Глава 1. СОМ как улучшенный C++

template

class listt: virtual protected CPrivateAlloc {

list mlist;

mutable TWnd mwnd;

virtual ~listt(void);

protected:

explicit listt(int nElems, …);

inline operator unsigned int *(void) const

{ return reinterpretcast (this) ; }

template void clear(X& rx) const throw(Ex);

};

Аноним, 1996


C++ уже давно с нами. Сообщество программистов на C++ весьма обширно, и большинство из них хорошо знают о западнях и подводных камнях языка. Язык C++ был создан высоко квалифицированной командой разработчиков, которые, работая в Bell Laboratories, выпустили не только первый программный продукт C++ (CFRONT), но и опубликовали много конструктивных работ о C++. Большинство правил языка C++ было опубликовано в конце 1980-х и начале 1990-х годов. В этот период многие разработчики C++ (включая авторов практически каждой значительной книги по C++) работали на рабочих станциях UNIX и создавали довольно монолитные приложения, использующие технологию компиляции и компоновки того времени. Ясно, что среда, в которой работало это поколение программистов, была в основном создана умами всего сообщества C++.

Одной из главных целей языка C++ являлось позволить программистам строить типы, определенные пользователем (user-defined types – UDTs), которые затем можно было бы использовать вне их исходного контекста. Этот принцип лег в основу идеи создания библиотек классов, или структур, какими мы знаем их сегодня. С момента появления C++ рынок библиотек классов C++ расширялся, хотя и довольно медленно. Одной из причин того. что этот рынок рос не так быстро, как можно было ожидать, был NIH-фактор (not invented here – «изобретен не здесь») среди разработчиков C++. Использовать код других разработчиков часто представляется более трудным, чем воспроизведение собственных наработок. Иногда это представление базируется исключительно на высокомерии разработчика. В других случаях сопротивление использованию чужого кода проистекает из неизбежности дополнительного умственного усилия, необходимого для понимания чужой идеологии и стиля программирования. Это особенно верно для библиотек-оберток (wrappers), когда необходимо понять не только технологию того, что упаковано, но и дополнительные абстракции, добавленные самой библиотекой.

Другая проблема: многие библиотеки составлены с расчетом на то, что пользователь будет обращаться к исходному коду данной библиотеки как к эталону. Такое повторное использование «белого ящика» часто приводит к огромному количеству связей между программой клиента и библиотекой классов, что с течением времени усиливает неустойчивость всей программы. Эффект чрезмерной связи ослабляет модульный принцип библиотеки классов и усложняет адаптацию к изменениям в реализации основной библиотеки. Это побуждает пользователей относиться к библиотеке как всего лишь к одной из частей исходного кода проекта, а не как к модулю повторного использования. Действительно, разработчики фактически подгоняют коммерческие библиотеки классов под собственные нужды, выпуская «собственную версию», которая лучше приспособлена к данному программному продукту, но уже не является оригинальной библиотекой.

Повторное использование (reuse) кода всегда было одной из классических мотиваций объектного ориентирования. Несмотря на это обстоятельство, написание классов C++, простых для повторного использования, довольно затруднительно. Помимо таких препятствий для повторного использования, как этап проектирования (design-time) и этап разработки (development-time), которые уже можно считать частью культуры C++, существует и довольно большое число препятствий на этапе выполнения (runtime), что делает объектную модель C++ далекой от идеала для создания программных продуктов повторного использования. Многие из этих препятствий обусловлены моделями компиляции и компоновки, принятой в C++. Данная глава будет посвящена техническим проблемам приведения классов C++ к виду компонентов повторного использования. Все задачи будут решаться методами программирования, которые базируются на готовых общедоступных (off-the-shelf) технологиях. В этой главе будет показано, как, применяя эти технологии, можно создать архитектуру для повторного использования модулей, которая позволяла бы динамично и эффективно строить системы из независимо сконструированных двоичных компонентов.


Распространение программного обеспечения и язык С++

Для понимания проблем, связанных с использованием C++ как набора компонентов, полезно проследить, как распространялись библиотеки C++ в конце 1980-х годов. Представим себе разработчика библиотек, который создал алгоритм поиска подстрок за время O(1) (то есть время поиска постоянно, а не пропорционально длине строки). Это, как известно, нетривиальная задача. Для того чтобы сделать алгоритм возможно более простым для пользователя, разработчик должен создать класс строк, основанный на алгоритме, который будет быстро передавать текстовые строки (fast text strings) в любую программу клиента. Чтобы сделать это, разработчику необходимо подготовить заголовочный файл, содержащий определение класса:


// faststring.h

class FastString

{

char *mpsz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

//возвращает смещение

};


После того как класс определен, разработчик должен реализовать его функции-члены в отдельном файле:


// FastString.cpp

#include «faststring.h»

#include

FastString::FastString(const char *psz) : mpsz(new char [strlen(psz) + 1])

{ strcpy(mpsz, psz); }

FastString::~FastString(void)

{ delete[] mpsz; }

int FastString::Length(void) const

{ return strlen(mpsz); }

int FastString::Find(const char *psz) const

{

//O(1) lookup code deleted for> clarity

1

// код поиска 0(1) удален для ясности

}


Библиотеки C++ традиционно распространялись в форме исходного кода. Ожидалось, что пользователи библиотеки будут добавлять реализации исходных файлов и создаваемую ими систему и перекомпилировать библиотечные исходные файлы на месте, с использованием своего компилятора C++. Если предположить, что библиотека написана на наиболее употребительной версии языка C++, то такой подход был бы вполне работоспособным. Подводным камнем этой схемы было то, что исполняемый код этой библиотеки должен был включаться во все клиентские приложения.

Предположим, что для показанного выше класса FastString сгенерированный машинный код для четырех методов занял 16 Мбайт пространства в результирующем исполняемом файле. Напомним, что при выполнении O(1)-поиска может потребоваться много пространства для кода, чтобы обеспечить заданное время исполнения, – дилемма, которая ограничивает большинство алгоритмов. Как показано на рис. 1.1, если три приложения используют библиотеку FastString, то каждая из трех исполняемых программ будет включать в себя по 16 Мбайт кода. Это означает, что если конечный пользователь инсталлирует все три клиентских приложения, то реализация FastString займет 48 Мбайт дискового пространства. Хуже того – если конечный пользователь запустит все три клиентских приложения одновременно, то код FastString займет 48 Мбайт виртуальной памяти, так как операционная система не может обнаружить дублирующий код, имеющийся в каждой исполняемой программе.

Есть еще одна проблема в таком сценарии: когда разработчик библиотеки находит дефект в классе FastString, нет способа всюду заменить его реализацию. После того как код FastString скомпонован с клиентским приложением, невозможно исправить машинный код FastString непосредственно в компьютере конечного пользователя. Вместо этого разработчик библиотеки должен известить разработчиков каждого клиентского приложения об изменениях в исходном коде и надеяться, что они переделают свои приложения, чтобы получить эффект от этих исправлений. Ясно, что модульность компонента FastString утрачивается, как только клиент запускает компоновщик и заново формирует исполняемый файл.


Динамическая компоновка и С++

Один из путей решения этих проблем – упаковка класса FastString в динамически подключаемую библиотеку (Dynamic Link Library – DLL). Это может быть сделано несколькими способами. Простейший из них – использовать директиву компилятора, действующую на уровне классов, чтобы заставить все методы FastString экспортироваться из DLL. Компилятор Microsoft C++ предусматривает для этого ключевое слово _declspec(dllexport):


class _declspec(dllexport) FastString

{

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

// возвращает смещение

};


В этом случае все методы FastString будут добавлены в список экспорта соответствующей библиотеки DLL, что позволит записать время выполнения каждого метода в его адрес в памяти. Кроме того, компоновщик создаст библиотеку импорта (import library), которая объявляет символы для методов FastString. Вместо того чтобы содержать сам код, библиотека импорта включает в себя ссылки на имя файла DLL и имена экспортируемых символов. Когда клиент обращается к библиотеке импорта, эти ссылки добавляются к исполняемой программе. Это побуждает загрузчик динамически загружать DLL FastString во время выполнения и размещать импортируемые символы в соответствующие ячейки памяти. Это размещение автоматически происходит в момент запуска клиентской программы операционной системой.

Рисунок 1.2 иллюстрирует модель FastString на этапе выполнения (runtime model), объявляемую из DLL. Заметим, что библиотека импорта достаточно мала (примерно вдвое больше, чем суммарный размер экспортируемого символьного текста). Когда класс экспортируется из DLL, код FastString должен присутствовать на жестком диске пользователя только один раз. Если даже несколько клиентов применяют этот код для своей библиотеки, загрузчик операционной системы обладает достаточным интеллектом, чтобы разделить физические страницы памяти, содержащие исполняемый код FastString (только для чтения), между всеми клиентскими программами. Кроме того, если разработчик библиотеки найдет дефект в исходном коде, теоретически возможно послать новую DLL конечному пользователю, исправляя дефектную реализацию для всех клиентских приложений сразу. Ясно, что перемещение библиотеки FastString в DLL является важным шагом на пути превращения класса C++ в заменяемый и эффективный компонент повторного использования.



C++ и мобильность

Поскольку вы решили распространять классы C++ как DLL, вы непременно столкнетесь с одним из фундаментальных недостатков C++ – недостаточной стандартизацией на двоичном уровне. Хотя рабочий документ ISO/ANSI C++ Draft Working Paper (DWP) предпринимает попытку определить, какие программы будут транслироваться и каковы будут семантические эффекты при их запуске, двоичная динамическая модель C++ ею не стандартизируется. Впервые клиент сталкивается с этой проблемой при попытке скомпоновать библиотеку импорта DLL FastString из среды развития C++, отличной от той, в которой он привык строить эту DLL.

Для обеспечения перегрузки операторов и функций компиляторы C++ обычно видоизменяют символическое имя каждой точки входа, чтобы разрешить многократное использование одного и того же имени (или с различными типами аргументов, или в различных областях действия) без нарушения работы существующих компоновщиков для языка С. Этот прием часто называют коррекцией имени. Несмотря на то что ARM (C++ Annotated Reference Manual) документировала схему кодирования, использующуюся в CFRONT, многие разработчики трансляторов предпочли создать свою собственную схему коррекции. Поскольку библиотека импорта FastString и DLL экспортирует символы, используя корректирующую схему того транслятора, который создал DLL (то есть GNU C++), клиенты, скомпилированные другим транслятором (например, Borland C++), не могут быть корректно скомпонованы с библиотекой импорта. Классическая методика использования extern "С" для отключения коррекции символов не поможет в данном случае, так как DLL экспортирует функции-члены (методы), а не глобальные функции.

Для решения этой проблемы можно проделать фокусы с клиентским компоновщиком, применяя файл описания модуля (Module Definition File), известный как DEF-файл. Одно из свойств DEF-файлов заключается в том, что они позволяют экспортируемым символам совмещаться с различными импортируемыми символами. Имея достаточно времени и информации относительно каждой схемы коррекции, разработчик библиотек может создать особую библиотеку импорта для каждого компилятора. Это утомительно, но зато позволяет любому компилятору обеспечить совместимость с DLL на уровне компоновки, при условии, что разработчик библиотеки заранее ожидал ее использование и создал нужный DEF-файл.

Если вы разрешили проблемы, возникшие при компоновке, вам еще придется столкнуться с более сложными проблемами несовместимости, которые связаны со сгенерированным кодом. За исключением простейших языковых конструкций, разработчики трансляторов часто предпочитают реализовывать особенности языка своими собственными путями. Это формирует объекты, недоступные для кода, созданного любым другим компилятором. Классическим примером таких языковых особенностей являются исключительные ситуации (исключения). Исключительная ситуация в среде C++, исходящая от функции, которая была транслирована компилятором Microsoft, не может быть надежно перехвачена клиентской программой, оттранслированной компилятором Watcom. Это происходит потому, что DWP не может определить, как должна выглядеть та или иная особенность языка на этапе выполнения, поэтому для каждого разработчика компилятора вполне естественно реализовать такую языковую особенность в своей собственной, новаторской манере. Это несущественно при построении независимой однобинарной (single-binary) исполняемой программы, так как весь код будет транслироваться и компоноваться в одной и той же среде. При построении мультибинарных (multibinary) исполняемых программ, основанных на компонентах (component-based), это представляет серьезную проблему, так как каждый компонент может, очевидно, быть построен с использованием другого компилятора и компоновщика. Отсутствие двоичного стандарта в C++ ограничивает возможности того, какие особенности языка могут быть использованы вне границ DLL. Это означает, что простой экспорт функций-членов C++ из DLL недостаточен для создания независимого от разработчика набора компонентов.


Инкапсуляция и С++

Предположим, что вам удалось преодолеть проблемы с транслятором и компоновщиком, описанные в предыдущем разделе. Очередное препятствие при построении двоичных компонентов на C++ появится, когда вы будете проводить инкапсуляцию (encapsulation), то есть формирование пакета. Посмотрим, что получится, если организация, использующая FastString в приложении, возьмется выполнить невыполнимое: закончит разработку и тестирование за два месяца до срока рассылки продукта. Пусть также в течение этих двух месяцев некоторые из наиболее скептически настроенных разработчиков решили протестировать O(1) -поисковый алгоритм FastString , запустив профайлер своего приложения. К их большому удивлению, FastString::Find стала бы на самом деле работать очень быстро, независимо от заданной длины строки. Однако с оператором Length дело обстоит не столь хорошо, так как FastString::Length использует подпрограмму strlen из динамической библиотеки С. Эта подпрограмма – алгоритм O(n)– осуществляет линейный поиск по строкам с использованием символа конца строки (null terminator); скорость его работы пропорциональна длине строки. Столкнувшись с тем, что клиентское приложение может многократно вызывать оператор Length, один из таких скептиков, скорее всего, свяжется с разработчиком библиотеки и попросит его убыстрить Length, чтобы его работа также не зависела от длины строки. Но здесь есть одно препятствие. Разработчик библиотеки уже закончил свою разработку и, скорее всего, не расположен менять одну строку исходного кода, чтобы воспользоваться преимуществами улучшенного метода Length. Кроме того, некоторые другие разработчики, возможно, уже выпустили свои продукты, основанные на текущей версии FastString, и теперь разработчик библиотеки не имеет морального права изменять эти приложення.

С этой точки зрения нужно просто вернуться к определению класса FastString и решить, что можно изменить и что необходимо сохранить, чтобы уже установленная база успешно функционировала. К счастью, класс FastString был разработан с учетом возможности инкапсуляции, и все его элементы данных (data members ) являются закрытыми (private ). Это придает классу значительную гибкость, так как ни одна клиентская программа не может непосредственно получить доступ к элементам данных FastString. В силу того, что по отношению к четырем открытым (public ) членам класса не было сделано никаких изменений, то и в любом клиентском приложении никаких изменений также не потребуется. Вооружившись этой верой, разработчик библиотеки переходит к реализации FastString версии 2.0.

Очевидным улучшением является следующее решение: в тексте конструктора (constructor ) занести длину строки в кэш и возвращать кэшированную длину в новой версии метода Length . Так как строка не может быть изменена после создания, нет необходимости беспокоиться, что ее длина будет вычисляться многократно. В действительности длина уже однажды вычислена в конструкторе при назначении буфера, так что понадобится только горстка дополнительных машинных инструкций. Вот каким будет модифицированное определение класса:


// faststring.h version 2.0

class declspec(dllexport) FastString {

const int mcch;

// count of characters

// число символов

char mpsz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset – возвращает смещение

};


Отметим, что единственной модификацией является добавление закрытого элемента данных. Чтобы правильно инициализировать такой элемент, конструктор должен быть изменен следующим образом:


FastString::FastString(const char *psz) : mcch(strlen(psz)), mpsz(new char[mcch + 1])

{

strcpy(mpsz, psz);

}


С введением кэшированной длины метод Length становится тривиальным:


int FastString::Length(void) const

{

return mcch;

// return cached length

// возвращает скрытую длину

}


Сделав эти три модификации, разработчик библиотеки может теперь перестроить DLL FastString и сопутствующий ей набор тестов, которые полностью проверяют каждый аспект класса FastString . Разработчик будет приятно удивлен, узнав, что принцип инкапсуляции обошелся ему дешево, и в исходных текстах тестов не понадобилось делать никаких изменений. После проверки того. что новая DLL работает правильно, разработчик библиотек отсылает FastString версии 2.0 клиенту, будучи уверенным, что вся работа завершена.

Когда клиенты, заказавшие изменения, получают модернизированный FastString , они включают новое определение класса и DLL в систему контроля своего исходного кода и запускают тестирование нового и улучшенного FastString . Подобно разработчику библиотеки, они тоже приятно удивлены: для того, чтобы воспользоваться преимуществами новой версии Length , не требуется никаких модификаций исходного кода. Вдохновленная этим опытом, команда разработчиков убеждает начальство включить новую DLL в окончательный «золотой» CD, уже готовый для выпуска. Это тот редкий случай, когда руководство идет навстречу энтузиастам-разработчикам и включает в окончательный продукт новую DLL. Подобно большинству программ инсталляции, описание установки клиентской программы настроено на молчаливое (без предупреждения) замещение всех старых версий FastString DLL, какие есть на машине конечного пользователя. Это выглядит вполне безобидно, поскольку эти изменения не затронули открытый интерфейс класса, так что тотальная молчаливая модернизация под версию 2.0 FastString только улучшит любые имеющиеся клиентские приложения, которые были установлены раньше.

Представим себе следующий сценарий: конечные пользователи наконец-то получают свои экземпляры вожделенного продукта. Каждый из них тут же бросает все и устанавливает новое приложение на свою машину, дабы попробовать его. После того как высохли слезы восторга от того, что наконец-то можно делать быстрый текстовый поиск, пользователь возвращается к его или ее нормальному состоянию и запускает ранее установленное приложение, которое также имеет неосторожность использовать DLL FastString. Первые несколько минут всё идет хорошо. Затем внезапно появляется сообщение, что возникла исключительная ситуация и что вся работа конечного пользователя пропала. Он пытается запустить приложение снова, но на этот раз диалоговое окно об исключительной ситуации появляется почти сразу. Конечный пользователь, привычный к употреблению современного программного обеспечения, переустанавливает операционную систему и все приложения, но даже это не спасает от повторения исключительной ситуации. Что же произошло?

А произошло то, что разработчик библиотеки был убаюкан верой в то, что C++ поддерживает инкапсуляцию. Хотя C++ и поддерживает синтаксическую инкапсуляцию через свои закрытые и защищенные ключевые слова, в стандарте C++ ничего не сказано о двоичной инкапсуляции. Это происходит потому, что модель трансляции C++ требует, чтобы клиентский компилятор имел доступ ко всей информации относительно двоичного представления объектов, – с целью обработать экземпляр класса или делать невиртуальные вызовы метода. Это включает в себя информацию о размере и порядке закрытых и защищенных элементов данных объекта. Рассмотрим сценарий, показанный на рис. 1.3. Версия 1.0 FastString требует четыре байта на экземпляр (принимая sizeof(char *) == 4). Клиенты написанного под версию 1.0 определения класса выделяют четыре байта памяти под вызов конструктора класса. Конструктор, деструктор и методы версии 2.0 (а именно эти версии содержатся в DLL в машине конечного пользователя) ожидают, что клиент выделил восемь байт на экземпляр (принято sizeof(int) == 8), и не предусматривают собственных резервов для записи во все восемь байт. К сожалению, у клиентов с версией 1.0 вторые четыре байта этого объекта на самом деле принадлежат кому-то другому, и запись в это место указателя на текстовую строку недопустима, о чем и сообщает диалог исключительной ситуации.

Существует общее решение проблемы версий – переименовывать DLL всякий раз, когда появляется новая версия. Такая стратегия принята в Microsoft Foundation Classes (MFC). Когда номер версии включен в имя файла DLL (например, FastString10.DLL, FastString20.DLL), клиенты всегда загружают ту версию DLL, с которой они были сконфигурированы, независимо от присутствия в системе других версий. К сожалению, со временем, из-за недостаточного опыта в системном конфигурировании, число версий DLL, имеющихся в системе конечного пользователя, может превысить реальное число пользовательских приложений. Чтобы убедиться в этом, достаточно проверить системный каталог любого компьютера, проработавшего больше шести месяцев.

В конечном счете, проблема управления версиями коренится в модели трансляции C++, не рассчитанной на поддержку независимых двоичных компонентов. Требуя знания клиентом двоичного представления объектов, C++ предполагает тесную двоичную связь между клиентом и исполняемыми программами объекта. Обычно такая связь является преимуществом C++, так как она позволяет трансляторам генерировать весьма эффективный код. К сожалению, эта тесная двоичная связь не позволяет переместить реализации класса без проведения клиентом повторной компиляции. По причине этой связи и несовместимости транслятора и компоновщика, упомянутых в предыдущем разделе, простой экспорт определений класса C++ из DLL не обеспечивает приемлемой архитектуры двоичных компонентов.


Отделение интерфейса от реализации

Концепция инкапсуляции основана на разделении того, как объект выглядит (его интерфейса), и того, как он в действительности работает (его реализации). Проблема в C++ в том, что этот принцип неприменим на двоичном уровне, так как класс C++ одновременно является и интерфейсом, и реализацией. Этот недостаток может быть преодолен, если смоделировать две новые абстракции, являющиеся классами C++, но различающиеся по своей сущности. Если определить один класс C++ как интерфейс для типа данных, а второй – как саму реализацию типа данных, то конструктор объектов теоретически может модифицировать некоторые детали класса реализации, в то время как класс интерфейса останется неизменным. Все, что нужно, – это выдержать соотношение интерфейса с его реализацией так, чтобы не показывать клиенту никаких деталей реализации.

Класс интерфейса должен содержать только такое описание основных типов данных, какое должен, по мнению разработчика, представлять себе клиент. Поскольку интерфейс не должен сообщать ни о каких деталях реализации, класс интерфейса C++ не может содержать никаких элементов данных, которые могут быть использованы в реализации объекта. Вместо этого класс интерфейса должен содержать только описания методов для каждой открытой операции объекта. Класс реализации C++ будет содержать фактические элементы данных, необходимые для обеспечения функционирования объекта. Одним из простейших подходов является использование класса-дескриптора (handle-class) в качестве интерфейса. Класс-дескриптор мог бы просто содержать непрозрачный (opaque) указатель, чей тип никогда не может быть полностью определен клиентом. Следующее определение класса демонстрирует эту технику:


// FastStringItf.h

class declspec(dllexport) FastStringItf

{

class FastString;

// introduce name of impl. class

// вводится имя класса реализации

FastString *mpThis;

// opaque pointer (size remains constant)

// непрозрачный указатель (размер остается постоянным)

public: FastStringItf(const char *psz);

~FastStringItf(void);

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

// возвращает смещение

};


Заметим, что двоичное представление этого класса интерфейса не меняется с добавлением или удалением элементов данных из класса реализации FastString. Кроме того, использование опережающего объявления означает, что определение класса FastString не является необходимым для трансляции этого заголовочного файла. Это эффективно скрывает все детали реализации FastString от транслятора клиента. При использовании этого способа машинный код для методов интерфейса становится единственной точкой входа в DLL объекта, и их двоичные сигнатуры никогда не изменятся. Реализации методов класса интерфейса просто передают вызовы методов действующему классу реализации:


// faststringitf.срр

// (part of DLL, not client)

// (часть DLL, а не клиента)

#include «faststring.h»

#include «faststringitf.h»

FastStringItf::FastStringItf(const char *psz) : mpThis(new FastString(psz))

{ assert(mpThis != 0); }

FastStringItf::~FastStringItf(vo1d)

{ delete mpThis; }

int FastStringItf::Length(void) const

{ return mpThis->Length(); }

int FastStringItf::Find(const char *psz) const

{ return mpThis->Find(psz); }


Эти передающие методы должны быть транслированы как часть DLL FastString, так что когда двоичное представление класса реализации FastString меняется, вызов нового оператора в конструкторе FastStringItf будет сразу же перекомпилирован, если, конечно, зарезервировано достаточно памяти. И опять клиент не получит описания класса реализацииFastString. Это дает разработчику FastString возможность со временем развивать реализацию без прерывания существующих клиентов.

Рисунок 1.4 показывает, как использовать классы-дескрипторы для отделения интерфейса от реализации на этапе выполнения. Заметим, что косвенный подход, введенный классом интерфейса, устанавливает двоичную защитную стену (firewall – брандмауэр) между клиентом и реализацией объекта. Эта двоичная стена очень точно описывает, как клиент может сообщаться с реализацией. Все связи клиент-объект осуществляются через класс интерфейса, который содержит очень простой двоичный протокол для входа в область реализации объекта. Этот протокол не содержит никаких деталей класса реализации в C++.

Хотя методика использования классов-дескрипторов имеет свои преимущества и безусловно приближает нас к возможности безопасного извлечения классов из DLL, она также имеет свои недостатки. Отметим, что класс интерфейса вынужден явно передавать каждый вызов метода классу реализации. Для простого класса вроде FastString только с двумя открытыми операторами, конструктором и деструктором, это не проблема. Для большой библиотеки классов с сотнями или тысячами методов написание этих передающих процедур было бы весьма утомительным и явилось бы потенциальным источником ошибок. Кроме того, для областей с повышенными требованиями к эффективности программ (performance-critical domains), цена двух вызовов для каждого метода (один вызов на интерфейс, один вложенный вызов на реализацию) весьма высока. Наконец, методика классов-дескрипторов не полностью решает проблемы совместимости транслятора/компоновщика, а они все же должны быть решены, если мы хотим иметь основу, действительно пригодную для создания компонентов повторного использования.


Абстрактные базы как двоичные интерфейсы

Оказывается, применение техники разделения интерфейса и реализации может решить и проблемы совместимости транслятора/компоновщика C++. При этом, однако, определение класса интерфейса должно принять несколько иную форму. Как отмечалось ранее, проблемы совместимости возникают из-за того, что разные трансляторы имеют различные соображения по поводу того, как


1. передавать особенности языка на этапе выполнения;

2. символические имена будут представлены на этапе компоновки.


Если бы кто-нибудь придумал, как скрыть детали реализации транслятора/компоновщика за каким-либо двоичным интерфейсом, это сделало бы написанные на C++ библиотеки DLL значительно более широко используемыми.

Двоичная защита, то есть тот факт, что класс интерфейса C++ не использует языковых конструкций, зависящих от транслятора, решает проблему зависимости от транслятора/компоновщика. Чтобы сделать эту независимость более полной, необходимо в первую очередь определить те аспекты языка, которые имеют одинаковую реализацию в разных трансляторах. Конечно, представление на этапе выполнения таких сложных типов, как С-структуры (structs), может быть выдержано инвариантным по отношению к трансляторам. Это – основное, что должен делать системный интерфейс, основанный на С, и иногда это достигается применением условно транслируемых определений типа прагм (pragmas) или других директив транслятора. Второе, что следует сделать, – это заставить все компиляторы проходить параметры функций в одном и том же порядке (слева направо, справа налево) и зачищать стек также одинаково. Подобно совместимости структур, это также решаемая задача, и для унификации работы со стеком часто используются условные директивы транслятора. В качестве примера можно привести макросы WINAPI/WINBASEAPI из Win32 API. Каждая извлеченная из системных DLL функция определена с помощью этих макросов:


WINBASEAPI void WINAPI Sleep(DWORD dwMsecs);


Каждый разработчик транслятора определяет эти символы препроцессора для создания гибких стековых фреймов. Хотя в среде производителей может возникнуть желание использовать аналогичную методику для определений всех методов, фрагменты программ в этой главе для большей наглядности ее не используют.

Третье требование к независимости трансляторов – наиболее уязвимое для критики из всех, так как оно делает возможным определение двоичного интерфейса: все трансляторы C++ с заданной платформой одинаково осуществляют механизм вызова виртуальных функций. Действительно, это требование единообразия применимо только к классам, не имеющим элементов данных, а имеющим не более одного базового класса, который также не имеет элементов данных. Вот что означает это требование для следующего простого определения класса:


class calculator

{

public: virtual void add1(short x);

virtual void add2(short x, short y);

};


Все трансляторы с данной платформой должны создать эквивалентные последовательности машинного кода для следующего фрагмента программы пользователя:


extern calculator *pcalc;

pcalc->add1(1);

pcalc->add2(1, 2);


Отметим, что требуется не идентичность машинного кода на всех трансляторах, а его эквивалентность. Это означает, что каждый транслятор должен делать одинаковые допущения относительно того, как объект такого класса размещен в памяти и как его виртуальные функции динамически вызываются на этапе выполнения.

Впрочем, это не такое уж блестящее решение проблемы, как может показаться. Реализация виртуальных функций на C++ на этапе выполнения выливается в создание конструкций vptr и vtbl практически на всех трансляторах. При этой методике транслятор молча генерирует статический массив указателей функций для каждого класса, содержащего виртуальные функции. Этот массив называется vtbl (virtual function table – таблица виртуальных функций) и содержит один указатель функции для каждой виртуальной функции, определенной в данном классе или в ее базовом классе. Каждый объект класса содержит единственный невидимый элемент данных, именуемый vptr (virtual function pointer – указатель виртуальных функций); он автоматически инициализируется конструктором для указания на таблицу vtbl класса. Когда клиент вызывает виртуальную функцию, транслятор генерирует код, чтобы разыменовать указатель vptr , занести его в vtbl и вызвать функцию через ее указатель, найденный в назначенном месте. Так на C++ обеспечивается полиморфизм и диспетчеризация динамических вызовов. Рисунок 1.5 показывает представление на этапе выполнения массивов vptr/vtbl для класса calculator, рассмотренного выше.

Фактически каждый действующий в настоящее время качественный транслятор C++ использует базовые концепции vprt и vtbl. Существует два основных способа размещения таблицы vtbl: с помощью CFRONT и корректирующего переходника (adjuster thunk). Каждый из этих приемов имеет свой способ обращения с тонкостями множественного наследования. К счастью, на каждой из имеющихся платформ доминирует один из способов (трансляторы Win32 используют adjuster thunk, Solaris – стиль CFRONT для vtbl ). К тому же формат таблицы vtbl не влияет на исходный код C++, который пишет программист, а скорее является артефактом сгенерированного кода. Желающие узнать подробности об этих двух способах могут обратиться к прекрасной книге Стэна Липпмана «Объектная модель C++ изнутри» (Stan Lippman. Inside C++ Object Model).

Основываясь на столь далеко идущих допущениях, теперь можно решить проблему зависимости от транслятора. Предполагая, что все трансляторы на данной платформе одинаково реализуют механизм вызова виртуальной функции, можно определить класс интерфейса C++ так, чтобы глобальные операции над типами данных определялись в нем как виртуальные функции; тогда можно быть уверенным, что все трансляторы будут генерировать эквивалентный машинный код для вызова методов со стороны клиента. Это предположение об единообразии означает, что ни один класс интерфейса не имеет элементов данных и ни один класс интерфейса не может быть прямым потомком более чем одного класса интерфейса. Поскольку в классе интерфейса нет элементов данных, эти методы практически невозможно использовать.

Чтобы подчеркнуть это обстоятельство, полезно определить члены интерфейса как простые виртуальные функции, указав, что класс интерфейса задает только возможность вызова методов, а не их реализацию.


// ifaststring.h

class IFastString

{

public: virtual int Length(void) const = 0;

virtual int Find(const char *psz) const = 0;

};


Определение этих методов как чисто виртуальных также дает знать транслятору, что от класса интерфейса не требуется никакой реализации этих методов. Когда транслятор генерирует таблицу vtbl для класса интерфейса, входная точка для каждой простой виртуальной функции является или нулевой (null), или точкой входа в С-процедуру этапа выполнения (_purecall в Microsoft C++), которая при вызове генерирует логическое утверждение. Если бы метод не был определен как чисто виртуальный, транслятор попытался бы включить в соответствующую входную точку vtbl системную реализацию метода класса интерфейса, которая в действительности не существует. Это вызвало бы ошибку компоновки. Определенный таким образом класс интерфейса является абстрактным базовым классом. Соответствующий класс реализации должен порождаться классом интерфейса и перекрывать все чисто виртуальные фyнкции содержательными реализациями. Эта наследственная связь проявится в объектах, которые в качестве своего представления имеют двоичное надмножество представления класса интерфейса (которое как раз и есть vptr/vtbl). Дело в том, что отношение «является» («is-a») между порождаемым и базовым классами применяется на двоичном уровне в C++ так же, как и на уровне моделирования в объектно-ориентированной разработке:


class FastString : public IFastString

{

const int m_cch;

// count of characters

// число символов

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

// возвращает смещение

};


Поскольку FastString порождается от IFastString, двоичное представление объектов FastString должно быть надмножеством двоичного представления IFastString. Это означает, что объекты FastString будут содержать указатель vptr, указывающий на совместимую с таблицей vtblIFastString. Поскольку классу FastString можно приписывать различные конкретные типы данных, его таблица vtbl будет содержать указатели на существующие реализации методов Length и Find. Их связь показана на рис. 1.6.

Даже несмотря на то, что открытые операторы над типами данных подняты до уровня чисто виртуальных функций в классе интерфейса, клиент не может приписывать значения объектам FastString, не имея определения класса для класса реализации. При демонстрации клиенту определения класса реализации от него будет скрыта двоичная инкапсуляция интерфейса; что не позволит клиенту использовать класс интерфейса. Одним из разумных способов обеспечить клиенту возможность использовать объекты FastString является экспорт из DLL глобальной функции, которая будет вызывать новый оператор от имени клиента. При условии, что эта подпрограмма экспортируется с опцией extern "С" , она будет доступна для любого транслятора C++.


// ifaststring.h

class IFastString {

public:

virtual int Length(void) const = 0;

virtual int Find(const char *psz) const = 0;

};

extern "C"

IFastString *CreateFastString(const char *psz);

// faststring.cpp (part of DLL)

// faststring.cpp (часть DLL)

IFastString *CreateFastString (const char *psz)

{ return new FastString(psz); }


Как было в случае класса-дескриптора, новый оператор вызывается исключительно внутри DLL FastString, а это означает, что размер и расположение объекта будут установлены с использованием того же транслятора, который транслировал все методы реализации.

Последнее препятствие, которое предстоит преодолеть, относится к уничтожению объекта. Следующая клиентская программа пройдет трансляцию, но результаты будут непредсказуемыми:


int f(void)

{

IFastString *pfs = CreateFastString(«Deface me»);

int n = pfs->Find(«ace me»);

delete pfs;

return n;

}


Непредсказуемое поведение вызвано тем фактом, что деструктор класса интерфейса не является виртуальным. Это означает, что вызов оператора delete не сможет динамически найти последний порожденный деструктор и рекурсивно уничтожит объект ближайшего внешнего типа по отношению к базовому типу. Поскольку деструктор FastString никогда не вызывается, в данном примере из буфера исчезнет строка «Deface me», которая должна там присутствовать.

Очевидное решение этой проблемы – сделать деструктор виртуальным в классе интерфейса. К сожалению, это нарушит независимость класса интерфейса от транслятора, так как положение виртуального деструктора в таблице vtbl может изменяться от транслятора к транслятору. Одним из конструктивных решений этой проблемы является добавление к интерфейсу явного метода Delete как еще одной чисто виртуальной функции, чтобы заставить производный класс уничтожать самого себя в своей реализации этого метода. В результате этого будет выполнен нужный деструктор. Модифицированная версия заголовочного файла интерфейса выглядит так:


// ifaststring.h

class IFastString

{

public:

virtual void Delete(void) = 0;

virtual int Length(void) const = 0;

virtual int Find(const char *psz) const = 0;

};

extern "C"

IFastString *CreateFastString (const char *psz);


она влечет за собой соответствующее определение класса реализации:


// faststring.h

#include «ifaststring.h»

class FastString : public IFastString

{ const int mcch;

// count of characters

// счетчик символов

char *mpsz; public: FastString(const char *psz);

~FastString(void);

void Delete(void);

// deletes this instance

// уничтожает этот экземпляр

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

// возвращает смещение

};

// faststring.cpp

#include

#include «faststring.h»

IFastString* CreateFastString (const char *psz) {

return new FastString(psz);

}

FastString::FastString(const char *psz) : mcch(strlen(psz)), mpsz(new char[mcch + 1]) {

strcpy(mpsz, psz);

}

void FastString::Delete(void) {

delete this;

}

FastString::~FastString(void) {

delete[] mpsz;

}

int FastString::Lengtn(void) const {

return mcch;

}

int FastString::Find(const char *psz) const {

// O(1) lookup code deleted for clarity

// код поиска 0(1) уничтожен для ясности

}

Рисунок 1.7 показывает представление FastString на этапе выполнения. Чтобы использовать тип данных FastString, клиентам надо просто включить в программу файл определения интерфейса и вызвать CreateFastString:

#include «ifaststring.h»

int f(void)

{ int n = -1;

IFastString *pfs = CreateFastString(«Hi Bob!»);

if (pfs) { n = pfs->Find(«ob»);

pfs->Delete(); }

return n; }


Отметим, что все, кроме одной, точки входа в DLL FastString являются виртуальными функциями. Виртуальные функции класса интерфейса всегда вызываются косвенно, через указатель функции, хранящийся в таблице vtbl , избавляя клиента от необходимости указывать их символические имена на этапе разработки. Это означает, что методы интерфейса защищены от различий в коррекции символических имен на разных трансляторах. Единственная точка входа, которая явно компонуется по имени, – это CreateFastString – глобальная функция, которая обеспечивает клиенту доступ в мир FastString. Заметим, однако, что эта функция была экспортирована с опцией extern "С", которая подавляет коррекцию символов. Следовательно, все трансляторы C++ ожидают, что импортируемая библиотека и DLL экспортируют один и тот же идентификатор. Полезным результатом этой методики является то, что вы можете спокойно извлечь класс из DLL, использующей одну среду C++, а обратиться к этому классу из любой другой среды C++. Эта возможность необходима при построении основы для независимых от разработчика компонентов повторного пользования.


Полиморфизм на этапе выполнения

Управление реализациями классов с использованием абстрактных базовых классов как интерфейсов открывает целый мир новых возможностей в терминах того, что может случиться на этапе выполнения. Напомним, что DLL FastString экспортирует только один идентификатор – CreateFastString. Теперь пользователю легко динамически загрузить DLL, используя по требованию LoadLibrary, и разрешить этой единственной точке входа использовать GetProcAddress:


IFastString *CallCreateFastString(const char *psz)

{

static IFastString * (*pfn)(const char *) = 0;

if (!pfn) {

// init ptr 1st time through

// первое появление ptr

const TCHAR szDll[] = TEXT(«FastString.DLL»);

const char szFn[] = «CreateFastString»;

HINSTANCE h = LoadLibrary(szDll);

if (h) *(FARPROC*)&pfn = GetProcAddress(h, szFn); }

return pfn ? pfn(psz) : 0;

}


Эта методика имеет несколько возможных приложений. Одна из причин ее использования – предотвращение ошибок, генерируемых операционной системой при работе на машине, где не установлена реализация объектов. Приложения, использующие дополнительные системные компоненты, такие как WinSock или MAPI, используют похожую технику для запуска приложений на машинах с минимальной конфигурацией. Поскольку клиенту никогда не нужно компоновать импортируемую библиотеку DLL, он не зависит от загрузки DLL и может работать на машинах, на которых DLL вообще не установлена. Другой причиной для использования этой методики может быть медленная инициализация адресного пространства. Кроме того, DLL не загружается автоматически во время инициализации; и если в действительности реализация объекта не используется, то DLL не загрузится никогда. Другими преимуществами этого способа являются ускорение запуска клиента и сохранение адресного пространства для длительных процессов, которые могут никогда реально не использовать DLL.

Возможно, одним из наиболее интересных применений этой методики является возможность для клиента динамически выбирать между различными реализациями одного и того же интерфейса. Если описание интерфейса IFastString дано как общедоступное (publicly available), то ничто не препятствует как исходному конструктору (implementor) FastString, так и любым сторонним средствам реализации порождать дополнительные классы реализации от того же самого интерфейса. Подобно исходной реализации класса FastString, эти новые реализации будут иметь такое двоичное представление, что будут совместимы на двоичном уровне с исходным классом интерфейса. Все, что должен сделать пользователь, чтобы добиться полностью совместимых («plug-compatible») реализаций, – это определить правильное имя файла для желаемой реализации DLL.

Чтобы понять, как применить эту методику, предположим, что исходная реализация IFastString выполняла поиск слева направо. Это прекрасно для языков, анализируемых слева направо (например, английский, французский, немецкий). Для языков, анализируемых справа налево, предпочтительней вторая реализация IFastString, осуществляющая поиск справа налево. Эта альтернативная реализация может быть построена как вторая DLL с характерным именем (например, FastStringRL.DLL). Пусть обе DLL установлены на машине конечного пользователя, тогда он может выбрать нужный вариант IFastString простой загрузкой требуемой DLL на этапе выполнения:


IFastString * CallCreateFastString(const char *psz, bool bLeftToRight = true)

{

static IFastString * (*pfnlr)(const char *) = 0;

static IFastString * (*pfnrl)(const char *) = 0;

IFastString *(**ppfn) (const char *) = &pfnlr;

const TCHAR *pszDll = TEXT(«FastString.DLL»);

if (!bLeftToRight) { pszDll = TEXT(«FastStringRL.DLL»);

ppfn = &pfnrl; }

if (!(*ppfn)) {

// init ptr 1st time through

// первое появление ptr

const char szFn[] = «CreateFastString»;

HINSTANCE h = LoadLibrary(pszDll);

if (h) *(FARPROC*)ppfn = GetProcAddress(h, szFn); }

return (*ppfn) ? (*ppfn)(psz) : 0;

}


Когда клиент вызывает функцию без второго параметра,


pfs = CallCreateFastString(«Hi Bob!»);

n = pfs->Find(«ob»);


то загружается исходная DLL FastString, и поиск идет слева направо. Если же клиент указывает, что строка написана на разговорном языке, анализируемом справа налево:


pfs = CallCreateFastString(«Hi Bob!», false);

n = pfs->Find(«ob»);


то загружается альтернативная версия DLL (FastStringRL.DLL ), и поиск будет начинаться с крайней правой позиции строки. Главное здесь то, что вызывающие операторы CallCreateFastString не заботятся о том, какая из DLL используется для реализации методов объекта. Существенно лишь то, что указатель на совместимый с IFastString vptr возвращается функцией и что vptr обеспечивает успешное и семантически корректное функционирование. Эта форма полиморфизма на этапе выполнения чрезвычайно полезна при создании системы, динамически скомпонованной из двоичных компонентов.


Расширяемость объекта

Описанные до сих пор методики позволяют клиентам выбирать и динамически загружать двоичные компоненты, что дает возможность изменять с течением времени двоичное представление их реализации без необходимости повторной трансляции клиента. Это само по себе чрезвычайно полезно при построении динамически компонуемых систем. Существует, однако, один аспект объекта, который не может изменяться во времени, – это его интерфейс. Это связано с тем, что пользователь осуществляет трансляцию с определенной сигнатурой класса интерфейса, и любые изменения в описании интерфейса требуют повторной трансляции клиента для учета этих изменений. Хуже того, изменение описания интерфейса полностью нарушает инкапсуляцию объекта (так как его открытый интерфейс изменился) и может испортить программы всех существующих клиентов. Даже самое безобидное изменение, такое как изменение семантики метода с сохранением его сигнатуры, делает бесполезной всю установленную клиентскую базу. Это означает, что интерфейсы являются постоянными двоичными и семантическими контрактами (contracts), которые никогда не должны изменяться. Эта неизменяемость требует стабильной и предсказуемой среды на этапе выполнения.

Несмотря на неизменяемость интерфейсов, часто возникает необходимость добавить дополнительные функциональные возможности, которые не могли быть предусмотрены в период первоначального составления интерфейса. Хотелось бы, например, использовать знание двоичного представления таблицы vtbl и просто добавлять новые методы в конец существующего описания интерфейса. Рассмотрим исходную версию IFastString:


class IFastString {

public:

virtual void Delete(void) = 0;

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

};


Простое изменение класса интерфейса путем объявлений добавочных виртуальных функций после объявлений существующих методов имело бы следствием двоичный формат таблицы vtbl, который является надмножеством исходной версии по мере того, как появятся какие-либо новые элементы vtbl после тех, которые соответствуют исходным методам. У реализации объектов, которые транслируются с новым описанием интерфейса, все новые методы будут добавляться к исходному размещению vtbl:


class IFastString {

public:

// faux version 1.0

// фиктивная версия 1.0

virtual void Delete(void) = 0;

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

// faux version 2.0

// фиктивная версия 2.0

virtual int FindN(const char *psz, int n) = 0;

};


Это решение почти работает. Те клиенты, у которых оттранслирована исходная версия интерфейса, остаются в счастливом неведении относительно всех составляющих таблицы vtbl, кроме первых трех. Когда старые клиенты получают обновленные объекты, имеющие в vtbl вход для FindN, они продолжают нормально работать. Проблема возникает, когда новым клиентам, ожидающим, что IFastString имеет четыре метода, случится столкнуться с устаревшими объектами, где метод FindN не реализуется. Когда клиент вызовет FindN на объект, странслированный с исходным описанием интерфейса, результаты будут вполне определенными. Программа прервет работу.

В этой методике проблема заключается в том, что она нарушает инкапсуляцию объекта, изменяя открытый интерфейс. Подобно тому, как изменение открытого интерфейса в классе C++ может вызвать ошибки на этапе трансляции, когда происходит перестройка клиентского кода, так и изменение двоичного описания интерфейса вызовет ошибки на этапе выполнения, когда клиентская программа перезапущена. Это означает, что интерфейсы должны быть неизменяемыми с момента первой редакции. Решение этой проблемы заключается в том, чтобы разрешить классу реализации выставлять более чем один интерфейс. Этого можно достигнуть, если предусмотреть, что один интерфейс порождается от другого, связанного с ним интерфейса. А можно сделать так, чтобы класс реализации наследовал от нескольких несвязанных классов интерфейса. В любом случае клиент мог бы использовать имеющуюся в C++ возможность определения типа на этапе выполнения – идентификацию Runtime Type Identification – RTTI, чтобы динамически опросить объект и убедиться в том, что его требуемая функциональность действительно поддерживается уже работающим объектом.

Рассмотрим простой случай интерфейса, расширяющего другой интерфейс. Чтобы добавить в IFastString операцию FindN, позволяющую находить n–е вхождение подстроки, необходимо породить второй интерфейс от IFastString и добавить в него новое описание метода:


class IFastString2 : public IFastString {

public: // real version 2.0

// настоящая версия 2.0

virtual int FindN(const char *psz, int n) = 0;

};


Клиенты могут с уверенностью динамически опрашивать объект с помощью оператора C++ dynamic_cast, чтобы определить, является ли он совместимым с IFastString2


int Find10thBob(IFastString *pfs) {

IFastString2 *pfs2 = dynamic_cast(pfs);

if(pfs2)

// the object derives from IFastString2

// объект порожден от IFastString2

return pfs2->FindN(«Bob», 10);

else {

// object doesn't derive from IFastString2

// объект не порожден от IFastString2

error(«Cannot find 10th occurrence of Bob»);

return -1;

}


Если объект порожден от расширенного интерфейса, то оператор dynamic_cast возвращает указатель на вариант объекта, совместимый с IFastString2, и клиент может вызвать расширенный метод объекта. Если же объект не порожден от расширенного интерфейса, то оператор dynamic_cast возвратит пустой (null) указатель. В этом случае клиент может или выбрать другой способ реализации, зарегистрировав сообщение об ошибке, или молча продолжить без расширенной операции. Эта способность назначенного клиентом постепенного сокращения возможностей очень важна при создании гибких динамических систем, которые могут обеспечить со временем расширенные функциональные возможности.

Иногда требуется раскрыть еще один аспект функциональности объекта, тогда разворачивается еще более интересный сценарий. Обсудим, что следует предпринять, чтобы добавить постоянства, или персистентности (persistence), классу реализации IFastString. Хотя, вероятно, можно добавить методы Load и Save к расширенной версии IFastString, другие типы объектов, не совместимые с IFastString, могут тоже быть постоянными. Простое создание нового интерфейса, который расширяет IFastString:


class IPersistentObject : public IFastString

{

public: virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};


требует, чтобы все постоянные объекты поддерживали также операции Length и Find. Для некоторого, весьма малого подмножества объектов это могло бы иметь смысл. Однако для того, чтобы сделать интерфейс IPersistentObject возможно более общим, он должен быть своим собственным интерфейсом, а не порождаться от IFastString:


class IPersistentObject

{

public: virtual void Delete(void) = 0;

virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};


Это не мешает реализации FastString стать постоянной; это просто означает, что постоянная версия FastString должна поддерживать оба интерфейса: и IFastString, и IPersistentObject:


class FastString : public IFastString, public IPersistentObject

{

int m_cch;

// count of characters

// счетчик символов

char *m_psz;

public: FastString(const char *psz);

~FastString(void);

// Common methods

// Общие методы

void Delete(void);

// deletes this instance

// уничтожает этот экземпляр


// IFastString methods

// методы IFastString

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

// возвращает смещение


// IPersistentObject methods

// методы IPersistentObject

bool Load(const char *pszFileName);

bool Save(const char *pszFileName);

};


Чтобы записать FastString на диск, пользователю достаточно с помощью RTTI связать указатель с интерфейсом IPerststentObject, который выставляется объектом:


bool SaveString(IFastString *pfs, const char *pszFN)

{

bool bResult = false;

IPersistentObject *ppo = dynamic_cast(pfs);

if (ppo) bResult = ppo->Save(pszFN);

return bResult;

}


Эта методика работает, поскольку транслятор имеет достаточно информации о представлении и иерархии типов класса реализации, чтобы динамически проверить объект для выяснения того, действительно ли он порожден от IPersistentObject. Но здесь есть одна проблема.

RTTI – особенность, сильно зависящая от транслятора. В свою очередь, DWP передает синтаксис и семантику RTTI, но каждая реализация RTTI разработчиком транслятора уникальна и запатентована. Это обстоятельство серьезно подрывает независимость от транслятора, которая была достигнута путем использования абстрактных базовых классов как интерфейсов. Это является неприемлемым для архитектуры компонентов, не зависимой от разработчиков. Удачным решением было бы упорядочение семантики dynamic_cast без использования свойств языка, зависящих от транслятора. Явное выставление хорошо известного метода из каждого интерфейса, представляющего семантический эквивалент dynamic_cast, позволяет достичь желаемого эффекта, не требуя, чтобы все объекты использовали тот же самый транслятор C++:


class IPersistentObject

{

public: virtual void *Dynamic_Cast(const char *pszType) = 0;

virtual void Delete(void) = 0;

virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};

class IFastString

{

public: virtual void *Dynamic_Cast(const char *pszType) = 0;

virtual void Delete(void) = 0;

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

};


Так как всем интерфейсам необходимо выставить этот метод вдобавок к уже имеющемуся методу Delete, имеет большой смысл включить общее подмножество методов в базовый интерфейс, из которого могли бы порождаться все последующие интерфейсы:


class IExtensibleObject { public: virtual void *Dynamic_Cast(const char* pszType) = 0; virtual void Delete(void) = 0; }; class IPersistentObject : public IExtensibleObject { public: virtual bool Load(const char *pszFileName) = 0; virtual bool Save(const char *pszFileName) = 0; }; class IFastString : public IExtensibleObject { public: virtual int Length(void) = 0; virtual int Find(const char *psz) = 0; };


Имея такую иерархию типов, пользователь может динамически запросить объект о данном интерфейсе с помощью следующей не зависящей от транслятора конструкции:


bool SaveString(IFastString *pfs, const char *pszFN) { boot bResult = false; IPersistentObject *ppo = (IPersistentObject) pfs->Dynamic_Cast(«IPers1stentObject»); if (ppo) bResult = ppo->Save(pszFN); return bResult; }


В только что приведенном примере клиентского использования присутствуют требуемая семантика и механизм для определения типа, но каждый класс реализации должен выполнять это функциональное назначение самолично:


class FastString : public IFastString, public IPersistentObject

{

int m_cсh;

// count of characters

// счетчик символов

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

// IExtensibleObject methods

// методы IExtensibleObject

void *Dynamic_Cast(const char *pszType);

void Delete(void);

// deletes this instance

// удаляет этот экземпляр

// IFastString methods

// методы IFastString

int Length(void) const;

// returns # of characters

// возвращает число символов

int Find(const char *psz) const;

// returns offset

// возвращает смещение

// IPersistentObject methods

// методы IPersistentObject

bool Load(const char *pszFileName);

bool Save(const char *pszFileName);

};


Реализации Dynamic_Cast необходимо имитировать действия RTTI путем управления иерархией типов объекта. Рисунок 1.8 иллюстрирует иерархию типов для только что показанного класса FastString. Поскольку класс реализации порождается из каждого интерфейса, который он выставляет, реализация Dynamic_Cast в FastString может просто использовать явные статические приведения типа (explicit static casts), чтобы ограничить область действия указателя this, основанного на подтипе, который запрашивается клиентом:


void *FastString::Dynam1c_Cast(const char *pszType)

{

if (strcmp(pszType, «IFastString») == 0) return static_cast(this);

else if (strcmp(pszType, «IPersistentObject») == 0) return static_cast(this);

else if (strcmp(pszType, «IExtensibleObject») == 0) return static_cast(this);

else return 0;

// request for unsupported interface

// запрос на неподдерживаемый интерфейс

}




Так как объект порождается от типа, используемого в этом преобразовании, оттранслированные версии операторов преобразования просто добавляют определенное смещение к указателю объекта this, чтобы найти начало представления базового класса.

Отметим, что после запроса на общий базовый интерфейс IExtensibleObject реализация статически преобразуется в IFastString. Это происходит потому, что интуитивная версия (intuitive version) оператора

return static_cast(this);

неоднозначна, так как и IFastString, и IPersistentObject порождены от IExtensibleObject. Если бы IExtensibleObject был виртуальным базовым классом как для IFastString, так и для IPersistentObject, то данное преобразование не было бы неоднозначным и оператор бы оттранслировался. Тем не менее, применение виртуальных базовых классов добавляет на этапе выполнения ненужную сложность в результирующий объект и к тому же вносит зависимость от транслятора. Дело в том, что виртуальные базовые классы являются всего лишь особенностями языка C++, которые имеют несколько специфических реализации.


Управление ресурсами

Еще одна проблема поддержки нескольких интерфейсов из одного объекта становится яснее, если исследовать схему использования клиентом метода DynamicCast. Рассмотрим следующую клиентскую программу:


void f(void)

{

IFastString *pfs = 0;

IPersistentObject *ppo = 0;

pfs = CreateFastString(«Feed BOB»);

if (pfs) {

ppo = (IPersistentObject *) pfs->DynamicCast(«IPersistentObject»);

if (!ppo) pfs->Delete();

else { ppo->Save(«C:\\autoexec.bat»);

ppo->Delete(); }

}

}


Хотя вначале объект был связан через свой интерфейс IFastString , клиентский код вызывает метод Delete через интерфейс IPersistentObject. С использованием свойства C++ о множественном наследовании это вполне допустимо, так как все таблицы vtbl , порожденные классом IExtensibleObject, укажут на единственную реализацию метода Delete . Теперь, однако, пользователь должен хранить информацию о том, какие указатели связаны с какими объектами, и вызывать Delete только один раз на объект. В случае простого кода, приведенного выше, это не слишком тяжелое бремя. Для более сложных клиентских кодов управление этими связями становится делом весьма сложным и чреватым ошибками. Одним из способов упрощения задачи пользователя является возложение ответственности за управление жизненным циклом объекта на реализацию. Кроме того, разрешение клиенту явно удалять объект вскрывает еще одну деталь реализации: тот факт, что объект находится в динамически распределяемой памяти (в «куче», on the heap).

Простейшее решение этой проблемы – ввести в каждый объект счетчик ссылок, который увеличивается, когда указатель интерфейса дублируется, и уменьшается, когда указатель интерфейса уничтожается. Это предполагает изменение определения IExtensibleObject с


class IExtensibleObject

{

public:

virtual void *DynamicCast (const char* pszType) =0;

virtual void Delete(void) = 0;

};


на


class IExtensibleObject

{

public:

virtual void *DynamicCast(const char* pszType) = 0;

virtual void DuplicatePointer(void) = 0;

virtual void DestroyPointer(void) = 0;

};


Разместив эти методы, все пользователи IExtensibleObject должны теперь придерживаться следующих двух соображений:

1) Когда указатель интерфейса дублируется, требуется вызов DuplicatePointer.

2) Когда указатель интерфейса более не используется, следует вызвать DestroyPointer.

Эти методы могут быть реализованы в каждом объекте: нужно просто фиксировать количество действующих указателей и уничтожать объект, когда невыполненных указателей не осталось:


class FastString : public IFastString,

public IPersistentObject

{

int mcPtrs;

// count of outstanding ptrs

// счетчик невыполненных указателей

public:

// initialize pointer count to zero

// сбросить счетчик указателя в нуль

FastString(const char *psz) : mcPtrs(0) { }

void DuplicatePointer(void)

{

// note duplication of pointer

// отметить дублирование указателя

++mcPtrs;

}

void DestroyPointer(void)

{

// destroy object when last pointer destroyed

// уничтожить объект, когда уничтожен последний указатель

if (-mcPtrs == 0) delete this;

}

: : :

};


Этот совершенно стандартный код мог бы просто быть включен в базовый класс или в макрос С-препроцессора, чтобы его могли использовать все реализации.

Чтобы поддерживать эти методы, все программы, которые манипулируют или управляют указателями интерфейса, должны придерживаться двух простых правил DuplicatePointer/DestroyPointer. Для реализации FastString это означает модификацию двух функций. Функция CreateFastString берет начальный указатель, возвращаемый новым оператором C++, и копирует его в стек для возврата клиенту. Следовательно, необходим вызов DuplicatePointer:


IFastString* CreateFastString(const char *psz)

{

IFastString *pfsResult = new FastString(psz);

if (pfsResult) pfsResult->DuplicatePointer();

return pfsResult;

}


Реализация копирует указатель и в другом месте – в методе Dynamic_Cast:


void *FastString::Dynamic_Cast(const char *pszType)

{

void *pvResult = 0;

if (strcmp(pszType, «IFastString») == 0) pvResult = static_cast(this);

else if (strcmp(pszType, «IPersistentObject») == 0) pvResult = static_cast(this);

else if (strcmp(pszType, «IExtensibleObject») == 0) pvResult = static_cast(this);

else return 0;

// request for unsupported interface

// запрос на неподдерживаемый интерфейс

// pvResult now contains a duplicated pointer, so

// we must call DuplicatePointer prior to returning

// теперь pvResult содержит скопированный указатель,

// поэтому нужно перед возвратом вызвать DuplicatePointer

((IExtensibleObject*)pvResult)->DuplicatePo1nter();

return pvResult;

}

С этими двумя усовершенствованиями соответствующий код пользователя становится значительно более однородным и прозрачным:


void f(void)

{

IFastString *pfs = 0;

IPersistentObject *ppo = 0;

pfs = CreateFastString(«Feed BOB»);

if (pts) {

рро = (IPersistentObject *) pfs->DynamicCast(«IPersistentObject»);

if (ppo) { ppo->Save(«C:\\autoexec.bat»);

ppo->DestroyPointer(); }

pfs->DestroyPointer(); }

}


Поскольку каждый указатель теперь трактуется как автономный объект с точки зрения времени жизни, клиенту можно не интересоваться тем, какой указатель соответствует какому объекту. Вместо этого клиент просто придерживается двух простых правил и предоставляет объектам самим управлять своим временем жизни. При желании способ вызова DuplicatePointer и DestroyPointer можно легко скрыть за интеллектуальным указателем (smart pointer) C++.

Использование этой схемы вычисления ссылок позволяет объекту весьма единообразно выставлять множественные интерфейсы. Возможность выставления нескольких интерфейсов из одного класса реализации позволяет типу данных участвовать в различных контекстах. Например, новая постоянная подсистема могла бы определить собственный интерфейс для управления автозагрузкой и автозаписью объектов на некоторый специализированный носитель. Класс FastString мог бы добавить поддержку этих возможностей простым наследованием от постоянного интерфейса этой подсистемы. Добавление этой поддержки никак не повлияет на уже установленные базы клиентов, которые, может быть, используют прежний постоянный интерфейс для записи и загрузки строки на диск. Механизм согласования интерфейсов на этапе выполнения может служить краеугольным камнем для построения динамической системы из компонентов, которые могут изменяться со временем.


Где мы находимся?

Мы начали эту главу с простого класса C++ и рассмотрели проблемы, связанные с объявлением этого класса как двоичного компонента повторного использования. Первым шагом было употребление этого класса в качестве библиотеки Dynamic Link Library (DLL) для отделения физической упаковки этого класса от упаковок его клиентов. Затем мы использовали понятие интерфейсов и реализации для инкапсуляции элементов реализации типов данных за двоичной защитой, что позволило изменять двоичные представления объектов без необходимости перетрансляции клиентами. Затем, используя для определения интерфейсов подход абстрактного базового класса, эта защита приобрела форму указателя vptr и таблицы vtbl. Далее мы исследовали приемы для динамического выбора различных полиморфных реализаций данного интерфейса на этапе выполнения с использованием LoadLibrary и GetProcAddress. Наконец, мы использовали RTTI-подобную структуру для динамического опроса объекта с целью определить, действительно ли он использует нужный интерфейс. Эта структура предоставила нам методику расширения существующих версий интерфейса, а также возможность выставления нескольких несвязанных интерфейсов из одного объекта.

Короче, мы только что создали модель компонентных объектов (Component Object Model – СОМ).


Загрузка...