Газопламенная обработка металлов охватывает такие широко распространенные в промышленности и строительстве технологические процессы, как газовая сварка и наплавка, пайка, газовая и газоэлектрическая резка, термическая правка с применением газового пламени, пламенная поверхностная закалка, газовая металлизация, сварка пластмасс и других неметаллов.
Газовая сварка – это сварка плавлением, при которой для нагрева используется теплота пламени смеси газов, сжигаемой с помощью горелки[14]. Газовую сварку выполняют как с применением присадочной проволоки (рис. 20), так и без нее, если формирование шва возможно за счет расплавления кромок основного металла. В качестве горючих газов применяют ацетилен, сжиженные газы на основе пропан-бутановых смесей, природный газ, в качестве окислителя – кислород или воздух.
Рис. 20. Газовая сварка:
1 – соединяемые детали; 2 – сварочная ванна; 3 – присадочный материал; 4 – газовое пламя; 5 – горелка
Ацетилен-кислородные смеси, обеспечивающие максимальную температуру пламени (> 3000 °C), могут быть использованы для любых процессов газовой сварки. Для сварки сталей толщиной до 4 мм с использованием специальной присадочной проволоки можно применять пропан-бутановые смеси.
При газопламенной обработке алюминия, латуни, свинца и других материалов, температура плавления которых ниже температуры плавления стали, целесообразно применять пропан-бутан. Для кислородной резки, пайки, наплавки, металлизации можно использовать любые газы – заменители ацетилена.
Газосварка проста, универсальна, не требует дорогостоящего оборудования и мощного источника электрической энергии. С ее помощью можно сваривать почти все металлы, применяемые в технике. Причем такие металлы, как чугун, медь, свинец, латунь, легче поддаются газовой сварке, чем дуговой. Газовая сварка необходима и применяется при изготовлении и ремонте изделий из тонколистовой стали (1–3 мм); при ремонте изделий из чугуна, бронзы, силумина; при монтаже и ремонте трубопроводов отопления, водопровода, газопровода из труб малых (до 50 мм) диаметров и при подобных работах; при сварке изделий из алюминия, меди, латуни, свинца; при наплавке латуни на чугунные или стальные детали (поршни, штоки гидросистем); при сварке ковкого и высокопрочного чугуна с применением присадочных прутков из латуни и бронзы.
К недостаткам газовой сварки относятся меньшая производительность и бóльшая зона нагрева, чем при дуговой сварке. При газовой сварке концентрация тепла меньше, чем при дуговой, поэтому разогреву подвергается бóльшая зона и увеличивается коробление. Газосварочный процесс почти не поддается механизации и автоматизации. Кроме того, газовая сварка – источник повышенной пожаро– и взрывоопасности.
Качество сварных соединений, выполняемых газовой сваркой, выше, чем дуговой электродами с тонким покрытием, но несколько ниже, чем качественными электродами. Дело в том, что при газовой сварке не происходит легирования наплавленного металла, в то время как при дуговой сварке качественными электродами, в покрытии которых содержатся ферросплавы, производится довольно значительное легирование.
Производительность газовой сварки, высокая при малой толщине основного металла, быстро снижается с увеличением его толщины. При толщине металла 0,5–1,5 мм производительность газовой сварки может быть выше, чем дуговой. С увеличением толщины металла до 2–3 мм скорости газовой и дуговой сварки становятся одинаковыми, а затем с увеличением толщины металла разница быстро возрастает в пользу дуговой сварки. Например, при сварке стали толщиной 1 мм скорость составляет около 10 м/ч, а толщиной 5 мм – 2,5 м/ч. Далее, при малой толщине абсолютный расход газов на 1 м сварного шва невелик, но с увеличением толщины основного металла быстро растет расход газов и времени на сварку, и газовая сварка становится дороже дуговой; разница в стоимости быстро увеличивается с возрастанием толщины основного металла. Поэтому газовая сварка стали толщиной более 4 мм практически не применяется.
К особенностям газовой сварки следует также отнести почти исключительное выполнение сварных швов за один проход. Получение швов в несколько слоев, широко практикуемое в дуговой сварке, почти не применяется при газовой.
Газовое пламя менее яркое, чем сварочная дуга, оно не обжигает лицо, поэтому для защиты глаз сварщика достаточно очков с цветными стеклами.
При газовой сварке в качестве окислителя применяют кислород, а горючими газами служат ацетилен, водород, пропан и др.
Газообразныйкислород (О2) бесцветен, не имеет запаха и вкуса, немного тяжелее воздуха. Плотность кислорода при атмосферном давлении и температуре 20 °C равна 1,33 кг/м3. Активно поддерживает горение и служит для повышения температуры газового пламени при сгорании горючего газа.
Согласно ГОСТ 5583–78, промышленность выпускает газообразный технический кислород двух сортов. Объемная доля кислорода в техническом кислороде I сорта составляет 99,7 %, II сорта – 99,5 %.
Кислород способен образовывать взрывоопасные смеси с горючими газами или парами жидких горючих веществ, а при его соприкосновении с органическими соединениями (масла, жиры и другие вещества) может произойти их самовоспламенение.
Газообразный ацетилен (С2Н2) – бесцветный газ, имеющий специфический чесночный запах из-за присутствия примесей: фосфористого водорода, сероводорода и др. Ацетилен легче воздуха: при атмосферном давлении и температуре 20 °C его плотность составляет 1,09 кг/м3. Хорошо растворяется в жидкостях, особенно в ацетоне, становясь более безопасным. Используется для формирования газового пламени при сгорании в струе кислорода. Преимущество ацетилена перед другими горючими газами – возможность получения наиболее высокой температуры пламени (до 3200 °C).
На месте сварки ацетилен получают в газогенераторах путем разложения карбида кальция водой или используют пиролизный[15] ацетилен. Последний к месту сварки доставляют растворенным в ацетоне в виде пористой массы, заключенной в стальной баллон. Пиролизный ацетилен дешевле, чем получаемый из карбида кальция.
Ацетилен образует с кислородом, содержащимся в воздухе, взрывоопасные смеси при нормальном атмосферном давлении. Наиболее взрывоопасны смеси, содержащие 7–13 % ацетилена. Ацетилен может взрываться и без окислителя!
Водород (Н2) при атмосферном давлении и температуре 20 °C – горючий газ без цвета и запаха. Плотность водорода равна 0,084 кг/м3, он в 14,5 раза легче воздуха. Водород предназначен для формирования газового пламени при сгорании в струе кислорода. Температура пламени составляет 2600 °C. Водородно-кислородное пламя бесцветное, не имеет четких очертаний, что затрудняет его регулирование.
Хранится и поставляется в газообразном состоянии в стальных баллонах объемом 5, 10, 20 и 40 литров.
Водород образует с кислородом (2 объема водорода и 1 объем кислорода) взрывоопасную гремучую смесь.
Технический пропан – это смесь пропана (С3Н8) и пропилена (С3Н6), представляющая собой при нормальных условиях бесцветный газ, не имеющий запаха. Для безопасного пользования в состав смеси добавляют сильнопахнущие вещества – одоранты. Газ тяжелее воздуха, при атмосферном давлении и температуре 20 °C его плотность составляет 1,88 кг/м3. Применяется для формирования газового пламени с температурой 2700 °C в качестве заменителя ацетилена.
Поставляют пропан к месту сварки в стальных цельносварных баллонах в сжиженном состоянии.
Пропан огнеопасен. Может скапливаться в приямках, подвалах и колодцах, образуя взрывоопасную смесь.
МАФ-газ – метилацетилен-алленовая газообразная фракция, образующаяся в процессе переработки природного газа и нефтепродуктов, обладающая хорошими теплофизическими свойствами. Газ тяжелее воздуха, плотность при нормальных условиях составляет 1,9 кг/м3. Обладает резко выраженным запахом.
МАФ-газ применяют в качестве заменителя ацетилена при газовой сварке. Он в два раза дешевле ацетилена, а температура пламени при его сгорании достигает 2930 °C. Газ поставляют к месту сварки в сжиженном состоянии в цельносварных баллонах (таких же, как и для пропана). В баллоне вместимостью 50 л и весом 22 кг содержится 21 кг газа.
Склонность к обратному удару газа МАФ незначительна. По сравнению с ацетиленом МАФ имеет более мягкое пламя, что дает свои преимущества при работе с металлом малых толщин, с цветными металлами, а также при контурной резке изделий. В то же время ядро даже нейтрального пламени при использовании газа МАФ длиннее ацетиленового в 1,5–2 раза.
Технология газопламенной обработки при использовании газа МАФ в основном такая же, как и при использовании ацетилена. В качестве аппаратуры могут применяться горелки, резаки, редукторы и другие устройства, предназначенные для работы с ацетиленом и на сжиженных газах (пропан-бутановых смесях). Присадочную проволоку лучше применять такую, которая больше подходит для сварки пропаном.
На баллоне с газом может использоваться редуктор, применяемый на пропановых баллонах. По сравнению с пропан-бутановой смесью при сварке стали газом МАФ расход кислорода в 1,5 раза меньше.
Смесь МАФ-газа (3,4–10,8 % по объему) с воздухом взрывоопасна. Газ может скапливаться в подвалах, колодцах и приямках, образуя взрывоопасную смесь.
Присадочными материалами являются проволока, прутки (стержни), полоски металла, близкие по свойствам свариваемому металлу. При проведении сварки они обеспечивают дополнительный металл для заполнения зазора между свариваемыми кромками и образования сварного шва требуемой формы.
Основным присадочным материалом служит сварочная проволока.
При сварке углеродистых и легированных сталей применяют холоднотянутую сварочную проволоку. Ее характеристики приведены выше, в главе «Характеристика, классификация и назначение сварочной проволоки».
Для газовойсварки серого чугуна выпускают чугунные прутки ∅ 4, 6, 8, 10, 12 и 16 мм. Маркировку торца прутков выполняют краской черного, белого, красного, синего, коричневого, желтого или зеленого цвета.
Для газовой сварки меди, медно-никелевыхсплавов, бронз и латуни применяют сварочную проволоку, отвечающую ГОСТ 16130–90. Ее диаметр составляет 0,8–8,0 миллиметров.
Условное обозначение присадочной проволоки из меди или ее сплава соответствует классификации этих материалов по следующим признакам:
● способу изготовления (холоднодеформированная (тянутая) – Д; горячедеформированная (прессованная) – Г);
● форме сечения – КР (проволоку изготавливают исключительно круглого сечения);
● механическим свойствам (мягкая – М, твердая – Т);
● виду поставки (мотки или бухты – БТ, катушки – КТ, барабаны – БР, сердечники – CP, немерной длины – НД).
При сварке алюминия и его сплавов используют тянутую и прессованную проволоку из алюминия и алюминиевых сплавов, отвечающую ГОСТ 7871–75. Ее диаметр составляет 0,8–12,5 мм. Условные обозначения при маркировке, характеризуют:
● способ изготовления (тянутая – В, прессованная – П);
● вид обработки (нагартованная – Н, отожженная – М);
● вид поставки (мотки (бухты) – БТ, катушки – КТ).
Сварочный флюс[16]. При газосварке флюс наносится на свариваемые кромки или вносится в сварочную ванну оплавляемым концом присадочного прутка (налипающим на него при погружении во флюс). Флюсы могут использоваться и в газообразном виде при подаче их в зону сварки с горючим газом.
Оборудование для газовой сварки, наплавки и резки включает в себя источники газоснабжения (ацетиленовые генераторы или газовые баллоны), аппаратуру регулирования и защиты (вентили, редукторы, манометры, предохранительные устройства), соединительные рукава и универсальные или специализированные горелки.
Ацетиленовый генератор – аппарат, предназначенный для получения газообразного ацетилена посредством разложения карбида кальция водой. Из 1 кг карбида кальция, в зависимости от размеров его кусков и степени чистоты, можно получить 235–285 дм3 ацетилена. Однако применение газогенераторов в быту и в небольших мастерских нецелесообразно: они более взрывоопасны, нежели баллоны, и потому в сварочном комплекте возрастает количество предохранительных устройств. Обслуживание их сложнее; подготовка к работе занимает гораздо больше времени, чем при работе с баллонами; отработанный ил сливают только в специальные ямы или бетонные хранилища. К тому же по завершении даже незначительных сварочных работ следует выработать весь загруженный объем карбида кальция – постепенно стравить ацетилен в атмосферу или дожечь его горелкой. Поэтому использование ацетиленовых генераторов оправдано только при промышленных объемах работ.
Баллон – это металлическая емкость для хранения и транспортирования газов в сжатом, растворенном и сжиженном состояниях.
Кислородный баллон, согласно ГОСТ 949–73, изготовлен из углеродистой (150У) или легированной (150JI) стали и имеет стальной цельнотянутый цилиндрический корпус с выпуклым днищем, на которое напрессован башмак (рис. 21, а). Вверху баллон заканчивается горловиной с резьбовым отверстием, в которое ввернут запорный вентиль. На наружную резьбу горловины баллона навернут предохранительный колпак.
Рис. 21. Газовые баллоны для сварки:
а – кислородный баллон вместимостью 40 л (1 – днище; 2 – башмак; 3 – корпус; 4 – горловина; 5 – вентиль; 6 – предохранительный колпак); б – кислородный баллон вместимостью 10 дм3; в – ацетиленовый баллон (1 – корпус; 2 – вентиль; 3 – азотная подушка; 4 – пористая масса с ацетоном; 5 – башмак; 6 – предохранительный колпак); г – баллон для пропана вместимостью 55 дм3 (1 – табличка с паспортными данными; 2 – корпус; 3 – днище; 4 – башмак; 5 – подкладные кольца; 6 – горловина; 7 – вентиль; 8 – предохранительный колпак)
Высота стандартного баллона 40–150У составляет 1370 мм, диаметр 219 мм, толщина стенки 7 мм, вместимость 40 дм3, масса без газа 67 кг. Баллон рассчитан на рабочее давление 15,0 МПа (150 кгс/см2); испытательное давление составляет 22,5 МПа (225 кгс/см2). В полном баллоне объем кислорода, соответствующий атмосферному давлению и температуре 20 °C, составляет 6 м3.
Цвет баллона голубой, надпись черная.
Наряду с баллонами вместимостью 40 дм3, выпускаются и баллоны меньшей вместимости – 20; 10; 5 и 1 дм3 (рис. 21, б).
Вентиль кислородного баллона изготавливают из латуни, так как сталь активно корродирует в среде сжатого кислорода, а маховики и заглушки – из стали, алюминиевых сплавов и пластмассы.
Количество кислорода в баллоне приближенно определяют, решая следующую пропорцию: при атмосферном давлении (0,1 МПа) в баллоне находится 40 дм3 газа; если давление в баллоне равно 15 МПа, то до объема 40 дм3 можно сжать (40 × 15)/0,1 = 6000 дм3, или 6 м3, кислорода.
Ацетиленовый баллон большой емкости имеет такие же размеры, как и кислородный вместимостью 40 дм3 (рис. 21, в). Масса баллона без газа 83 кг, рабочее давление ацетилена 1,9 МПа (19 кгс/см2), максимальное давление 3,0 МПа (30 кгс/см2).
Ацетиленовый баллон заполняют пористой массой из активированного древесного угля, которую пропитывают ацетоном из расчета 225–300 г на 1 дм3 вместимости баллона. Ацетилен, хорошо растворяясь в ацетоне, становится менее взрывоопасным.
Более экономичны баллоны с литой пористой массой, способные вместить 7,4 кг растворенного ацетилена, тогда как баллоны с активированным углем – только 5 кг.
На баллоне с литой пористой массой ниже надписи «АЦЕТИЛЕН» красной краской нанесены буквы ЛМ. Такие баллоны поставляют с азотной подушкой.
При отборе ацетилена из баллона удаляется и часть ацетона в виде паров. Для уменьшения потерь ацетона во время работы необходимо располагать баллоны в вертикальном положении и отбирать ацетилен со скоростью, не превышающей 1,7 м3/ч.
В наполненном баллоне вместимостью 40 дм3 при рабочем давлении и температуре воздуха 20 °C объем газообразного ацетилена, соответствующий нормальным условиям, составляет 5,5 м3.
Цвет баллона белый, надпись красная. Отпускают ацетилен также в баллонах емкостью 1; 5; 10; 15 и 20 л.
Отличительной особенностью вентиля ацетиленового баллона является отсутствие маховика и штуцера. В корпусе вентиля имеется боковая канавка, в которую устанавливают штуцер ацетиленового редуктора, прижимая его специальным хомутом через кожаную прокладку. Такая конструкция вентиля не допускает случайной установки другого редуктора во избежание образования взрывоопасной смеси.
Еще одна отличительная особенность вентиля ацетиленового баллона состоит в том, что его открывание, закрывание и присоединение с его помощью редуктора к баллону осуществляются специальным торцовым ключом.
Для определения объема ацетилена баллон взвешивают до и после наполнения газом и по разности показателей и плотности ацетилена определяют объем газа, находящегося в баллоне. Например, масса баллона с ацетиленом 89 кг, порожнего – 83 кг. Масса ацетилена в баллоне: 89–83 = 6 кг. Плотность ацетилена при атмосферном давлении и температуре 20 °C составляет 1,09 кг/м3. Следовательно, объем ацетилена при этих условиях составляет 6/1,09 = 5,5 м3.
Баллоны для техническогопропана изготавливают из листовой углеродистой стали толщиной 3 мм согласно ГОСТ 15860–84. К верхней части сварного цилиндрического корпуса пропанового баллона приварена горловина, а к нижней – днище и башмак (рис. 21, г). В горловине имеется резьбовое отверстие, в которое ввернут латунный вентиль. Внутри баллона расположены подкладные кольца. Для защиты вентиля баллона от механического повреждения служит предохранительный колпак.
Высота баллона не более 1013 мм, диаметр (без обечайки усиления) 292 мм, масса без газа 22 кг, вместимость 50 л, рабочее давление 1,6 МПа (16 кгс/см2). Газ в баллоне находится в сжиженном состоянии.
Кроме того, выпускают пропановые баллоны вместимостью 27, 12 и 5 л. 50-литровый баллон содержит 21,4 кг сжиженного газа, 27-литровый – 11,4 кг, 5-литровый – 3,3 килограмма.
Кратковременный максимальный отбор газа не должен превышать 1,25 м3/ч, а нормальный во избежание замерзания вентиля – 0,6 м3/ч.
Цвет баллона красный, надпись белая.
Вентиль пропанового баллона мембранного типа делают из латуни (реже из стали). Он рассчитан на рабочее давление до 2,0 МПа (20 кгс/см2). Боковой штуцер корпуса вентиля имеет левую резьбу.
Редуктор – устройство, предназначенное для понижения давления газа, поступающего из баллона, и автоматического поддержания заданного рабочего давления. Газовые редукторы осуществляют также регулирование рабочего давления и защиту баллона от обратного удара пламени, а манометры показывают давление газа в баллоне и на выходе из редуктора.
Газовые редукторы, согласно ГОСТ 13861–89, классифицируют по назначению (Б – баллонные, Р – рамповые, С – сетевые); виду редуцируемого газа (А – ацетиленовые, К – кислородные, М – метановые, П – пропан-бутановые); схеме регулирования (О, Д – одно-и двухступенчатые с механической установкой давления, З – одноступенчатые с пневматическим заданием рабочего давления). Различаются они и по принципу действия (прямого и обратного действия). В эксплуатации более удобны редукторы обратного действия, так как они компактны и просты по конструкции, надежны и безопасны в работе.
Редукторы отличаются друг от друга окраской корпуса (ацетиленовый – белого цвета, кислородный – голубого, пропановый – красного) и присоединительными устройствами для крепления их к баллону. Кислородный и пропановый редукторы присоединяют к баллонам накидными гайками соответственно с правой и левой резьбой. Ацетиленовые редукторы крепят к баллонам хомутом с упорным винтом.
Технические характеристики баллонных редукторов приведены в табл. 8 (см. с. 326).
Манометры представляют собой приборы для измерения давления газа. Их присоединяют к корпусу редуктора через прокладки из фибры и кожи с помощью резьбовых соединений с использованием гаечного ключа.
Каждый манометр должен иметь на циферблате обозначение того газа, для которого он предназначен. На кислородные манометры наносят надписи «Кислород» и «Маслоопасно», на ацетиленовые, водородные и пропановые – «Ацетилен», «Водород» и «Пропан» или символы О2, С2Н2, Н2 и С3Н8.
Рукава (шланги) представляют собой гибкие трубопроводы, служащие для транспортирования газа к месту работы и подачи его в горелку. В зависимости от назначения резиновые рукава для газовой сварки подразделяют на три класса:
● I – для подачи ацетилена, городского газа, технического пропана и других горючих газов под давлением до 630 кПа (6,3 кгс/см2); окраска рукавов красная;
● II – для подачи жидкого топлива (бензин, уайт-спирит, керосин или их смеси) под давлением до 630 кПа (6,3 кгс/см2); окраска рукавов желтая;
● III – для подачи газообразного кислорода под давлением до 2,0 МПа (20 кгс/см2); окраска рукавов синяя.
Рукава изготавливают из резины, армированной слоями ткани. Кислородные рукава имеют внутренний и наружный слои из вулканизированной резины и несколько слоев из льняной или хлопчатобумажной ткани.
Рукава применяют при температуре окружающей среды от –35 до +50 °C. Для работы в северных широтах необходимы рукава из морозостойкой резины, сохраняющей свои свойства при температуре до –65 °C.
Рукава I и II классов имеют четырехкратный, а III класса – трехкратный запас прочности по отношению к рабочему давлению.
Рукава изготавливают с внутренним диаметром, равным 6,3; 8,0; 9,0; 10,0; 12,0; 12,5 и 16,0 мм. Рукава длиной 10 и 20 м поставляют в виде бухт. Оптимальная длина рукава 9–30 м. При ее увеличении возрастают потери давления газа.
Основным инструментом газосварщика является сварочная горелка – устройство для смешения газов, формирования сварочного пламени и регулирования его вида и мощности. Сварочные горелки классифицируют по следующим признакам:
● способу подачи горючего газа и кислорода в смесительную камеру – инжекторные и безынжекторные;
● роду горючего газа – ацетиленовые, водородные, для газов-заменителей и жидких горючих;
● числу факелов – однопламенные и многопламенные;
● назначению – универсальные (сварка, резка, пайка, наплавка) и специализированные для выполнения одной операции;
● мощности пламени – горелки микромощности, малой, средней и большой мощности;
● способу применения – ручные, машинные.
В безынжекторных горелках горючий газ и кислород поступают в смеситель под одинаковым давлением. Инжекторные горелки имеют устройство, обеспечивающее подачу горючего газа низкого давления в смесительную камеру за счет всасывания его струей кислорода, подводимого под более высоким давлением. Это устройство называется инжектором, а явление подсоса – инжекцией. Наиболее эффективны инжекторные горелки, отличающиеся высокой безопасностью, простотой обслуживания, надежностью работы и универсальностью.
На рис. 22, а – в представлены схема инжекторной горелки и конструкция инжекторного устройства. Кислород из баллона под рабочим давлением через ниппель, газоподводящую трубку и вентиль поступает в сопло инжектора. Выходя из сопла с большой скоростью, он создает разрежение в ацетиленовом канале, в результате чего ацетилен, проходя через ниппель, трубку и вентиль, подсасывается в смесительную камеру. В этой камере образуется горючая смесь, которая, проходя через наконечник и мундштук, сгорает на выходе из горелки, образуя сварочное пламя.
Для нормальной работы инжекторных горелок необходимо, чтобы давление кислорода составляло 150–500 кПа (1,5–5,0 кгс/см2), а давление ацетилена – 3–120 кПа (0,03–1,2 кгс/см2). Устойчивое горение пламени достигается при скорости истечения горючей смеси 50–170 м/с.
На рис. 22, д представлена схема безынжекторной горелки. Вместо инжектора у нее – смесительная камера наконечника. При подключении безынжекторной горелки к газовым баллонам применяют редуктор, автоматически поддерживающий равенство рабочих давлений кислорода и ацетилена (рис. 22, г).
Рис. 22. Горелки:
а – в – инжекторная (общий вид, конструкция горелки и инжектора; 1 – мундштук; 2 – наконечник; 3 – смесительная камера; 4 – сопло инжектора; 5, 7 – вентили кислорода и ацетилена; 6 – ниппели; 8, 9 – каналы для подачи кислорода и ацетилена; 10 – инжектор); г – схема подключения безынжекторной горелки к газовым баллонам; д – конструкция безынжекторной горелки (1 – мундштук; 2 – наконечник; 3, 6 – вентили кислорода и ацетилена; 4, 5 – ниппели кислорода и ацетилена; 7, 8 – баллонные редукторы; 9 – редуктор равных давлений; 10 – рукава; 11 – горелка, 12 – предохранительные устройства); е – инжекторный резак (1 – вентиль режущей струи кислорода; 2 – трубка подачи кислорода к мундштуку; 3 – подогревающее пламя; 4 – режущая струя кислорода)
Кислород через ниппель, регулировочный вентиль и специальные дозирующие каналы поступает в смесительную камеру горелки. Аналогично через ниппель и вентиль подается ацетилен. Из смесительной камеры горючая смесь проходит через наконечник и выходит из мундштука, образуя сварочное пламя.
Мощность пламени выбирают в зависимости от толщины свариваемого металла и его теплофизических свойств. Регулируют пламя подбором наконечника горелки. Правила выбора сварочной горелки и наконечников к ней приведены в табл. 9 и 10.
При работе с газовым оборудованием огромную опасность представляет возможность попадания в него взрывной волны при обратных ударах пламени из сварочной горелки или резака. Обратным ударом называется воспламенение смеси газов в каналах горелки или резака и распространение пламени навстречу потоку горючей смеси. Дело в том, что горючая смесь сгорает с определенной скоростью. Из отверстия мундштука горелки или резака она вытекает также с определенной скоростью, которая должна быть больше скорости сгорания. В противном случае пламя проникнет в канал мундштука и воспламенит смесь в каналах горелки или резака, что вызовет обратный удар пламени. Обратный удар может произойти также от перегрева и засорения канала мундштука горелки.
Обратный удар характеризуется резким хлопком и гашением пламени. Горящая смесь газов устремляется по ацетиленовому каналу горелки или резака в шланг, а при отсутствии предохранительного затвора – в источник горючего газа, что может привести к его взрыву и вызвать серьезные разрушения и травмы.
Безопасность работ при газовой сварке обеспечивает группа предохранительных устройств, устанавливаемых между баллоном и горелкой (рис. 22, г, поз. 12). К ним относятся обратный клапан, пламегаситель, предохранительный и отсечный клапаны.
Обратный клапан – предохранительное устройство, предотвращающее обратный ток газа. Его устанавливают на редуктор. Клапан открывается под действием газовой струи, а закрывается под действием пружины, когда давление газа на выходе из клапана превышает давление при нормальном потоке газа.
Обратный клапан, срабатывающий при определенном давлении, присоединяют к горелке для предотвращения обратного тока газа и снижения вероятности обратного удара пламени, когда давление газа на выходе превышает нормальное.
Пламегаситель подключают к горелке. Это предохранительное устройство, предотвращающее прохождение в защищаемое оборудование, аппаратуру и коммуникации пламени при его обратном ударе. Пламегасители подразделяют на два класса: класс I (тяжелый тип) и класс II (легкий тип). В зависимости от конструкции различают пламегасители одно– и двустороннего действия.
Предохранительный клапан – устройство, автоматически сбрасывающее газ в атмосферу при превышении заданного уровня давления и прекращающее истечение газа при снижении давления до этого уровня.
Предохранительные затворы бывают водяные и сухие. Первые предназначены для защиты ацетиленовых генераторов и трубопроводов для горючих газов от проникновения в них пламени при обратном ударе, а также кислорода из горелки или резака и воздуха из атмосферы. Для работы с баллонными редукторами применяют сухие затворы. Это комбинированное предохранительное устройство на основе пористой вставки из металлокерамики в сборе с обратными клапанами.
Отсечный клапан – предохранительное устройство, прекращающее подачу газа при критическом значении температуры, наличии противодавления на выходе из клапана либо превышении заданного значения расхода газа.