую премию 1964 г. «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера-лазера» получили Басов, Прохоров и Таунс.
Из теоретических соображений Эйнштейн сознавал, что фотоны не могли быть в полной мере статистически независимы друг от друга, как молекулы в обычном (классическом) газе. Бозе точно выразил такую зависимость в своей статье, которую, однако, не приняли к публикации в журнале, поэтому Бозе прислал ее Эйнштейну для возможной публикации в другом издании после перевода на немецкий, если она окажется заслуживающей внимания. Эйнштейн оценил идею, перевел статью на немецкий и отправил в журнал с короткой припиской от себя, а тем временем понял, что идея приложима шире, не только к фотонам, но и к собранию одинаковых частиц любой массы, главное статистическое свойство которых – принципиальная неразличимость вместе с некоторой склонностью к «коллективизму» (сейчас это описывается как принадлежность к классу бозонов). До того считалось, что хотя атомы любого газа одинаковы, они в принципе различимы, но в новой схеме нет возможности даже говорить о том, какая из двух частиц полетела налево, а какая направо; из-за этого имеется меньше способов организовать картину «одна слева, другая справа», и таким образом нарушается привычная статистическая независимость, когда каждая частица вносит вклад в разнообразие возможностей независимо от всех остальных. Это влекло за собой теоретические последствия, включая более последовательный вывод закона Планка (собственно, результат Бозе) и выражения для теплоемкости твердых тел, а также идею о «конденсате», высказанную Эйнштейном в статье, вышедшей уже в 1925 г.
Бор, по-видимому, желал развить – и применять сначала в квантовой теории, а затем по возможности повсеместно – «принцип дополнительности». О нем сейчас еще можно услышать от физиков, но философы едва ли рассматривают его как сколько-нибудь серьезную идею.
Быть может, стоит прокомментировать потерю наглядности, начав с электрона в атоме. Он не движется там по какой бы то ни было траектории (и вообще не находится в определенной точке пространства ни в какой момент времени), но интуитивно трудно отделаться от ощущения, что он все-таки «как-то там вращается». В действительности же наглядной картины нет, ее заменяют те самые два «атрибута вращения»; вместе с уровнем энергии они и описывают, «как устраиваются» электроны в атомах. Сейчас же обсуждаются атрибуты вращения, которые относятся к электрону самому по себе – прикреплены к нему постоянно и неотъемлемо, вне всякой связи с атомом. Для них наглядной картины, разумеется, нет, но ведь ее не было и в отношении атрибутов вращения электрона в атоме: ответа на вопрос «как и что вращается», если иметь в виду наглядную картину вращения, не предполагается ни в том, ни в другом случае. Квантовая механика не требует никаких подробностей, если выполняются формальные соотношения.