Слушая музыку сфер


Любимая мелодия моркови


Представьте себе Чарльза Дарвина, который сидит перед своей мимозой стыдливой, Mimosa pudica, и играет ей на кларнете. Зачем? Ему просто захотелось узнать, смогут ли звуки инструмента заставить двигаться деликатные листья мимозы. Это был самый причудливый эксперимент Чарльза Дарвина с растениями. Правда, в конечном итоге эксперимент провалился. Но этим необычным опытом заинтересовался Вильгельм Пфеффер (Wilhelm Pfeffer), известный немецкий ботаник и исследователь физиологии растений, автор классического «Пособия по физиологии растений». Он попробовал, но также неудачно, привести при помощи звука в движение тычинки высокой травы из немногочисленного рода Cynararea.

В 1950 году биолог Джулиан Хаксли (Huxley), внук Томаса Генри Хаксли и брат знаменитого писателя Алдо Хаксли, навестил д-ра Т.С. Синкха (Singh), декана факультета ботаники в Университете Аннамалаи, что к югу от Мадраса (Индия). Хаксли застал хозяина разглядывающим в микроскоп движение протоплазмы в клетках Hydrilla verticillata, морского растения родом из Азии с длинными прозрачными листьями. Хаксли был наслышан об опытах Дарвина и Пфеффера, и его вдруг осенила идея, что в микроскоп Синкх, пожалуй, сможет разглядеть воздействие звука на движение протоплазмы.

После восхода солнца движение протоплазмы в клетках растений обычно ускоряется, поэтому Синкх проводил свои опыты до 6 часов утра. Он поместил электрический камертон в двух метрах от Hydrilla и оставил его издавать звук в течение тридцати минут. Тем временем, он наблюдал за происходящим в микроскоп и обнаружил, что движение протоплазмы достигло необыкновенно высокой скорости. Обычно такая скорость протоплазмы в клетках растений наблюдается в более позднее время суток.

Тогда Синкх попросил свою помощницу Стеллу Понья, талантливую танцовщицу и скрипачку, поиграть на своём инструменте рядом с Hydrilla. Стоило девушке извлечь звуки определённой высоты, и движение протоплазмы ускорилось.

Синкх знал, что традиционные индийские обрядовые песни раги построены с учётом тональности звуков и вызывают у слушателя определённые эмоции и глубокое религиозное чувство. Тогда он решил испробовать раги на Hydrilla.

По преданию Кришна, восьмой и основной аватар и инкарнация индуистского бога Вишну, с помощью волшебной музыки вызвал буйный рост и цветение растений в городе Вриндаване на реке Джамуна (город на севере Центральной Индии, славящийся духовными музыкантами). Много позже Акбар, придворный императора Могула, творил своей песней настоящие чудеса: вызывал дождь, зажигал масляные горелки, пробуждал растения от зимнего сна и заставлял их цвести. Как? Он пел им раги. Нечто подобное можно найти и в тамильской литературе: почки или глазки сахарного тростника начинают буйно расти в ответ на непрерывное жужжание жуков, а золотисто-жёлтые цветы Cassia Fistula активно выделяют благоухающий сладкий нектар в ответ на сладкозвучные мелодии.

Синкх был знаком с древнеиндийской литературой и поэтому попросил свою помощницу исполнить мимозам южноиндийскую мелодию Майа-малава-гаула-рага. На две недели Синкх полностью погрузился в свои опыты и в конце концов обнаружил, что по сравнению с контрольной группой у экспериментальных растений количество пор на единицу площади было на 66% больше, эпидермис толще, а клетки, содержащие хлорофилл, длиннее и шире иногда на 50%.

Вдохновлённый Синкх попросил Гури Кумари, преподавателя музыкального колледжа Аннамалаи, сыграть бальзамическим растениям рагу под названием Кара-хара-прийя. Слывший виртуозом Кумари играл по 25 минут в день на богато украшенной семиструнной вине (инструменте подобном лютне) мелодии, которые традиционно посвящались богине мудрости Сарасвати. На пятой неделе стало очевидно, что экспериментальная группа стала заметно обгонять в росте контрольную группу, а к концу декабря первые выросли на 20% выше, а листьев у них было на 72% больше.

В последствии в экспериментах Синкха участвовало огромное количество видов растений: астры, петунии, космос, белые лилии, а также привычные лук, кунжут, редис, батат, тапиока.

Синкх составил репертуар из десятка различных раг, и по несколько недель перед рассветом исполнял каждому растению одну из раг на флейте, скрипке или фисгармонии. Кроме раг, растениям в течение 30 минут играли на вине музыку на высоких тонах с частотой 100-600 герц. Итоги своих экспериментов Синкх опубликовал в журнале, издаваемом сельскохозяйственным колледжем в Сабуре: «вне всякого сомнения благозвучные мелодии стимулируют рост, цветение и плодоношение растений».

Вдохновлённый своими успехами, Синкх предположил, что правильно подобранные звуки способны увеличивать урожайность сельскохозяйственных культур. С 1960 по 1963 гг. он проигрывал через динамики Чарукеши рага шести разновидностям раннего, среднего и позднего сортов риса, который рос на полях деревень штата Мадрас и у Бенгальского залива. И получил потрясающий результат: урожай его риса всегда был на 25-60% больше среднестатистического! Также с помощью музыки он на 50% повысил урожай арахиса и жевательного табака. В дальнейшем Синкх сообщил ещё об одном своём наблюдении: маргаритки, ноготки и петунии значительно ускоряли рост и цвели на две недели раньше срока, если девушки исполняли перед ними древнеиндийский танец Бхарата-Натьяж даже без музыкального сопровождения и без звенящих браслетов на лодыжках. Предположительно, причиной тому был особый ритм танца, который передавался через почву растениям.

У читателя сразу же возникает вопрос: а что конкретно оказывает такое влияние на растения? Синкх говорил, что в лабораторных условиях можно наглядно проследить следующее явление. Под воздействием музыки или ритма скорость обмена веществ по отношению к объёму испарения и ассимиляции углекислоты повышается более чем на 200 % по сравнению с контрольной группой. Растения в этом случае получают дополнительную энергию, а следовательно, производят больше питательных веществ. В результате урожайность резко повышается. Синкх даже заметил увеличение количества хромосом у некоторых видов водных растений и повышение содержания никотина в табачных листьях.

Похоже, индийцы первыми успешно воспользовались музыкой для стимуляции растений. Но, безусловно, они не единственные, кто достиг в этом больших успехов. В конце 1950-х годов в городе Миллуоки, штат Висконсин, США (Milwaukee, Wisconsin), профессиональный цветовод Артур Локер решил развлечь музыкой свои тепличные растения. Разница в растениях «до и после» была весьма заметной, и Локер сделал вывод, что музыка может оказаться чрезвычайно полезной в садоводстве. По его словам, «семена прорастали быстрее, растения выпрямились, стебли их были усыпаны цветами. Цветы стали ярче и радовали глаз гораздо дольше обычного».

Примерно в то же время канадский инженер и фермер-любитель Юджин Кенби (Eugene Canby) из Онтарио засадил экспериментальное поле пшеницей и проигрывал ей скрипичные сонаты Иоганна Себастьяна Баха. В результате он получил урожай на 66% больше среднего. Но и это ещё не все: зёрна его пшеницы были крупнее и тяжелее обычных, хотя почва, где росла эта пшеница, была бедной и истощённой. И все же растения на такой почве не уступали пшенице, выращенной на самых богатых землях. Очевидно, музыкальный гений Баха оказался для пшеницы не менее, а, возможно, и более важным, чем питательные вещества.

В 1960 г. ботаник Джордж Е. Смит (George Е. Smith) из Иллинойса узнал об экспериментах Синкха из разговора с редактором сельскохозяйственного раздела местной газеты. Смит не очень-то верил во все эти штучки, но все же решил проверить новомодную теорию следующей весной. Он посадил в плоских кадках кукурузу и сою и расставил растения по двум совершенно одинаковым теплицам. В них Смит поддерживал одинаковую температуру и влажность. В одну из теплиц он установил небольшой магнитофон, направил динамики на растения и играл им 24 часа в сутки «Голубую рапсодию» Джорджа Гершвина. В итоге вдохновлённые рапсодией семена растений проросли быстрее, стебли были толще, твёрже, а цвет ярче. Об этом Смит доложил своему работодателю, фирме «Mangeldorf and Bros., Inc.», торгующей оптом семенами сельхозкультур в Сент-Луисе, штат Миссури.

Но Смит не остановился на достигнутом. Он достал из каждой теплицы по десять растений кукурузы и сои, аккуратно срезал их на уровне земли и тут же взвесил на аптекарских весах. К его удивлению десять «музыкальных» растений кукурузы весили 40 грамм, обычная кукуруза — всего лишь 28 грамм. С соей ситуация та же: 31 грамм и 25 грамм соответственно.

В следующем году Смит играл музыку с момента посадки до уборки урожая на небольшом участке с гибридной кукурузой Embro 44ХЕ. Урожай с этого участка оказался 85 центнеров с гектара, по сравнению с 72 центнерами с га кукурузы того же сорта, выращенной в сходных условиях. Смит заметил, что «музыкальная» кукуруза дала дружные всходы, росла быстрее и созрела раньше обычного. Она дала больший урожай не за счёт увеличения размеров початков, а за счёт лучшей выживаемости растений. Но может быть, это было просто совпадением? Тогда, в 1962 году, Смит разбил уже четыре участка с кукурузой и засадил их не только прежним гибридным сортом Embro 44ХЕ> но и другим очень живучим гибридом Embro Departure. На первом участке он играл прежнюю музыку, другой оставался в тишине, на третьем и четвёртом участке — длинные пронзительные звуки, одни на высокой частоте в 1800 герц, другие — на низкой в 450 герц. Осенью с первого участка, обработанного музыкой, было собрано 115 центнеров с гектара кукурузы сорта Departure, а со второго, остававшегося в тишине, 106 центнеров с гектара. На третьем участке («обработанном» высокочастотным звуком) растения превзошли себя и дали 122 центнера с гектара, а на четвёртом (с низким звуком) и того больше — 124 центнера. Первый же сорт кукурузы — Embro 44ХЕ — не дал такой большой разницы в урожае, что для Смита осталось загадкой.

Фермеры из соседних районов приставали к Смиту, требуя объяснить результаты своих опытов. Смит предположил, что энергия звука может повышать активность молекул в растении. Более того, по показаниям термометров, отслеживавших температуру почвы на участках, непосредственно перед динамиками температура почвы была стабильно на 2° выше. Смит был озадачен тем, что края листьев растений, росших в подогретой почве, выглядели немного обожжёнными, но списал это на чрезмерную нагрузку от звуковых вибраций. «Здесь ещё много непонятного, — говорил Смит. — Друзья из Канзаса рассказали мне, что волны высоких частот успешно использовались для контроля размножения насекомых в зернохранилищах. Затем эти семена пшеницы прорастали быстрее необработанного зёрна».

В отличие от электромагнитных, волны звукового спектра распространяются только через материальную среду. Звуковые волны и их свойства зависят от степени сжатия и расширения материи. Так звуковая волна может проходить сквозь воздух, воду и другие жидкости, металл, поверхность стола, человека или растение. Человеческое ухо улавливает только волны определённого диапазона: от 16 до 20 000 герц. Поэтому эти волны ещё называют «аудио» или «звуковыми» волнами. Все, что находится ниже 16 герц, называется волнами сверхнизкого диапазона, и они уже не воспринимаются человеком как звук. Эти волны возникают также от сжатия и расширения материи, но чрезвычайно медленного. Такие волны, к примеру, производит гидравлический домкрат. Они настолько медленные, что частота их колебания измеряется не в циклах в секунду, а в секундах на цикл. Человек также не может слышать ультразвуковые волны выше 20 000 герц, но, тем не менее, они оказывают на человека влияние, которое ещё до конца не изучено. Волны с очень высокими частотами, измеряемыми сотнями и тысячами миллионов герц, воспринимаются кожей человека как тепло разной температуры. Поэтому им дали название «тепловые» волны. Но они одновременно являются ультразвуковыми, так как человек не воспринимает их на слух.

После того, как исследования Смита получили огласку по всей Северной Америке, ему пришло письмо от Питера Белтона (Peter Belton), сотрудника Министерства сельского хозяйства Канады. В своём письме он сообщил, что применял ультразвук для отпугивания бабочек-вредителей, чьи гусеницы начисто съедали кукурузу. Белтон писал: «Сначала мы изучили, какие волны может слышать эта бабочка. Очевидно, она воспринимала волны в районе 50 000 герц. Ультразвук примерно такой частоты издаёт летучая мышь, которая питается этими бабочками. Мы засадили два участка 3x6 метров кукурузой и разделили их заграждениями из пластика высотой в 2,5 метра, не пропускавшими волны этой частоты. На двух половинках обоих участков мы транслировали ультразвук этой частоты от сумерек до рассвета на протяжении всего периода, когда бабочка откладывает яйца». На участках без ультразвукового сопровождения личинки бабочки повредили 50% зрелых початков кукурузы, а на участках, где бабочка слышала звуки своего злейшего врага — летучей мыши — было повреждено лишь 5% початков. Также на последних участках обнаружили на 60% меньше личинок, а сама кукуруза была на 10 см выше, чем на соседних участках.

В середине 1960-х годов опытами Синкха и Смита заинтересовались Мери Межерс и Перл Вайнбергер (Mary Measures, Pearl Weinberger), два исследователя из Университета Оттавы в Канаде. Как и Джордж Л. Лоуренс (L. George Lawrence), они были хорошо знакомы с советскими, канадскими и американскими исследованиями влияния ультразвука на прорастание и рост ячменя, подсолнечника, ели, сосны, сибирского кедра и других растений. Необъяснимо, но факт: при стимуляции ультразвуком у растений повышается дыхательная деятельность и активность ферментов. Правда, ультразвук определённой частоты может стимулировать одни виды растений и угнетать другие. Межерс и Вайнбергер задались вопросом: будут ли отдельные звуки звукового (то есть слышимого человеком) диапазона влиять на рост пшеницы так же эффективно, как и музыка?

Чтобы ответить на этот вопрос, двум учёным понадобилось четыре года исследований. Они обрабатывали сорта озимой и яровой пшеницы звуковыми волнами высоких частот. Обнаружилось, что в зависимости от длительности стимуляции, лучше всего растения реагировали на звук частотой в 5 000 герц.

Учёные не могли понять, как же всё-таки звук влияет на растение? Ведь обработанная звуком пшеница давала урожаи чуть ли не вдовое больше обычного! Это явление не было связано с нарушением химических связей в семенах, писали они в «КанаДском ботаническом журнaле»(Canadian Journal of Botany). На это нужно в миллион раз больше энергии, чем энергия звуковых волн, которыми обрабатывали растения. Поэтому учёные предположили, что, возможно, звуковые волны входят в резонанс с клетками растений. Энергия накапливается в клетках и меняет их метаболизм. По мнению д-ра Вайнбергера, в будущем сельхозтехника будет непременно включать генератор звуковых волн и динамик.

Об этом писал Дж. И. Родейл (J.I. Rodale) в июльском номере журнала «Предупреждение» (Prevention) за 1968 г.

К 1973 году, по словам д-ра Вайнбергера, в США, Канаде и Европе уже проводились широкомасштабные опыты по практическому применению звуковых волн в сельском хозяйстве.

Схожие эксперименты поставила группа четырёх учёных Университета Северной Каролины. Они установили, что «розовый шум» частотой от 20 до 20 000 герц и громкостью в 100 децибелл (воспринимаемый человеком примерно как шум при взлёте огромного реактивного «Боинга 727» на расстоянии 35 метров) заставлял семена репы прорастать гораздо раньше, чем в обычных условиях. По словам руководителя научно-исследовательской группы профессора физики Гэйлорда Т. Хагесета (Gaylord Т. Hageseth), их исследования привлекли внимание Министерства сельского хозяйства США, которое рассматривает предложения по внедрению звуковой стимуляции в сельскохозяйственную практику. Так, с помощью звука можно заставить семена прорастать в очень жарких регионах США, например в некоторых районах Калифорнии, где температура воздуха достигает 38 градусов. В таких условиях семена салата, к примеру, засыпают и вовсе перестают прорастать. Если их обрабатывать звуком, то салат вместо одного урожая за сезон может давать два. Кроме того, звуком можно стимулировать прорастание семян сорняков на ещё незасеянном поле. Затем ростки сорняков запахиваются в землю, а семена культурных растений засеваются на свободное от сорняков поле.

Но вряд ли кому-нибудь захочется обрабатывать свои поля оглушительным грохотом. Поэтому команда из Северной Каролины попыталась получить тот же эффект, но на других частотах и при меньшем уровне громкости. К началу 1973 г. они обнаружили, что семена репы прорастают быстрее при снижении частоты до 4 000 герц.

В 1968 году профессиональный органист и меццо-сопрано Дороти Реталлак провела несколько интересных и довольно противоречивых опытов о влиянии музыки на растения. С 1947 по 1952 годы она выступала с клубными концертами в Денвере. Но когда все её восемь детей поступили в колледжи и разъехались, кто куда, она почувствовала себя совсем не у дел, к тому же у неё не было высшего образования. Её муж, занятой врач-терапевт, был немало удивлён, когда узнал, что его жена поступила на музыкальное отделение колледжа Темпл Бюель (Temple Buell College). На занятии по биологии студенты получили домашнее задание провести лабораторный опыт. Миссис Реталлак смутно помнила статью о Джордже Смите, который развлекал музыкой свою кукурузу.

Миссис Реталлак нашла себе напарницу, родители которой отдали им в своём доме отдельную комнату для экспериментов. Они собрали группу растений: филодендрон, кукурузу, редис, герань и африканские фиалки. Начинающие экспериментаторы записали на плёнку ежесекундно повторяющиеся ноты «си» и «ре», исполняемые на фортепиано. Пять минут этих изматывающих монотонных звуков перемежались пятью минутами тишины. Растения прослушивали эту какофонию двенадцать часов в сутки кряду. В течение первой недели поникшие было фиалки оживились и зацвели. Десять дней растения в «звуковой» группе жили и процветали, но к концу второй недели листья герани пожелтели. Некоторые растения стали отклоняться от динамиков, как будто их снесло сильным ветром. К концу третьей недели все растения погибли. Все, за непонятным исключением фиалок, которые, казалось, совершенно не пострадали от этого бедствия. Контрольная группа, которую оставили в тишине и покое, цвела и благоухала.

Дороти Реталлак сдала отчёт о результатах своему преподавателю биологии профессору Броману и попросила разрешение сделать более подробные эксперименты. Он нехотя согласился. «Все эти опыты меня немного покоробили, — говорил он впоследствии. — Но что-то в этом всё-таки было, и я решил попробовать, хотя остальные студенты просто умирали со смеху». Преподаватель отдал в распоряжение Дороти три специальные камеры 1 9м х 9 мх 6 м, купленные недавно факультетом биологии. Камеры напоминали огромные аквариумы и позволяли поддерживать и контролировать заданные температуру, освещение и влажность.

В одну камеру Дороти поместила контрольную группу растений, а в две другие — экспериментальные. Состав растений для опытов не поменялся, за исключением фиалок. Она посадила их в одинаковую почву и поливала равным количеством воды по расписанию. Дороти пыталась понять, какой ноте растение отдадут своё предпочтение. Она проигрывала непрерывно звучащую ноту «фа» в одной из камер на протяжении восьми часов, другим же растениям повезло больше: их потчевали отрывистыми «фа» всего три часа в сутки. В первой камере все растения погибли в течение двух недель, во второй же камере растения выглядели гораздо лучше, чем контрольная группа, жившая в тишине и покое.

Миссис Реталлак и её преподаватель были совершенно сбиты с толку. Они не могли объяснить, почему в сходных экспериментах были получены различные результаты. Может быть, растения погибли от утомления и скуки, или они просто «сошли с ума»? Эти опыты вызвали на факультете биологии шквал откликов среди студентов и преподавателей. Одни пожимали плечами, считая эту затею полным бредом, другие же были заинтригованы необъяснимыми результатами. Два других студента пошли по стопам Дороти Реталлак и провели двухмесячный опыт на летней тыкве. Они поместили растения тыквы в две камеры и играли им музыку местных радиостанций. В одной камере растения были вынуждены слушать тяжёлый рок, в другой — классическую музыку.

И тыква оказалась довольно разборчивой. Растения, что слушали Гайдна, Бетховена, Брамса, Шуберта и других европейских классиков XVIII и XIX вв., росли по направлению к радиоприёмнику. Одна тыква даже нежно обвила собою динамик. Тыквы, вынужденные слушать рок, отклонялись прочь от динамиков и даже пытались вскарабкаться по скользкой стеклянной стене камеры.

Под впечатлением опытов своих коллег, Дороти Реталлак в начале 1969 г. провела серию подобных экспериментов с кукурузой, тыквой, петунией, цинией и ноготками. Эффект был тот же. В «роковой» среде растения вырастали очень высокими с маленькими листьями или оставались карликами. За две недели прослушивания рока все ноготки погибли, в «классической» камере ноготки процветали, как ни в чем не бывало. Что интересно, в течение первой недели растения, которых «постиг тяжёлый рок», потребляли гораздо больше воды, чем «классики». Но, похоже, вода не шла им на пользу: при осмотре корней выяснилось, что в первой группе корневая система была слабой, длиной в среднем 2-3 см. Во второй группе — мощной, с многочисленными корнями и в четыре раза длиннее.

Тогда вечно недовольные критики заговорили о том, что в экспериментах не учитывалось влияние «белого шума» (шума в 60 герц, слышимого, когда радио не настроено на волну радиостанции) и голоса дикторов. Чтобы успокоить их, Дороти Реталлак стала записывать музыку на кассеты. Она выбрала рок-композиции из репертуара Лёд Зеппелин, Ванилла Фадж и Джимми Хендрикса, которые отличались грохотом ударных инструментов. Прослушав эту жуткую какофонию, растения стали расти в противоположную сторону. Когда Дороти повернула все горшки на 180 градусов, растения снова отклонились назад. Это убедило большинство критиков в том, что растения определённо реагируют на звуки рок-музыки.

Почему же рок так «подействовал на нервы» растений? Дороти предположила, что причиной всему звук ударных инструментов, и начала новую серию опытов. Она выбрала известную испанскую мелодию «Ла Палома» и записала две её версии на плёнку. Одна версия была исполнена на металлических ударных, другая — на струнных инструментах. Растения, слушавшие первую версию, отклонились всего на 10 градусов от динамика. Растения, слушавшие «Ла Палому» в струнном исполнении, наклонились на 15 градусов к динамикам. Опыт длился 18 дней, в нем участвовало по 25 растений в каждой камере, включая тыквы, выращенные из семян, цветы, листовые растения из теплиц. И результат был тот же.

Тогда Дороти, которая к тому же была одним из директоров Американской гильдии органистов, захотелось выяснить, как понравится растениям изысканная, построенная на математических принципах, музыка востока и запада. Основываясь на своём опыте, она выбрала хоральные прелюдии Иоганна Себастьяна Баха и классические мелодии на ситаре (упрощённый вариант южноиндийского инструмента вина), в исполнении бенгальского брамина Рави Шанкара.

Бах пришёлся растениям явно «по вкусу»: они наклонились на 35 градусов в сторону динамиков. Но это несравнимо с реакцией на Рави Шанкара! Чтобы дотянуться до динамиков, цветы наклонились вперёд более чем на 60 градусов! Растения, оказавшиеся рядом с магнитофоном, увили собою весь динамик.

Под натиском заинтересованной молодёжи Дороти сменила классику на фолк и кантри. Но её растения реагировали на эту музыку не больше, чем контрольная группа, которая росла в тишине. Озадаченная Дороти никак не могла понять, то ли растения были в полной гармонии с этой музыкой, то ли им было попросту все равно?

Но самый большой сюрприз преподнёс джаз. Когда растениям предложили репертуар, начиная от Дюка Элингтона «Зов Души» и двух дисков Луиса Армстронга, 55% растений наклонилось на 15-20 градусов вперёд к динамикам. Также отмечался более быстрый рост по сравнению с контрольной группой. Дороти обнаружила, что различные музыкальные стили заметно влияли на скорость испарения дистиллированной воды в камерах. Так, за одно и то же время в тишине из мензурки испарялось 14-17 мл воды, при звучании музыки Баха, Шанкара и джаза испарение уже составляло 20-25 мл, а при грохотании рока — 55-59 мл.

Однажды в колледже, где училась Дороти, кто-то заметил, что она стала единственной бабушкой-выпускницей в истории колледжа. По этому случаю колледж позвонил журналистке из газеты «Денвер Пост»Ольге Куртис и рассказал про необычные эксперименты Дороти с растениями. Миссис Реталлак провела для Ольги показательный эксперимент, где она сравнивала воздействие на растения рока и струнных квартетов современных авангардных композиторов Шоенберга, Веберна и Берга. Музыка этих неоклассиков построена на двенадцатитональной системе. Может быть эта немелодичная и диссонансная музыка имеет тот же эффект, что и рок? Но оказалось,что хуже рока быть ничего не может. У «обработанных» роком растений корневая система оказалась хилой и слаборазвитой, у «авангардистов» корни выглядели, по крайней мере, не хуже, чем у контрольной группы.

21 июля 1970 года в воскресном приложении к «Денвер Пост» вышла статья под заголовком «Музыка, убивающая растения», которая занимала целых четыре газетных листа. За этот материал Ольга Куртис стала лауреатом ежегодной премии Национальной федерации журналистов. Статья была перепечатана множеством газет США и вызвала новую лавину статей под заголовками: «Бах или рок — спроси у своих цветов», «Затычки в уши нашим петуниям» и даже тревожно взывающих: «Спасите от этого наших подростков!» По мнению одного из журналистов известного радикального христианского журнала «Еженедельный христианский крестовый поход», рок музыка и наркомания среди подростков — родные сестры. «Библия учит, что ленивому следует понаблюдать за действиями трудолюбивого муравья, а значит наркоманам следует поучиться у растений», — писал автор статьи.

Работы миссис Реталлак вызвали огромный резонанс среди сотен читателей, в том числе и в академической среде. Преподаватели вузов просили прислать им опубликованные научные работы. По их просьбам Реталлак и профессор Броман подготовили девятистраничный научный доклад «Реакция растений на звуковое раздражение» и отослали его в журнал «Биологическая наука» (Bio-Science Magazine), издаваемый Американским институтом биологических наук. Но там эту статью не приняли, отговариваясь тем, что к таким же «предварительным заключениям» до них пришли Вайнберг и Межерс из Оттавы.

Тем временем с Дороти Реталлак связалась телекомпания CBS и предложила снять ускоренной съёмкой эксперимент «Шанкар против рока». Дороти страшно переживала, что её подопечные станут реагировать как-нибудь не так, и вся затея с треском провалится. Но, к её огромному облегчению, растения словно почувствовали всю ответственность момента и «вели» себя примерно. 16 октября 1970 г. сюжет был показан в одной из популярных телепрограмм и вызвал очередной шквал писем и отчётов об аналогичных опытах, проведённых по всей стране.

Из этого потока выбрали информацию о том, что два преподавателя Университета Северной Каролины (North Carolina State University) — Л.Х. Ройстер и Б.Х. Хуанг (L.H. Royster, В.Н. Huang) — совместно с С.Б. Вудлифом (С.В. Woodlief), исследователем в области текстильных волокон, провели эксперимент «Влияние случайного шума на рост растений». Результаты опыта были опубликованы в научном журнале Американского акустического общества (Journal of the Acoustical Society of America). Эти учёные обратили внимание на то, что влияние шумового загрязнения на растения все ещё не было изучено, хотя до этого уже проводились исследования о влиянии шума, на животных и человека. Они решили восполнить этот пробел. Для этого учёные поместили 12 мужских растений табака в камеры с одинаковой почвой и температурой. С помощью генератора случайного шума они транслировали случайные звуки на частоте от 31,5 до 20 000 гц. В результате рост всех растений замедлился на 40%.

Другое письмо было от д-ра Джорджа Милштейна (George Milstein), преподавателя садоводства из Нью-Йорка, бывшего зубного хирурга. В своё время пациенты подарили ему какие-то экзотические растения, но ни один цветовод так и не смог определить их происхождение и название. Тогда Милштейн сам углубился в дебри ботаники, полюбив мир растений. Он завёл у себя много экзотических, ярких и разнообразных представителей семейства Bromelaids, куда среди прочих входят ананас и испанский мох.

Основываясь на экспериментах канадцев с пшеницей, он решил испытать другие растения. Милштейн отобрал множество различных видов домашних растений и две банановые пальмы. Он постарался, чтобы звуки доносилось отовсюду: и с воздуха, и через почву и даже через стебли. При поддержке специалистов по звуку, Милштейн выяснил, что постоянный низкочастотный шум в 3 000 герц ускоряет рост растений и даже заставляет некоторые цвести на целых 6 месяцев раньше срока.

Отделение компании звукозаписи «Пиквик Интернешнл» попросила Милштейна записать на плёнку звук, ускоряющий рост растений. При этом они настаивали, чтобы запись содержала музыку. Тогда Милштейн наложил стимулирующий шум на музыкальные композиции, предложенные компанией. На вкладыше диска под названием «Успешное выращивание домашних растений» Милштейн давал рекомендации по освещению, влажности, вентиляции, температуре, поливу, удобрениям и горшкам. После этого он, упоминал, что если вибрации света стимулируют рост растений, то логично предположить, что и звуковые вибрации также оказывают положительное влияние на растения. Для достижения наилучшего результата Милштейн рекомендовал проигрывать пластинку ежедневно.

Вскоре слава о чудо-музыке Милштейна разнеслась по всем США и другим странам мира. Ему приходили горы писем, телефон разрывался на части, сотни неизвестных ему людей хотели узнать, какую музыку предпочитают растения, связаны ли его опыты с экспериментами Реталлак и Бакстера. В конце концов Милштейн взорвался: опыты Реталлак — фантастический бред, потому как у растений нет ушей! Он был абсолютно против сравнения растения с человеком, да и распространители записей с музыкой поступали по его мнению «неэтично». Он всегда повторял, что никогда не использовал музыку для стимуляции роста растений.

Опыты Бакстера Милштейн комментировал так: «В лучшем случае, Бакстер заблуждался. Ткани растения кардинально отличаются от тканей человека и животного. Ни один человек, мало-мальски знакомый с ботаникой и физиологией, не станет утверждать, что у растений есть сознание и эмоции, и их можно испугать мысленной угрозой».

Милштейн был секретарём Общества американских фокусников, и в студенческие годы фокусами зарабатывал себе на хлеб. По его словам, он изучил сотни так называемых «психических феноменов», и что же? В условиях эксперимента ни один маг-волшебник не мог продемонстрировать свои необычные способности: «Ну что ж, по крайней мере, Бакстер не уподобляется некоторым шарлатанам и не пытается на этом подзаработать. Однако я не верю ни одному его слову, так как любое его якобы открытие можно легко опровергнуть».

Не отставали от Милштейна и преподаватели колледжа, где училась Дороти Реталлак. «Нью-Йорк Таймс», где 21 февраля 1971 г. была напечатана статья о её работе, иронично сообщала: «скажи учёному, что Бакстер прав, и он "съёживается и падает в обморок", совсем как растения Дороти Реталлак под звуки тяжёлого рока. Учёным даже неловко говорить на эту тему». Затем «Таймс» процитировала одного из биологов колледжа: «Нас мастерски обвели вокруг пальца». Газета взяла интервью у исследователя физиологии растений в Университете Колорадо. Он, правда, очень неохотно согласился говорить на эту тему. Его попросили прокомментировать открытие Бакстера, что растения реагируют на мысль человека. «Полный бред», — только и сказал он.

Исследователь из Университета штата Юты был немного сдержаннее в своих отзывах. «Не знаю, как это все понимать, — отвечал он на вопрос о влиянии музыки на растения. — Эта история с музыкой и растениями тянется ещё с 1950 г. На Международном ботаническом конгрессе в 1954 г. я слышал доклад какого-то индийца о том, что он играет своим растениям на скрипке. Мне не хочется голословно утверждать, что все это чепуха, но в этой области было чрезвычайно много псевдонаучных исследований, в которых не была выдержана научная методология. Пока я не увижу результатов правильно проведённых экспериментов, я в это не поверю».

Опираясь на результаты своих экспериментов, Дороти Реталлак задумалась над тем, насколько разрушительно влияние тяжёлого рока на новое поколение подростков и их развитие. К тому же она прочитала статью в журнале «Register» об исследовании влияния рок-музыки на самих исполнителей. Двое врачей, проведших это исследование, сообщили Медицинской ассоциации Калифорнии следующий факт: из 43 обследованных музыкантов, исполняющих усиленный динамиками тяжёлый рок, у 41 обнаружилась постоянная потеря слуха.

Похоже, эксперименты Реталлак не оставили равнодушными и некоторых денверских фанатов тяжёлого рока. Один рок-музыкант заглянул в камеру с «роковыми» растениями и произнёс: «Господи, если рок так влияет на растения, то что же он творит со мной?» Чтобы дать ему вразумительный ответ, Дороти хотела продолжить свои эксперименты в этой области и собрать больше научных данных. В одном из задуманных ею опытов она планировала сравнить эффект проигрывания музыкальных записей в нормальном и в обратном режиме.

Когда она начала писать небольшую книгу о своей работе «Музыка и растения» (впоследствии опубликованную в 1973 г.), она вспомнила вдохновляющую фразу из оперы Оскара Хаммерштейна «Звуки музыки»: «Холмы преисполнены музыки звуками, и песням холмов не одна сотня лет». Когда-то давно, ещё будучи оперной певицей, она годами пела её в денверском летнем оперном театре.

Копаясь в библиотеках в поисках философского обоснования своих экспериментов, в «Книге секретов Эноха» Дороти прочла, что у всего во Вселенной — от полевых цветов до небесных светил — есть душа, или ангел. Также она узнала, что Гермес Трисмегист утверждал, что растения не просто живые существа, у них ещё есть разум и душа, так же как у животных, человека и высших существ. В Древней Греции Гермеса называли «трижды великим». Считалось также, что он стоял у истоков египетского искусства, науки, магии, алхимии и религии.

А для профессора Дональда Хетча Эндрюса (Donald Hatch Andrews), бывшего преподавателя химии в Университете Джона Хопкинса, излюбленной темой стала «песня атома». В своей книге «Симфония жизни» он приглашает читателя отправиться в воображаемое путешествие по увеличенному атому кальция, взятого из кости его указательного пальца. Внутри атома можно услышать пронзительные звуки на десятки октав выше самого высокого звука, который может взять скрипка. Так звучит музыка ядра атома. При внимательном прослушивании музыки сердца атома можно заметить, что она намного сложнее привычной церковной музыки. В этой песне много диссонансных аккордов, которые так любят современные композиторы.

По мнению английского композитора и теософа Кирилла Мейра Скотта (Cyril Mair Scott), весь смысл диссонансной музыки в её способности разрушать затвердевшие мыслеформы и устаревшие образы. Когда такие образы становятся в основе системы ценностей целых стран и континентов, люди умирают заживо или сходят с ума. В музыке есть такое эзотерическое правило: беспорядок в обществе уничтожается диссонансом в музыке. Вибрации красивой гармоничной музыки настолько утончённы и эфемерны, что практически никогда не доходят до более низких планов с грубой вибрацией.

Ещё одна интересная тема связи между вибрацией звуков музыкальной гаммы с формой листьев пока не заинтересовала никого из учёных, кроме Ганса Кайзера (Hans Kayser) из Германии, автора «Harmonia Plantarum» и других книг, где с математической точки зрения изучается влияние звуковых интервалов на рост растений.

Кайзер обратил внимание на то, что если графически изобразить все тона, входящие в октаву, и нарисовать их под особым утлом — как астроном и астролог Йоганн Кеплер сделал в своей Harmonice Mundi для планет солнечной системы, — то получится фигура, напоминающая лист. Таким образом, октава — основа музыки и любого чувственного восприятия — содержит в себе форму листа.

Это наблюдение созвучно идее Гёте о метаморфозе растений, развивающихся из формы листа. Тем самым Кайзер подводит под идею Гёте «психологическую основу». Кроме того, его работа проливает новый свет на замысловатую систему классификации растений, разработанную Линнеем. Если посмотреть на страстоцвет, говорит Кайзер, то мы видим два соотношения: пять лепестков и тычинок и трехдольный пестик. И даже если отбросить мысль о том, что у растения есть разум, способный логически мыслить, нельзя не признать, что в душе растений содержатся особые прототипы формы — в случае с страстоцветом это музыкальные трети и пятые — которые, так же как и в музыке, придают цветку интервальную форму. Так Кайзер выявил «психологический» аспект системы Линнея: взяв за основу половую классификацию, известный шведский ботаник попал в точку — психическую суть растений.

Органы чувств человека воспринимают большой объём информации, но это лишь мизерная часть огромного потока окружающих человека вибраций. Попробуйте понюхать маргаритку, похоже, у неё совсем нет запаха? Но дело не в маргаритке, а в нас самих. Обоняние человека не способно улавливать частицы, которые источает маргаритка в атмосферу. Иначе мы смогли бы оценить её прекрасный, не уступающий розе, аромат. Попытки человека доказать воздействие звуковых вибраций на растения, конечно, не смогут раскрыть все тайны взаимодействия музыки и живого. Однако они хотя бы помогут ухватиться за кончик нити и начать разматывать сложный клубок удивительного мира живых звуков.

Растения и электромагнетизм


Растения реагируют не только на звуковые волны музыки, но и на электромагнитные волны от земли, Луны, планет, космоса и множества искусственных приборов. Остаётся лишь точно определить, какие волны полезные, а какие вредные.

Однажды вечером в конце 1720-х годов французский писатель и астроном Жан-Жак Дертус де Меран (Jean-Jacques Dertous de Mairan) в своей парижской студии поливал комнатные мимозы Mimosa pudica. Вдруг он с удивлением обнаружил, что после заката солнца чувствительное растение складывает свои листочки совсем так же, как если бы до них дотронулись рукой. Меран отличался пытливым умом и снискал уважение таких видных современников, как Вольтер. Он не стал делать скоропалительных выводов, что его растения просто «засыпают» с наступлением темноты. Вместо этого, дождавшись восхода солнца, Меран поставил две мимозы в совершенно тёмную кладовку. В полдень учёный увидел, что листья мимоз в кладовке полностью раскрылись, но после заката они сложились так же быстро, как и у мимозы в его студии. Тогда он сделал вывод, что растения, должно быть, «чувствуют» солнце даже в полной темноте.

Меран интересовался всем — от движения луны по орбите и физических свойств северного сияния до причин свечения фосфора и особенностей числа 9, но феномен с мимозой он объяснить так и не смог. В своём докладе для Французской академии наук он робко предположил, что на его растения, наверное, воздействует какая-то неведомая сила. Меран здесь провёл параллели с лежащими в больнице пациентами, которые испытывают чрезвычайный упадок сил в определённое время суток: может, и они чувствуют эту силу?

Два с половиной века спустя д-р Джон Отт (John Ott), директор научно­исследовательского института изучения воздействия окружающей среды и светового излучения на здоровье человека в Сарасоте, штат Флорида, был ошеломлён наблюдениями Мерана. Отт повторил его эксперименты и задался вопросом: может ли эта «неизвестная энергия» проникать через огромную толщу земли — единственный известный барьер, способный блокировать так называемую «космическую радиацию».

В полдень Отт опустил шесть растений мимозы в шахту на глубину 220 метров. Но в отличие от мимоз Мерана, помещённых в тёмную кладовую, мимозы Отта тут же закрыли листья не дожидаясь заката солнца. Более того, они закрывали листья, даже когда шахта была освещена ярким светом электрических ламп. Отт связал это явление с электромагнетизмом, о котором во времена Мерана мало что было известно. Однако в остальном Отт терялся в догадках так же, как и его французский предшественник, живший в XVII веке.

Современники Мерана знали об электричестве лишь то, что досталось им в наследство от древних эллинов. Древние греки знали необычные свойства янтаря (или как они его называли, электрона) который, если его хорошенько потереть, притягивал к себе пёрышко или соломинку. Ещё до Аристотеля было известно, что магнит, чёрный оксид железа, также обладает необъяснимой способностью притягивать железные опилки. В одном из регионов Малой Азии, под названием Магнезия, были обнаружены богатые месторождения этого минерала, поэтому его окрестили magnes lithos, или камень магнезиан. Затем в латинском языке это название сократили до magnes, а в английском и других языках до магнита.

Учёный Вильям Гилберт (William Gilbert), живший в XVI веке, первым связал явления электричества и магнетизма. Благодаря своим глубоким знаниям в медицине и философии Гилберт стал личным врачом королёвы Елизаветы I. Он утверждал, что планета есть не что иное, как сферический магнит, а поэтому магнитный камень, являющийся частью одушевлённой Матушки-Земли, также обладает «душой». Также Гилберт обнаружил, что помимо янтаря существуют и другие материалы, которые, если их потереть, способны притягивать к себе лёгкие предметы. Он назвал их «электрики», а также ввёл в обиход термин «электрическая сила».

Веками люди считали, что причиной, притягивающей способности янтаря и магнита, являются «всепроникающие эфирные флюиды», испускаемые этими материалами. Правда, мало кто мог объяснить, что это такое. Даже 50 лет спустя после экспериментов Мерана, Джозеф Пристли (Joseph Priestley), в основном известный как первооткрыватель кислорода, в своём популярном учебнике об электричестве писал:

«Земля и все без исключения известные нам тела содержат определённое количество чрезвычайно эластичной тончайшей жидкости — флюида, которую философы назвали "электриком". Если тело содержит флюидов больше или меньше своей естественной нормы, происходит замечательное явление. Тело становится наэлектризованным и способным влиять на другие тела, что связывают с воздействием электричества».

Прошло ещё сто лет, но природа магнетизма так и оставалась тайной. Как говорил профессор Сильванус Томпсон незадолго до начала Первой мировой войны, «загадочные свойства магнетизма, которые веками приводили в восхищение все человечество, так и остались необъяснёнными. Необходимо на экспериментальной основе изучить это явление, происхождение которого пока так и неизвестно». В работе, опубликованной вскоре после окончания Второй мировой войны чикагским Музеем науки и промышленности, говорилось, что человек до сих пор не знает, почему Земля есть магнит; как материал, обладающий притягивающими свойствами, реагирует на воздействие других магнитов на расстоянии; почему электрические токи имеют вокруг себя магнитное поле; почему мельчайшие атомы материи занимают огромные объёмы пустого, заполненного энергией, пространства.

За триста пятьдесят лет, прошедших после выхода в свет известной работы Гилберта «MarHum»(De Magnete), было создано множество теорий, объясняющих природу геомагнетизма, но ни одна из них не является исчерпывающей.

То же относится и к современным физикам, которые попросту заменили теорию «эфирных флюидов» на волновую «электромагнитную радиацию». Её спектр варьируется от громадных макропульсаций, тянущихся несколько сотен тысяч лет с длиной волн в миллионы километров до сверхкоротких пульсаций энергии с частотой в 10 000 000 000 000 000 000 циклов в секунду и с бесконечно малой длиной в одну десятимиллиардную сантиметра. Первый тип пульсации наблюдается при таких явлениях, как смена магнитного поля Земли, а второй — при столкновении атомов, обычно гелия и водорода, движущихся с огромной скоростью. При этом выделяется излучение, которому дали название «космические лучи». Между этими двумя крайностями находится бесконечное множество других волн, включая гамма-лучи, берущие начало в ядре атома; рентгеновские лучи, исходящие от оболочек атомов; ряд видимых глазу лучей, называемых светом; волн, используемых в радио, телевидении, радарах и других областях — от исследований космоса до СВЧ-кулинарии.

Электромагнитные волны отличаются от звуковых тем, что могут проходить не только сквозь материю, но и сквозь ничто. Они движутся с огромной скоростью в 300 миллионов километров в секунду сквозь необъятные просторы космоса, заполненные, как считалось раньше, эфиром, а теперь — почти абсолютным вакуумом. Но ещё никто толком не объяснил, как эти волны распространяются. Один выдающийся физик жаловался, что «мы просто не можем объяснить механизм этого проклятого магнетизма».

В 1747 г. немецкий физик из Виттенберга рассказал французскому аббату и учителю физики дофина Жану Антуану Нолле (Jean Antoine Nollet) об интересном явлении: если закачать воду в тончайшую трубку и дать ей свободно течь, то она будет вытекать из трубки медленно, по капле. Но если же трубка наэлектризована, то вода вытечет сразу, непрерывной струёй. Повторив опыты немца и поставив ряд собственных, Нолле «начал верить, что свойства электричества, если их правильно использовать, могут оказывать замечательное воздействие на структурированные тела, которые в некотором смысле можно рассматривать как гидравлические машины, созданные самой природой». Нолле поставил несколько растений в металлических горшках рядом с проводником и с волнением заметил, что растения стали быстрее испарять влагу. Затем Нолле провёл множество экспериментов, в которых скрупулёзно взвешивал не только нарциссы, но и воробьёв, голубей и кошек. В результате он обнаружил, что наэлектризованные растения и животные быстрее теряют в весе.

Нолле решил проверить, как феномен электричества влияет на семена. Он посадил несколько десятков горчичных семян в два ящика из жести и наэлектризовывал один из них с 7 до 10 утра и с 3 до 8 вечера семь дней подряд. К концу недели все семена в наэлектризованном контейнере проросли и достигли в среднем высоты в 3,5 см. В ненаэлектризованном контейнере проклюнулись всего три семечка, выросшие лишь до 0,5 см. Хотя Нолле так и не смог объяснить причин наблюдаемого явления, в своём объёмистом докладе для Французской академии наук он отметил, что электричество имеет огромное влияние на рост живых существ.

Нолле сделал своё заключение за несколько лет до новой сенсации, прокатившейся по Европе. Бенжамин Франклин смог поймать заряд электричества от удара молнии с помощью воздушного змея, которого он запустил во время грозы. Когда молния стукнула в металлический кончик каркаса воздушного змея, заряд прошёл вниз по влажной струне и попал в лейденскую банку — накопитель электричества. Этот прибор был разработан в Университете Лейдена и использовался для хранения электрического заряда в водной среде; разрядка же происходила в виде одиночной электрической искры. До сих пор считалось, что в лейденской банке можно хранить лишь статическое электричество, произведённое генератором статического электричества.

Пока Франклин собирал электричество с облаков, блестящий астроном Пьер Шарль Лемонье (Pierre Charles Lemonnier), принятый во Французскую академию наук в возрасте 21 года и позднее сделавший сенсационное открытие о наклонении эклиптики, определил, что в атмосфере Земли идёт постоянная электрическая активность даже в солнечную безоблачную погоду. Но как в точности это вездесущее электричество взаимодействует с растениями, так и осталось загадкой.

Следующая попытка применить атмосферное электричество для увеличения плодоношения растений была предпринята в Италии. В 1770 г. профессор Гардини натянул несколько проводов над огородом одного монастыря в Турине. Вскоре многие растения стали чахнуть и умирать. Но как только монахи сняли провода над своим огородом, растения тут же оживились. Гардини предположил, что, либо растения перестали получать нужную для роста дозу электричества, либо доза полученного электричества была чрезмерной. Однажды Гардини узнал, что во Франции братья Жозеф-Мишель и Жак-Этьенн Монгольфье (Joseph-Michel, Jacques-Etienne Montgolfier) соорудили огромный шар, заполненный тёплым воздухом, и отправили его в воздушное путешествие над Парижем с двумя пассажирами на борту. Тогда шар пролетел расстояние в 10 км за 25 минут. Гардини предложил применить это новое изобретение в садоводстве. Для этого к шару нужно присоединить длинный провод, по которому электричество с высоты пойдёт вниз на землю, к садовым растениям.

Учёные того времени не обратили на события в Италии и Франции никакого внимания: уже тогда они скорее интересовались влиянием электричества на неживые предметы, чем на живые организмы. Учёных также не заинтересовала работа аббата Бертолона (Bertholon) который в 1783 г. написал объёмистый трактат «Электричество растений» (De l'Electricite des Vegetaux). Бертолон был профессором экспериментальной физики во французских и испанских университетах и полностью поддерживал идею Нолле о том, что, изменяя вязкость, или гидравлическое сопротивление, жидкостной среды в живом организме, электричество тем самым влияет на процесс его роста. Он ссылался и на доклад итальянского физика Джузеппе Тоальдо (Guiseppe Toaldo), который описал влияние электричества на растения. Тоальдо обратил внимание, что в посаженном ряде кустов жасмина два из них оказались рядом с громоотводом. Именно эти два куста выросли на 10 метров в высоту, тогда как остальные кусты были всего лишь 1,5 метра.

Бертолон, слывший чуть ли не колдуном, попросил садовника перед поливом растений из наэлектризованной лейки вставать на что-нибудь, непроводящее электричество. Он сообщил, что его салаты выросли до невероятных размеров. Он также изобрёл, так называемый, «электровегетометр», чтобы собирать атмосферное электричество с помощью антенны и пропускать его через растущие на полях растения. «Этот инструмент, — писал он, — влияет на процесс роста и развития растений, его можно применять в любых условиях, при любой погоде. В его эффективности и пользе могут сомневаться лишь люди малодушные и трусливые, которые, прикрываясь маской благоразумия, панически боятся всего нового». В заключении аббат прямо заявил, что в будущем лучшие удобрения в виде электричества будут бесплатно доставляться растениям «прямо с небес».

Замечательная идея о том, что электричество взаимодействует со всеми живыми существами и даже пронизывает их насквозь, получило своё развитие в ноябре 1780 г. Жена учёного из Болоньи Луиджи Гальвани случайно заметила, что генератор статического электричества вызывает конвульсивные сокращения в отрезанной лапке лягушки. Когда она рассказала об этом мужу, он был очень удивлён и тут же предположил, что электричество имеет животное происхождение. В канун Рождества он решил, что это именно так, и записал в свой рабочий дневник: «Скорее всего электричество является возбудителем нервно-мышечной активности».

В течение последующих шести лет Гальвани изучал влияние электричества на работу мышц, и однажды случайно открыл, что лягушачьи лапки дёргаются с тем же успехом и без применения электричества, когда медная проволока с подвешенными лапками прикасается к железному стержню при дуновении ветра. Для Гальвани стало очевидно, что в этой замкнутой электрической цепи источником электричества могли быть либо металлы, либо лягушки. Считая, что электричество имеет животную природу, он заключил, что наблюдаемое явление связано с животной тканью и такая реакция является следствием циркуляции витального флюида (энергии) тел лягушек. Гальвани окрестил этот флюид «животным электричеством».

Вначале открытие Гальвани поддержал его соотечественник Алессандро Вольта (Alessandro Volta), физик в Университете Павии Миланского герцогства. Но при повторении экспериментов Гальвани, Вольта смог вызвать эффект электричества с помощью лишь двух видов металлов. Он писал аббату Томмаселли, что, очевидно, электричество исходило не от лапок лягушки, а просто стало «результатом использования двух металлов с различными свойствами». Углубившись в изучение электрических свойств металлов, в 1800 г. Вольта создал первую электрическую батарею. Она представляла собой стопку чередующихся цинковых и медных дисков с кусочками влажной бумаги между ними. Она моментально заряжалась и могла использоваться как источник тока бессчётное количество раз, а не только единожды, как лейденская банка. Так исследователи впервые перестали зависеть от статического и природного электричества. Вследствие изобретения этой прародительницы современной батарейки было обнаружено искусственное динамическое, или кинетическое, электричество. Идею же Гальвани о существовании особой жизненной энергии в тканях живых организмов почти забыли.

Сначала Вольта поддержал открытия Гальвани, но позже он писал: «Эксперименты Гальвани, безусловно, эффектны. Но если отбросить его красивые идеи и предположить, что органы животных лишены собственной электрической активности, то их можно рассматривать как всего лишь новейшие суперчувствительные электрометры». Незадолго перед смертью Гальвани сделал пророческое заявление о том, что однажды анализ всех необходимых физиологических аспектов его экспериментов «поможет лучше понять природу жизненных сил и их различия в зависимости от пола, возраста, темперамента, заболеваний и даже состава атмосфер». Но учёные отнеслись к нему с недоверием и считали его идеи несостоятельными.

За несколько лет до этого, незнакомый с Гальвани венгерский иезуит Максимилиан Хелл (Maximilian Hell) подхватил идеи Гилберта об одушевлённости магнита, передающего это качество другим металлосодержащим материалам. Вооружившись этой идеей, он смастерил из намагниченных стальных пластин необычное приспособление, при помощи которого излечился от застарелого ревматизма. Успехи Хелла в исцелении больных людей произвели большое впечатление на его друга, венского врача Франца Антона Месмера (Franz Anton Mesmer), который заинтересовался магнетизмом после прочтения работ Парацельса. Тогда Месмер занялся экспериментальной проверкой работы Хелла и убедился в том, что на живую материю действительно влияют «земные и небесные магнитные силы». В 1779 г. он назвал эти силы «животным магнетизмом» и посвятил им докторскую диссертацию «Влияние планет на тело человека». Однажды Месмер узнал о швейцарском священнике Дж. Гасснере, исцеляющем своих пациентов возложением рук. Месмер успешно перенял технику Гасснера и объяснял действенность этого способа врачевания тем, что некоторые люди, и он в том числе, наделены большей «магнетической» силой, чем другие.

Казалось бы, такие поразительные открытия биоэлектрической и биомагнитной энергии могли бы ознаменовать новую эпоху исследований, объединяющих физику, медицину и физиологию. Но с новой эпохой пришлось подождать ещё по крайней мере сто лет. Успехи Месмера в исцелении на фоне неудачи всех остальных вызвали чёрную зависть у его венских коллег. Они назвали Месмера колдуном, одержимым дьяволом, и организовали комиссию по расследованию его заявлений. Заключение комиссии было не в его пользу, и тогда Месмера исключили из преподавательского состава медицинского факультета и запретили лечить людей.

В 1778 г. он переехал в Париж, где, по его словам, встретил «людей более просвещённых и не столь равнодушных к новым открытиям». Там Месмер нашёл могущественного сторонника своих новых методов, Шарля д'Эслона, первого врача при дворе брата Людовика XVI, который ввёл Месмера во влиятельные круги. Но вскоре все повторилось вновь: теперь зависть обуяла французских врачей, как и в своё время австрийских коллег Месмера. Они подняли такую шумиху, что король был вынужден назначить королевскую комиссию по расследованию заявлений Месмера, и это несмотря на то, что д'Эслон на собрании медицинского факультета Парижского университета назвал работу Месмера «одним из величайших научных достижений современности». В состав королевской комиссии входил директор Французской академии наук, который в 1772 г. торжественно провозгласил, что метеориты не существуют; председателем комиссии был американский посол Бенжамин Франклин. Комиссия сделала заключение, что «животный магнетизм не существует и не имеет целительного воздействия». Месмера выставили на всеобщее посмешище, и его огромная популярность стала меркнуть. Он уехал в Швейцарию ив 1815 г., за год до смерти, завершил свой важнейший труд: «Месмеризм или система взаимовлияний или теория и практика животного магнетизма».

В 1820 г. датский учёный Ганс Христиан Орстед (Hans Christian Oersted) обнаружил, что если поместить компас рядом с проводом под напряжением, то стрелка всегда занимает перпендикулярное к проводу положение. При смене направления тока стрелка поворачивается на 180°. Из этого следовало, что вокруг провода под напряжением существует магнитное поле. Это привело к самому прибыльному изобретению в истории науки. Майкл Фарадей (Michael Faraday) в Англии и Джозеф Генри (Joseph Henry) в США независимо друг от друга пришли к выводу, что должен существовать и противоположный феномен: при движении провода через магнитное поле в проводе возникает электрический ток. Таким образом, был изобретён «генератор», а с ним — вся армия электрических приборов.

На сегодня существует огромное множество книг о том, что человек может сделать при помощи электричества. В Библиотеке Конгресса США книги на эту тему занимают семнадцать тридцатиметровых полок. Но суть электричества и принципы его работы остаются такой же загадкой, как и во времена Пристли. Современные учёные, до сих пор не имеющие ни малейшего представления о составе электромагнитных волн, ловко приспособили их к использованию в радио, радарах, телевидении и тостерах.

При таком одностороннем интересе лишь к механическим свойствам электромагнетизма, очень немногие уделяли внимание его воздействию на живые существа. Барон Карл фон Рейхенбах (Karl von Reichenbach) из немецкого города Тубингена был одним из немногих альтернативно мыслящих учёных. В 1845 г. он изобрёл различные вещества на основе древесного дёгтя, включая креозот, используемый для защиты от гниения надземные ограждения и подводные сооружения из дерева. По наблюдениям Рейхенбаха особо одарённые люди, которых он назвал «экстрасенсами», могли воочию видеть странную энергию, исходящую от всех живых организмов и даже от концов магнита. Эту энергию он назвал одиль или од. Работы Рейхенбаха — «Исследования сил магнетизма, электричества, тепла и света в отношении к силам жизни» (Researches into the Forces of Magnetism, Electricity, Heat and Light in Relation to the Force of Life) — были переведены на английский язык выдающимся врачом Вильямом Грегори, назначенным в 1844 г. профессором химии в Университете Эдинбурга. Несмотря на это все попытки Рейхенбаха доказать существование од своим современникам-физиологам в Англии и Европе — с самого начала потерпели фиаско.

Рейхенбах назвал причину такого презрительного отношения к его «одической силе»: «Как только я касаюсь этого предмета, то сразу ощущаю, что задеваю учёных за живое. Они приравнивают од и экстрасенсорные способности к так называемому, "животному магнетизму" и "месмеризму". Как только это происходит, вся симпатия тут же испаряется». По словам Рейхенбаха, отождествление од с животным магнетизмом совершенно необоснованно, и хотя загадочная одическая сила чем-то напоминает животный магнетизм, она существует совершенно независимо от последнего.

Позже Вильгельм Рейх (Wilhelm Reich) доказывал, что «древние греки и современники, начиная с Гилберта, имели дело совсем не с тем видом энергии, что изучали со времён Вольта и Фарадея. Второй тип энергии получали путём движения проводов через магнитные поля, эта энергия отличается от первого типа не только способом получения, но и своей природой».

Рейх полагал, что древние греки, используя принцип трения, открыли загадочную энергию, которой он дал название «оргон». Очень похоже на од Рейхенбаха и эфир древних. Рейх утверждал, что оргон заполняет все пространство и является средой, в которой распространяется свет, электромагнитные волны и сила гравитации. Оргон заполняет весь космос, правда не везде равномерно, и присутствует даже в вакууме. Рейх рассматривал оргон как основное звено, связующее неорганическую и органическую материи. К 1960-м годам, вскоре после смерти Рейха, накопилось слишком много доводов в пользу того, что живые организмы имеют электрическую природу. Д. С. Халаси в своей книге про ортодоксальную науку выразился очень просто: «Поток электронов является основой практически всех жизненных процессов».

В период между Рейхенбахом и Рейхом учёные, вместо того, чтобы изучать природные явления во всей их целостности, начали разбирать их на мелкие составляющие — и это, отчасти, стало причиной всех трудностей в науке. Одновременно увеличилась пропасть между так называемыми науками о жизни и физикой, которая верила лишь в существование того, что можно непосредственно увидеть глазами или измерить приборами. Где-то посередине оказалась химия, стремившаяся раздробить материю на молекулы. Искусственно соединяя и группируя молекулы, химики синтезировали бессчётное множество новых веществ.

В 1828 г. впервые в лабораторных условиях было получено органическое вещество — мочевина. Искусственный синтез органических веществ, казалось, уничтожил идею о существовании какого-либо особого «жизненного» аспекта в живой материи. С открытием клеток — биологических аналогов атомов классической греческой философии, учёные стали смотреть на растения, животных и человека как всего лишь на различные комбинации этих клеток. Иными словами, живой организм — просто химический агрегат. В свете таких представлений мало у кого осталось желание разобраться в электромагнетизме и его влиянии на живую материю. Тем не менее, отдельные «отщепенцы» от науки время от времени привлекали всеобщее внимание к вопросам о влиянии космоса на растения, и таким образом не давали открытиям Нолле и Бертолона кануть в Лету.

За океаном, в Северной Америке, Вильям Росс (William Ross), проверяя утверждения о том, что наэлектризованные семена прорастают быстрее, посадил огурцы в смесь из чёрного оксида марганца, столовой соли и чистого песка и поливал разбавленной серной кислотой. Когда он пропускал через смесь электрический ток, семена прорастали гораздо быстрее, чем ненаэлектризованные, посаженные в аналогичной смеси. Через год, в 1845 г., в первом выпуске лондонского «Журнала общества садоводов» (Journal of the Horticultural society) был опубликован длинный доклад «Влияние электричества на растения». Автором доклада был агроном Эдвард Солли (Edward Solly), который, как и Гардини, подвесил провода над огородом и, как Росс, пытался поместить их под землю. Солли провёл семьдесят экспериментов с различными злаками, овощами и цветами. Из семидесяти исследованных случаев лишь в девятнадцати наблюдалось положительное влияние электричества на растения, и примерно такое же количество случаев — отрицательное.

Столь противоречивые результаты указывали на то, что для каждого вида растений огромное значение имеет количество, качество и продолжительность электрической стимуляции. Но у физиков не было необходимой аппаратуры для измерения воздействия электричества на разные виды, и они ещё не знали, как искусственное и атмосферное электричество влияет на растения. Поэтому эта область исследований была отдана на откуп настойчивым и любопытным садоводам или «чудакам». Однако появлялись все новые наблюдения о том, что растения обладают электрическими свойствами.

В 1859 г. в одном из выпусков лондонского «Вестника садовода» (Gardeners' Chronicle) было опубликовано сообщение о световых вспышках от одной алой вербены к другой. В сообщении упоминалось, что особенно отчётливо этот феномен заметён в сумерках перед грозой после долгого периода сухой погоды. Это подтвердило наблюдения Гёте о том, что цветки восточного мака светятся в темноте.

Лишь в конце девятнадцатого века в Германии появились новые данные, проливающие свет на природу атмосферного электричества, открытого Лемонье. Юлиус Элстер и Ганс Гейтель (Julius Elster, Hans Geitel), интересовавшиеся «радиоактивностью» — спонтанным излучением неорганических веществ — начали масштабное изучение атмосферного электричества. В ходе этого исследования выяснилось, что почва земли постоянно излучает в воздух электрические заряжённые частицы. Им дали название ионы (от греческого причастия настоящего времени ienai, что значит «идущий»), это были атомы, группы атомов или молекулы, имеющие после потери или присоединения к ним электронов положительный или отрицательный заряд. Наблюдение Лемонье о том, что атмосфера постоянно наполнена электричеством, наконец, получило хоть какое-то материальное объяснение.

В ясную, безоблачную погоду Земля имеет отрицательный заряд, а атмосфера — положительный, тогда электроны от почвы и растений стремятся ввысь, в небо. Во время грозы полярность меняется на противоположную: Земля обретает положительный, а нижние слои облаков — отрицательный заряд. В любой момент над поверхностью земного шара бушуют 3-4 тысячи «электрических» гроз, поэтому за счёт них восстанавливается потерянный в солнечных районах заряд, и, таким образом, поддерживается общее электрическое равновесие Земли.

В результате постоянного потока электричества электрическое напряжение увеличивается по мере удаления от поверхности Земли. Между головой человека ростом в 180 см и землёй напряжение составляет 200 вольт; от вершины небоскрёба в 100 этажей до тротуара напряжение увеличивается до 40 000 вольт, а между нижними слоями ионосферы и поверхностью Земли напряжение составляет 360 000 вольт. Звучит устрашающе, но на самом деле из-за отсутствия сильного тока частиц эти вольты не превращаются в убийственную энергию. Человек мог бы научиться пользоваться этой колоссальной энергией, однако основная трудность здесь в том, что он так и не понял, как и по каким законам эта энергия функционирует.

Новые попытки исследовать влияние атмосферного электричества на растения были предприняты Селимом Лемстремом (Selim Lemstrom), финским учёным с разнообразными интересами. Лемстрем считался экспертом в области полярного сияния и земного магнетизма, и с 1868 по 1884 гг. совершил четыре экспедиции в заполярные области Шпицбергена и Лапландии. Он предполагал, что роскошная растительность этих широт, приписываемая длительным летним дням, на самом деле объясняется, по его словам, «этим интенсивным проявлением электричества, северным сиянием».

Со времён Франклина было известно, что атмосферное электричество лучше всего притягивается острыми предметами, и именно это наблюдение привело к созданию громоотвода. Лемстрем рассуждал, что «острые верхушки растений выступают в роли громоотводов для сбора атмосферного электричества и облегчают обмен зарядами между воздухом и землёй». Он изучил годовые кольца на спилах елей и обнаружил, что величина годового прироста чётко соотносится с периодами повышенной активности солнца и северного сияния.

Вернувшись домой, учёный решил подкрепить свои наблюдения экспериментами. Он подсоединил ряд растений в металлических горшках к генератору статического электричества. Для этого он протянул на высоте 40 см над растениями провода, от которых к земле в горшках спускались металлические стержни. Другие растения были оставлены в покое. Через восемь недель наэлектризованные растения прибавили в весе на 50% больше, чем ненаэлектризованные. Когда Лемстрем перенёс свою конструкцию в огород, урожай ячменя вырос на треть, а урожай клубники — вдвое. Мало того, она ещё оказалась гораздо слаще обычного.

Лендстрем провёл длинную серию экспериментов в разных частях Европы, на разных широтах вплоть до юга Бургундии; результаты зависели не только от конкретного вида овоща, фрукта или злака, но и от температуры, влажности, естественного плодородия и внесения удобрений в почву. В 1902 г. Лендстрем описал свои успехи в книге «Electro Cultun, опубликованной в Берлине. Этот термин был включён в «Стандартную энциклопедию садоводства» Либерти Хайда Бэйли (Liberty Hyde Bailey).

Английский перевод книги Лендстрема под названием «Электричество в сельском хозяйстве и садоводстве» (Electricity in Agriculture and Horticulture) вышел из печати в Лондоне спустя два года после выхода в свет немецкого оригинала. Введение к книге содержало довольно резкое, но как позже выяснилось, правдивое предупреждение. Тема книги касается трёх отдельных дисциплин: физики, ботаники и агрономии, — и она вряд ли окажется «особо привлекательной» для учёных. Однако это предостережение не отпугнуло одного из читателей — сэра Оливера Лоджа (Oliver Lodge). Он добился выдающихся успехов в физике, а затем стал членом Лондонского общества психических исследований. Написал дюжину книг, подтверждающих его убеждение в том, что за пределами материального мира есть ещё множество миров.

Чтобы избежать долгих и сложных манипуляций с передвижением проводов вверх по мере роста растений, Лодж поместил сеть проводов на изоляторах, подвешенных на высоких столбах, давая таким образом людям, животным и технике свободно двигаться по наэлектризованным полям. За один сезон Лоджу удалось повысить урожайность одного из сортов пшеницы на 40%. Причём пекари отметили, что хлеб из муки Лоджа получался гораздо вкуснее, чем из муки, которую они обычно закупали.

Соратник Лоджа Джон Ньюман (John Newman) перенял его систему и добился двадцатипроцентного увеличения урожая пшеницы в Англии и картофеля в Шотландии. Клубника Ньюмана отличалась не только большей плодовитостью, она, как и клубника Лендстрема, была сочнее и слаще обычной. В результате проведённых тестов содержание сахара в сахарной свёкле Ньюмана превышало среднюю норму. Кстати, Ньюман опубликовал отчёт о результатах своих исследований не в ботаническом журнале, а в пятом выпуске «Стандартного пособия для электротехников» (Standard Book for Electrical Engineers), изданного в Нью-Йорке крупным и авторитетным издательством «МакГроу-Хилл» (McGraw-Hill). С тех пор влиянием электричества на растения стали интересоваться все больше инженеры, чем растениеводы.

Силовые поля, человек и растения

Каждый инженер должен уметь найти практическое решение любой проблемы, какой бы сложной она не казалась на первый взгляд. В отличие от научных исследователей, главный вопрос инженера не почему и как это работает, а будет ли это работать? Такой подход освобождает их от оков теории. История науки изобилует примерами, когда педантичные учёные отвергали выдающиеся и гениальные новые открытия из-за отсутствия объясняющей их теоретической базы.

Талантливый инженер Джозеф Молиториц (Joseph Molitorisz), бежавший из оккупированной советскими войсками родной Венгрии, наткнулся на идеи аббата Нолле об электроосмосе. Он задумался, как бы применить открытия француза для решения сельскохозяйственных проблем. Молиторицу показалось странным, что сок в стволе секвойи поднимается на высоту в сто метров, тогда как лучший всасывающий насос, сделанный человеком, накачивает воду лишь на десять метров. Очевидно, вызов стандартным законам гидродинамики, применяемым в инженерном деле, бросила сила электричества. Молиториц решил применить работы Нолле в цитрусовых садах на правительственной опытной сельскохозяйственной станции в Калифорнии. Сначала он пропустил ток через саженцы цитрусовых деревьев. Когда ток шёл в одном направлении, рост крошечных деревьев ускорялся, если направление тока изменялось на противоположное, саженцы засыхали. Очевидно, что каким-то образом электричество стимулировало естественный электрический ток в растениях, а когда искусственное электричество отключали, естественный ток прекращался. В другом эксперименте, частично под влиянием трудов аббата Бертолона, Молиториц пропустил электрический ток в 56 вольт через шесть веток апельсинового дерева, а другие шесть веток оставил нетронутыми. Через 18 часов сок в «подключённых» ветках тёк беспрепятственно, тогда как в нетронутых ветках течение сока практически отсутствовало.

В сборе урожая апельсинов есть одна трудность: фрукты не созревают одновременно, поэтому их приходится собирать с веток вручную в течение длительного времени по мере созревания. Молиториц подумал, что затраты на сбор сократятся, если заставить дерево сбрасывать зрелые плоды с помощью электростимуляции. Он подключил одно апельсиновое дерево к источнику прямого тока и заставил дерево сбросить спелые апельсины, при этом оставляя на ветках недозревшие плоды. Но даже несмотря на эти успехи, учёный не смог получить финансирование для дополнительных экспериментов. Все же Молиториц, также соорудивший «электрический цветочный горшок», поддерживающий цветение растения гораздо дольше обычного, полагал, что однажды электричество значительно облегчит сбор фруктов в апельсиновых садах и устранит необходимость забираться на деревья.

Пока Молиториц работал на Западном побережье США, другой инженер, д-р Ларри Е. Мурр (Larry Е. Murr) из Университета Пенсильвании первым воспроизвёл в лаборатории условия кратковременной грозы и длительных периодов дождей. После семилетней работы в своём «рукотворном» микроклимате Мурр, регулируя напряжение поля над растениями, смог добиться значительного увеличения их роста. Растения были посажены в особые пластиковые горшки и стояли на алюминиевом листе, служащем в качестве одного из электродов. В роли второго электрода выступала сеть алюминиевой проволоки, свисавшей с изолированных столбов. Он обнаружил, что другое напряжение поля сильно повреждало листья растений. Но Мурр сомневался в целесообразности повышения урожайности с помощью искусственно созданных над сельскохозяйственными угодьями электрических полей. Затраты на широкомасштабную инфраструктуру могут с лихвой перекрыть все преимущества. Тем не менее, это возможно.

Д-р Джордж Старр Уайт (George Starr White), автор книги «Космоэлектрическое растениеводство» (Cosmoelectric Culture), открыл, что такие металлы, как железо и олово, способствуют росту растений, если повесить предметы из этих металлов на фруктовые деревья. Эти наблюдения подтверждаются опытами Рэндалла Гровса Хейя (Randall Groves Hay), промышленного инженера из Нью-Джерси. Хей подвесил на кустики томатов металлические новогодние ёлочные шары, и растения начали плодоносить раньше срока. Вот как он рассказывает о своём эксперименте: «Сначала моя жена не давала мне вешать шары на растения. Она говорила, что все это выглядит просто глупо. Но когда пятнадцать посаженных в горшки и увешанных шарами томатов начали плодоносить в холодную, суровую погоду, обогнав все томаты у других огородников, она оставила меня в покое».

Инженер-электронщик из Южной Каролины Джеймс Ли Скрибнер (James Lee Scribner) тридцать лет экспериментировал с электро- и радиостимуляцией семян. В результате его боб «дорос чуть ли не до неба», как в сказке. Инженер подключил алюминиевый горшок в обычную электрическую розетку. Между электродами он поместил влажную металлическую смесь из миллионов цинковых и медных частичек, которые после высыхания пропускали электричество. Посаженное в горшок бобовое зёрнышко выросло до 7 метров, тогда как бобы этого сорта в обычных условиях никогда не превышали 60 см. Это чудо-растение принесло два мешка вкуснейших бобов. Скрибнер полагает, что:

«Фотосинтез происходит благодаря электронам. Электрон намагничивает хлорофилл в клетках растений и даёт возможность фотону стать частью растения в виде солнечной энергии. Этот магнетизм притягивает молекулы кислорода в постоянно расширяющиеся клетки с хлорофиллом. «Я уверен, что растение усваивает влагу электронным способом. Появление капелек влаги на листьях растений обусловлено не "корневым давлением", а множеством электронов, взаимодействующих с избыточной энергией воды в почве».

Эксперименты Скрибнера с семенами — не первые в этом роде. В 1930-х гг. итальянец Биндо Риччиони (Bindo Riccioni) разработал собственную систему электрической обработки семян с производительностью пять тонн семян в день. Он пропускал семена через конденсаторы с пластинчатыми обкладками со скоростью 5 метров в секунду. По данным Риччиони, обработанные семена давали урожай от 2-х до 37% выше, чем средний по стране, в зависимости от почвы и погодных условий. Вторая мировая война помешала его дальнейшим исследованиям, а его 127­страничная книга, переведённая на английский язык лишь в 1960 г., так и не сподвигла американских и европейских учёных на дальнейшие эксперименты в этой области.

Однако в одной из газетных статей упоминалось, что в Советском Союзе в 1963г. действовало предприятие по обработке семян электричеством с производительностью 2 тонны семян в час. В результате урожай зелёной массы кукурузы увеличился на 15-20% выше среднего, овса и ячменя — на 10-15%, гороха — на 13% и гречихи — на 8-10%. Но в статье не упоминалось, какое значение имел этот пилотный проект для облегчения хронического дефицита зёрна в СССР. Для агропромышленного комплекса, почти полностью полагавшегося на искусственные химикаты не только для удобрения почв, но и для борьбы с вредителями, вновь открытые инженерами электрорастениеводческие возможности казались либо ненужными, либо даже опасными. Этим объсняется отсутствие финансирования дальнейших исследований.

Ещё в 1962 г. бывший директор департамента сельскохозяйственных инженерных исследований Министерства сельского хозяйства США, Е. Г. МакКибен (E.G. McKibben) жаловался на чрезвычайно недальновидную политику в этой области. Выступая перед членами Американского общества сельскохозяйственных инженеров, МакКибен сказал: «Возможности применения различных видов электромагнитной энергии в сельском хозяйстве ограничены лишь творческой фантазией и материальными ресурсами. Электромагнитная энергия — это, по-видимому, основной вид энергии. Эта, или близкая к ней энергия, похоже, является исходной составляющей всех других энергий и материи, а также неотъемлемой частью жизненной энергии растений и животных». МакКибен подчёркивал, что поддержка исследований в области электрорастениеводства могла бы привести к неслыханным достижениям, о которых нам даже и не снилось. Но его обращение так и не нашло отклика у слушателей.

Ещё до МакКибена было сделано немало новых открытий о влиянии магнетизма на растения. В 1960 г. Л.Дж. Аудус (L.J. Audus), профессор ботаники в Бедфорд-колледже Лондонского Университета, пытаясь изучить реакцию растений на гравитацию, обнаружил, что корни растений чувствительны к магнитным полям. Тогда он опубликовал новаторскую работу в авторитетном журнале «Природа» (Nature) под названием «Магнитотропизм — новый аспект роста растений». Практически в то же время в Москве был опубликован доклад двух русских учёных А.В. Крылова и Г.А. Таракановой о необъяснимом феномене: рядом с Южным полюсом магнита томаты созревали быстрее, чем с Северным.

Канадец д-р Ю.Дж. Питтман (U.J. Pittman) из сельскохозяйственной исследовательской станции в провинции Альберта наблюдал сходное явление по всей Северной Америке: корни различных культурных и диких злаков, а также ряда трав непременно располагались с севера на юг, параллельно горизонтальной силе магнитного поля земли. Он обнаружил, что земной магнетизм ускорял прорастание пшеницы, ячменя, овса, льна и ржи, если семена были расположены вдоль направления север-юг, а кончик зародыша ориентирован к Северному полюсу. Питтман писал в журнале «Растениеводство и почва» (Crops and Soils Magazine): «Недаром моя бабушка говорила, что семена тыквы нужно сажать так, чтобы они непременно указывали на север. Похоже, она была совершенно права!»

В 1968 г. опять же инженер д-р X. Лён Кокс (Н. Len Сох) из Денвера, штат Колорадо, наткнувшись на статью в одном из номеров «Еженедельника авиации и космонавтики» (Aviation Week and Space Technology), задумался о возможности широкомасштабного применения загадочной силы магнетизма в сельском хозяйстве. В статье сообщалось о том, что на инфракрасных снимках, сделанных со спутников НАСА, пшеничные поля, поражённые вредителями или чем-то ещё, выглядели совершенно не так, как здоровые поля с ожидаемым обильным урожаем. Кокс, многие годы проработавший в области космических исследований, был заинтригован этим явлением, которому он не мог дать никакого разумного объяснения. Изучив литературу по электрорастениеводству, он попросил своего друга-металлурга порекомендовать ему какое-нибудь способное к намагничиванию вещество, которое могло бы ускорить рост и увеличить плодоношение растений.

Металлург вспомнил об огромных залежах малоценной металлической руды, магнетита, мощностью в миллиарды тонн, которую можно с лёгкостью добыть в соседнем штате Вайоминг. Кокс привёз оттуда целый кузов руды и перемолол её в порошок. Затем он зарядил порошок в магнитном поле (мощность поля он не разгласил) и смешал его с различными минералами. Полученным порошком Кокс припудрил грядки с молодыми растениями белой и красной редиски. И хотя ботва обработанных подрастающих растений ничем не отличалась от необработанных соседей на другой грядке, но когда Кокс выдернул из земли «активированную» редиску, результаты превзошли самые смелые ожидания. Активированная редиска была не просто в два раза больше обычной, её корешок был в три-четыре раза длиннее. Это означало, что стимуляция корня молодого растения привела к увеличению роста. Кокс получил такой же результат и с другими корнеплодами, такими как брюква, репа и морковь, а также с другими овощами — бобами, салатом и броколли.

В 1970 г. «Электрорастениеводческая компания» Кокса начала продажу этого порошка, расфасованного по 5 кг. Покупатели хвалились не только большим урожаем, но и значительным улучшением вкуса овощей, как и в случае с клубникой Лемстрема и хлебом из муки Лоджа. Некоторые говорили о том, что на стеблях их ирисов расцветало в два раза больше бутонов, вне зависимости от количества внесённых удобрений. А один хирург рассказал Коксу, что при посадке двух саженцев сосны жёлтой (Pinus ponderosa) под одно дерево он решил добавить намагниченную руду. В результате за одно лето деревце выросло в четыре раза выше своего неактивированного собрата.

На вопрос, как же работает его «активатор», Кокс отвечал: «Это загадка. Я знаю об этом не больше, чем врачи о механизме действия своего аспирина. Владельцы деревопитомников и городские любители растений, не обольщайтесь! Удивительно, но факт: намагниченный порошок никак не действует на растения в цветочных горшках и на тепличных грядках. Чтобы порошок сработал, его нужно вносить непосредственно в почву земли». Вот одно из объяснений этой аномалии: намагниченный оксид железа, магнит, отдаёт свою силу только при контакте с его, как в своё время выразился Гилберт, «одушевлённой Матушкой-Землёй».

И пускай механизм воздействия электромагнетизма остался не до конца понятым, в период между Первой и Второй мировыми войнами в научных лабораториях были сделаны новые поразительные открытия. Они показали, что загадочные природные излучения имеют для благополучия растений гораздо большее значение, чем было принято считать в научной среде.

В начале 1920-х годов русский инженер Георгий Лаховский, живущий в Парижеj начал публикацию серии книг о том, что основа жизни заключена не в материи, а в связанной с ней нематериальной вибрации. «Любое живое существо испускает излучение», — подчёркивал Лаховский. Он выдвинул новую революционную теорию о том, что клетки, основные органические составляющие всего живого, являются электромагнитными излучателями, способными, как беспроводные приборы, излучать и поглощать высокочастотные волны.

Суть теории Лаховского состояла в том, что клетка есть микроскопический колебательный контур. С точки зрения электротехники для такого колебательного контура необходимы два основных элемента: конденсатор, или источник накопленного электрического заряда, и катушка проволоки. Когда ток от конденсатора течёт туда и обратно между двумя концами проволоки, он создаёт магнитное поле, которое имеет определённую частоту колебания. Если такой колебательный контур уменьшён до микроскопических размеров, то достигается огромная частота колебаний. Лаховский полагал, что именно такой процесс протекает в крошечном ядре клетки. А маленькие скрученные волокна ядра являются подобием электрического колебательного контура.

В своей книге «Происхождение жизни» (L'Origine de la Vie), опубликованной в 1925 г., Лаховский описал ряд поразительных экспериментов, подтверждающих идею о том, что причиной болезни является разбалансировка клеточных вибраций, а борьба между здоровыми клетками и патогенами, вроде бактерий и вирусов, есть «война вибраций-излучений». Если вибрации микробов сильнее, то вибрации здоровых клеток нарушаются, становятся хаотичными и «болезненными». Когда клеточная вибрация прекращается, клетка умирает. Если же вибрация клетки берёт верх над вибрацией патогена, то микроб погибает. Чтобы возвратить заболевшей клетке здоровье, нужно вернуть ей природную частоту колебания с помощью искусственного излучения.

В 1923 г. Лаховский разработал электрический аппарат, излучающий очень короткие волны (длиной от двух до десяти метров), который учёный назвал «клеточный радиоизлучатель». В хирургическом отделении известной парижской больницы Сальпетрье Лаховский привил растениям герани канцерогенные бактерии. Когда на растении появились опухоли размером с вишнёвую косточку, учёный облучил герань своим прибором. Первые дни опухоль быстро разрасталась, но через две недели она вдруг стала съёживаться и вскоре погибла; ещё через две недели опухоль отпала. Другие растения, подвергшиеся разному по срокам лечению, также сбросили раковые образования под воздействием колебательной радиации.

Лаховский рассматривал результаты опытов с растениями как подтверждение своей теории. Рак был побеждён в результате усиления обычного колебания здоровых клеток герани. Этот подход диаметрально противоположен подходу врачей-радиологов, предлагающих уничтожать раковые клетки внешней радиацией.

Развивая свою теорию, Лаховский столкнулся с проблемой происхождения энергии, необходимой для производства и поддержания нормального клеточного излучения. Маловероятно, что эта энергия производится самими клетками, так же как не являются источниками энергии батарея или паровой двигатель. Тогда он пришёл к заключению, что источником энергии является внешнее космическое излучение.

Чтобы проверить гипотезу о космическом происхождении энергии, Лаховский прекратил опыты с прибором, производящим искусственные вибрации, и решил получить природную энергию космоса. В январе 1925 г. он выбрал из группы гераней с привитым заранее раком одно растение и окружил его медной спиралью с диаметром витка в 30 см, а два конца спирали установил на эбонитовые опоры. Через несколько недель вся контрольная группа растений с привитым раком погибла и засохла, а окружённая спиралью счастливица была не только абсолютно здорова, но и выросла в два раза выше своих здоровых незараженных раком собратьев.

На основе этих замечательных результатов Лаховский разработал сложную теорию о том, как герань смогла выбрать из всего многообразия излучений во внешней атмосфере ту самую частоту, необходимую для усиления нормального излучения своих клеток. Причём здоровая вибрация герани усилилась настолько, что уничтожила раковые клетки.

Всему многообразию излучений всевозможных частот, исходящих из космоса и постоянно пронизывающих атмосферу, Лаховский дал обобщающее название «универсум» (universion). Он полагал, что некоторые частоты, пропущенные через медную спираль, были задействованы в восстановлении здоровья вырождающихся клеток приболевшей герани.

По мнению Лаховского, универсум, или совокупность вселенских излучений, это совсем не то же самое, что и, так называемый, «абсолютный вакуум», которым современные физики подменили эфир XIX века. Для Лаховского эфир был не противоположностью материи, а синтезом излучений, вселенским сплетением всех космических лучей. Материя, расщепляясь, переходит в эту вездесущую и всепроникающую среду и превращается в электрические частицы. Лаховский был уверен, что с признанием этой новой концепции, наука могла бы взойти на новые высоты и объяснить самые непостижимые загадки, включая телепатию, передачу мысли на расстоянии, а также общение человека и растений.

В марте 1927 г. Лаховский написал доклад «Влияние астральных волн на колебания живых клеток», и передал его Французской академии наук через своего друга, профессора Жака Арсена д'Арсонваля, выдающегося биофизика, открывшего диатермию.

В марте 1928 г. герань с окружающей её спиралью достигла невероятной высоты в полтора метра и цвела даже зимой. Лаховский был уверен, что благодаря своим экспериментам с растениями он наткнулся на новый вид лечения, чрезвычайно важный для медицины. Учёный начал разрабатывать сложный аппарат для лечения человека, который он назвал «мультиволновой излучатель». Этот прибор успешно использовался во французских, шведских и итальянских больницах для лечения рака, побочных эффектов радиотерапии, зоба и ряда болезней, считавшихся неизлечимыми.

В 1941 г. Лаховский, ярый антифашист, бежал из оккупированного фашистами Парижа. Так он попал в Нью-Йорк. Там его мультиволновой излучатель использовался в отделении физиотерапии крупной нью-йоркской больницы для успешного лечения артрита, хронического бронхита, врождённого вывиха бедра и других болезней. Уролог-хирург из Бруклина, не пожелавший раскрыть своё имя, использовал прибор не одну сотню раз для торможения неподдающихся другим методам лечения заболеваний. После смерти Лаховского в 1943 г. его поразительные находки, заложившие основу для радиобиологии, так и не вошли в сферу интересов медицины; а в настоящее время использование мульти-волнового излучателя в медицинских целях официально запрещено Министерством здравоохранения США.

Пока Лаховский работал в Париже, команда из Университета штата Техаса под руководством профессора Е. Дж. Ланда (E.J. Lund) разработала способ измерения электрического потенциала в растениях. Эксперименты Ланда продолжались более десяти лет, в итоге оказалось, что растительные клетки вырабатывают электрические поля, токи или импульсы. Все это, как предполагал Боше, могло означать наличие «нервной системы» у растений. Также Ланд показал, что причиной роста растений является именно эта электрическая нервная система, а не гормоны роста, ауксины, как считалось ранее. Электрические поля, производимые клетками растений, собирают и транспортируют ауксины к растущим частям растений.

В своей важной, но малоизвестной книге «Биоэлектрические поля и рост» Ланд сообщил о революционном открытии: электрическая деятельность клеток растений претерпевает изменение ещё за полчаса до поступления и начала действия гормонов роста в клетках.

Тем временем исследования русского учёного Александра Гурвича, вдохновившего Л. Джорджа Лоуренса на изучение передачи растениями сигналов, несмотря на враждебность Академии наук США, начали приносить новые плоды. Выдающийся бактериолог из Корнельского университета профессор Отто Ран (Otto Rahn) обнаружил удивительное явление: недомогание лаборантов, похоже, вызывало гибель дрожжевых клеток, с которыми они работали. Побывав на кончиках пальцев больного человека, здоровые клетки этого дрожжевого грибка погибали уже через несколько минут. То же самое происходило даже при отсутствии непосредственного контакта с пальцами больного. Дальнейшие эксперименты выявили, что все дело в смертоносных химических веществах, выделяемых руками и лицом заболевших лаборантов. Но как эти вещества работают на расстоянии, так и осталось загадкой. Также Ран доказал, что постоянно обновляющаяся ткань роговицы глаза, а также большинство ран и раковых опухолей, производят некое загадочное излучение. Он описал эти и другие свои открытия в книге «Невидимое излучение организмов» (Invisible Radiation of Organisms), которая, в целом, не заинтересовала его учёных коллег.

Современные средства и методы физиков подходят для распознавания этого нового непонятного излучения не больше, чем для изучения «животного магнетизма» Месмера и «одической силы» Рейхенбаха. Поэтому учёные относились к идее о том, что живые ткани излучают и реагируют на вибрации энергии с изрядной долей скептицизма. Открытия Джорджа Вашингтона Криля (George Washington Crile) постигла та же участь, что и работы Лаховского, Гурвича и Рана. Криль был хирургом и основателем Клинического фонда в Кливленде. В 1936 г. появилась его книга «Феномен жизни с радио-электрической точки зрения» (The Phenomena of Life: a Radio-Electrical Interpretation), обобщившая результаты экспериментов, которые он проводил на протяжении всей своей жизни. В книге представлены доказательства того, что живой организм имеет все необходимое для производства, хранения и использования электрической энергии. Эта энергия, по словам Криля, производилась микроскопическими элементами в протоплазме, которые он назвал «радиогенами».

За три года до появления этой книги, в своём обращении к конгрессу Американской коллегии хирургов, Криль подчеркнул, что вскоре специалисты по радиодиагностике смогут определять наличие болезни до появления её внешних симптомов. Но Криль подвергся насмешкам медиков и клеточных биологов, которые обвинили его в недостаточном знании предмета.

Врачам и учёным-медикам, включая онкологов, все равно не уйти от необходимости изучения влияния электромагнитной энергии на живые клетки как здоровые, так и больные. Это влияние уже было наглядно продемонстрировано при помощи интервальной фотосъёмки. Большинство растений растёт очень медленно, и для нас, людей, они кажутся совершенно неизменными, словно замороженными. И только если отвлечься от растения на несколько часов, а лучше на несколько дней, можно заметить отличия живых растений от пластиковых цветов и кустов, вытеснивших живые цветы из цветочных магазинов по всему миру.

В 1927 г. подросток из Иллинойса, разглядывая почки на ветках большой яблони во дворе, задался вопросом: когда же они превратятся в благоухающие цветы? Вдруг он понял, что если фотографировать почки через равные интервалы времени, то он сможет наблюдать своими глазами распускание почек и превращение их в цветы.

Так началась карьера Джона Наша Отта (John Nash Ott) в интервальной фотографии, позволившая ему раскрыть новые тайны царства растений.

Для экспериментов с экзотическими видами растений Отт построил маленькую теплицу. Изучая растения, он осознал уникальность каждого вида, также как и антрополог, открывающий для себя неповторимость каждого племени и народа. Отт консультировался с университетскими ботаниками и учёными-исследователями из крупных компаний, и мало-помалу выяснились основные причины «капризов» растений. Они были особо чувствительны не только к свету и температуре, но и к ультрафиолетовым, телевизионным и рентгеновским лучам.

Открытия Отта о влиянии света и температуры могли бы объяснить многие загадки в ботанике, например огромные размеры растений, обитающих высоко в горах центральной Африки.

Более тридцати лет назад англичанин Патрик Синж (Patrick Synge) в своей книге «Растение-личность» (Plants with Personality) писал, что никто так и не разработал стройной теории о происхождении гигантизма у растений. Но, возможно, его причина кроется в особых природных условиях: низкой, но относительно постоянной температуре и высокой влажности воздуха, высокой интенсивности ультрафиолетовых лучей из-за огромных высот и близости к экватору.

В европейских Альпах горная растительность обычно имеет карликовые размеры, однако в Лунных горах, или Рувензори, как их называют африканцы, Синж наткнулся на «вереск высотой с дерево» и нашёл розовые бальзамины с цветками диаметром в пять сантиметров.

На склонах потухшего вулкана Элгон высотой в 4600 м на границе Кении и Уганды, Синж нашёл лобелии (распостраненные в Англии маленькие растения с синими цветами), похожие на «гигантские сине-зелёные обелиски» высотой в 10 метров. Он сфотографировал эти великаны, наполовину покрытые снегом, со свисающими на кончиках листьев сосульками. Но когда то же самое растение перевезли в Англию, оно не смогло пережить даже одной мягкой английской зимы.

Идея Синжа подкрепляет гипотезу французского химика Пьера Берселота (Pierre Berthelot), что постоянное присутствие электричества на высоте альпийских лугов объясняет энергичный рост растений даже на бедных почвах. Если бы исследователи смогли воспроизвести условия, перечисленные Синжем, возможно, гигантские растения можно было бы с успехом выращивать и на уровне моря.

С помощью интервальной фотосъёмки Отто открыл, что световые волны разной длины оказывают огромное влияние на фотосинтез — процесс, при помощи которого зелёные растения превращают свет в химическую энергию и синтезируют органические вещества из неорганических, превращая углекислый газ и воду в углеводы с выделением кислорода. Чтобы изучить этот процесс, Отт потратил несколько месяцев на создание оборудования для увеличенной фотосъёмки струящейся протоплазмы в клетках травы Elodea при стимуляции прямым нефильтрованным естественным солнечным светом. При свете солнца основные участники фотосинтеза — хлор о пласты, содержащие хлорофилл — начинают упорядоченно циркулировать вдоль стенок продолговатой клетки. Но если отфильтровать из солнечного света ультрафиолетовые лучи, некоторые хлоропласты выпадают из циркуляции и сбиваются в неподвижные группки по углам клетки. При дальнейшем отсеивании лучей начиная с синего спектра и вплоть до красного движение хлоропластов все больше замедляется.

Примечательно, что к концу дня движение хлоропластов тормозится и прекращается даже при интенсивном облучении растения искусственным светом. Только на следующий день, на восходе солнца, хлоропласты начинают свою привычную циркуляцию.

Отт предположил, что если основные принципы фотохимии в случае с фотосинтезом у растений аналогичны процессам у животных, тогда — как уже давно утверждают сторонники цветотерапии — световые частоты различного цветового спектра могут влиять на физическое состояние человека и химию его тела так же, как и различные лекарства при нервных и ментальных отклонениях.

В 1964 г. одна из статей в журнале «Тайм» (Time) вдохновила Отта заняться изучением влияния телевизионного излучения на растения и человека. В статье высказывалось предположение, что нервозность, хроническая усталость, головные боли, бессонница и рвота у тридцати детей, обследованных двумя врачами ВВС США, каким-то образом связаны с тем, что эти дети проводили перед экранами телевизоров от трёх до шести часов в рабочие дни и от двенадцати до двадцати часов в выходные. Правда, врачи сделали вывод, что причиной тому был недостаток движения при просмотре телевизионных программ. Однако Отт заподозрил, что, возможно, дети пострадали от какого-либо излучения, особенно рентгеновского, находящегося в цветовом спектре за пределами ультрафиолетового излучения.

Для проверки своей гипотезы Отт закрыл половину кинескопа цветного телевизора свинцовым щитом в 1,5 мм, который обычно используется для блокировки ренгеновского излучения. Другую половину кинескопа он покрыл плотной чёрной фотобумагой, способной блокировать видимые и ультрафиолетовые лучи, но пропускающей другие электромагнитные частоты.

Он поместил шесть горшочков с проросшими бобами перед каждой половиной телеэкрана, по два на каждый из трёх уровней сверху вниз. В качестве контрольной группы взял шесть горшочков с тремя проростками в каждом и поместил их на улицу за 15 метров от теплицы с экспериментальным телевизором.

За три недели бобы рядом с закрытой свинцом половиной телевизора и растущие на улице выросли до 15 см и выглядели здоровыми и бодрыми. Растения рядом с половиной, покрытой бумагой, под воздействием вредоносного излучения превратились в что-то вроде ползучего вьюнка. В некоторых случаях корни начинали расти аномально вверх, выглядывая из почвы. Если телевизионное излучение превратило в монстров растения, то что же происходит с детьми?

Когда через несколько лет Отт обсуждал отклонения в бобовых растениях с учёными, ведущими космические исследования, они рассказали ему, что ненормальный рост корней бобов очень напоминает поведение проростков пшеницы в биокапсуле, побывавшей в космосе. Тогда думали, что это происходит из-за условий невесомости в отсутствие силы гравитации. Некоторых учёных заинтересовало предположение, что возможной причиной странного роста корней может быть вовсе не невесомость, а наличие общего радиационного фона неопределённой энергии.

Фоновая радиация, приходящая из зенита, или точки точно над головой, проходит через меньшую толщу фильтрующей атмосферы Земли и поэтому является более мощной по сравнению с любым излучением, приходящим под другими углами. Отт предположил, что корни растений растут вниз для того, чтобы укрыться от излучения прямо над ними.

В другой серии экспериментов Отт решил обработать белых крыс тем самым излучением, которое вызвало причудливый рост бобов. Сначала подопытные крысы были гиперактивными и агрессивными, затем становились все более заторможенными. Доходило до того, что крыс приходилось подталкивать, чтобы те двигались по своим клеткам.

Отт также заметил, что после установки телевизора в теплице крысы в примыкающем помещении для разведения животных в пяти метрах от телевизора стали рожать лишь по одному-два детёныша в помёте, вместо обычных восьми­двенадцати. И это несмотря на две перегородки, отделяющие телевизор от беременных самок. Через шесть месяцев после того, как телевизор убрали из теплицы, нормальная плодовитость крыс восстановилась.

Чтобы хоть как-то решить усугубляющуюся проблему с поддержанием дисциплины в школах, гиперактивным, легко отвлекающимся и рассеянным детям стали давать так называемые «лекарства для изменения поведения», или «успокоительные таблетки». Эта практика вызвала бурю противоречивой реакции среди родителей, врачей, чиновников и даже конгрессменов. Хотя об этом никогда не говорилось в открытую, Отт догадывался, что эта гиперактивность и возрастающая заторможенность детей, включая слишком длительный сон, является следствием облучения от телевизоров. Когда Отт предложил бесплатно повторить свои эксперименты для лаборантов в биоаналитической лаборатории производителя телевизоров компании «RCA», директор по исследованиям спешно отклонил его предложение, а в дальнейшем добавил: «Современный телевизор никак не может испускать какое бы то ни было вредное излучение».

Но Отт знал, что излучение от кинескопа находится в очень узком диапазоне электромагнитного спектра. Поэтому биологические системы, чувствительные именно к этому виду излучения, могут получить чрезмерную стимуляцию этой энергией так же, как и светом, сфокусированным через увеличительное стекло. Единственное различие здесь в том, что увеличительное стекло концентрирует поток света в одном направлении, а энергия, излучаемая телевизором, исходит во всех направлениях, не встречая на пути никаких препятствий. «Излучение в 0,5 миллирентгена кажется людям сущим пустяком, — говорил Отт, — но это иллюзия. Килограмм золота тоже можно назвать одной тысячной тонны. Переставляя запятую, можно создать впечатление, что эта величина чрезвычайно мала, но это только уводит от понимания реального положения вещей. 26,6°С является комфортной температурой, но стоит всего лишь удвоить это значение, как температура станет губительной для большинства форм жизни».

Отт ещё больше поверил в то, что электромагнитное излучение непредсказуемо влияет на растения и животных после одного случая. Однажды ему позвонили из голливудской кинокомпании «Парамаунт Пикчерз» (Paramount Pictures) и предложили сделать интервальные фотографии цветов для нового фильма с Барбарой Стрейзанд в главной роли по мотивам популярного бродвейского мюзикла «В ясный день видно так далеко» (On a Clear Day You Can See Forever). Главная героиня фильма обладает различными экстрасенсорными способностями и, помимо всего прочего, своим пением может вызывать бурный рост растений. Для этой части фильма кинокомпания хотела, чтобы Отт немедленно приступил к работе с геранями, розами, ирисами, гиацинтами, тюльпанами и нарциссами.

Чтобы воспроизвести естественное солнечное освещение, Отт разработал новую лампу дневного света с полным спектром излучения, включая ультрафиолет. Компания требовала от Отта сдачи результатов работы в точно установленные сроки. Чтобы закончить работу вовремя, требовалось, чтобы новое освещение пришлось цветам по вкусу. Отт с облегчением отметил, что все цветы дружно принялись в рост. Но он также заметил, что растения растут лучше под центром, чем под концами флюоресцентных трубок. Учёный знал, что лампы-трубки по принципу действия напоминают катодные пушки излучения в телевизорах и рентгеновских аппаратах. Единственное различие между ними в том, что ламповые пушки излучения работают на гораздо более низком напряжении, и учебники утверждают, что это напряжение настолько низкое, что лампы не могут производить никакого вредного излучения. Отт стал подозревать, что и учебники могут ошибаться. Он расположил две панели из десяти ламп-трубок торцами друг к другу. Таким образом, Отт получил двадцать катодов, расположенных в непосредственной близости друг от друга. Прорастив те же бобы, что и в эксперименте с телевизором, Он обнаружил, что растения рядом с катодами были низкими и хилыми, тогда как растения у центра и стоявшие в трёх метрах от ламп выглядели нормальными.

Отт провёл множество других экспериментов с бобами и понял, что они гораздо более чувствительны даже к ничтожному уровню излучения, чем современные приборы для измерения радиации. Это объясняется тем, что приборы лишь измеряют текущий уровень излучения, а биологические системы испытывают постоянное и кумулятивное воздействие излучения.

Затем Отт углубился в изучение влияния света с разной длиной волны на развитие и рост раковых опухолей.

Как же он пришёл к заключению о существовании связи между светом и раком? Однажды один врач-онколог из нью-йоркской больницы попросил пятнадцать раковых пациентов, чтобы те проводили как можно больше времени на улице, на естественном солнечном свете, при этом не пользуясь очками и избегая любого искусственного источника света, включая телевизор.

К концу лета врач рассказал Отту, что у четырнадцати из пятнадцати пациентов рост опухоли прекратился.

Тем временем работы Отта вызвали интерес у видного офтальмолога из Флориды, который рассказал учёному о поведении роговицы глаза. Оказывается, слой клеток в сетчатке глаза, не принимающий никакого участия в зрении, аномально реагировал на успокоительные лекарства. Офтальмолог попросил Отта провести тест на токсичность препаратов с помощью интервальной фотографии через микроскоп. Отт использовал фазово-контрастный микроскоп, оборудованный полным набором цветофильтров. Этот прибор позволял получать чёткое изображение очертания и строения клетки без применения смертельных для клеток красящих веществ, которыми пользовались до сих пор. Этот способ наблюдения выявил, что обработка волнами синего спектра вызывала ненормальную активность в пигменте клеток сетчатки. Волны красного спектра вызывали разрыв стенок клеток. Эксперимент показал и более интересное явление: когда клеткам давали пишу, добавляя питательную среду, при постоянной температуре кормление не стимулировало клеточное деление. Но при снижении температуры во время кормления клетки начинали ускоренно делиться уже через шестнадцать часов.

Во время экспериментов учёные также заметили, что непосредственно перед закатом солнца активность пигментных гранул в клетках глаза замедлялась, а возобновление нормальной активности происходило лишь на следующее утро. Это поведение пигмента в клетках сетчатки напомнило Отту поведение хлоропластов в клетках травы Elodea. Похоже, основа строения и жизнедеятельности животных и растений не так уж различна, как считалось ранее.

Отт предположил, что хлоропласты в растениях и пигментные гранулы в эпителии сетчатки глаза могут быть «настроены» на естественный спектр света Солнца, к которому адаптировалось все живое на нашей планете. «Получается, — говорил он, — что основные принципы фотосинтеза в растениях, у которых световая энергия является основным регулятором роста, можно перенести и на жизнь животных. По-видимому, свет оказывает влияние на химические и гормональные процессы в животных, и таким образом является основным регулятором роста».

Другие исследования поведения клеток привели Отта к выводу, что недостаток или плохое качество освещения и излучения может вызывать болезнь с тем же успехом, что и недостаточное или плохое питание.

В 1970 г. на собрании Американской ассоциации развития науки д-р Люис Мейрон (Lewis W. Mayron) описал опыты Отта с облучением бобов и крыс телевизором и сделал заключение, что «излучение оказывает влияние на физиологию растений и животных, изменяет химические процессы в теле». Мейрон также прокомментировал эксперименты Отта с бобами и флюоресцентными лампами дневного света: «Если учитывать повсеместное использование флюоресцентных ламп в магазинах, офисах, фабриках, школах и жилых домах, то можно представить, какое влияние это оказывает на здоровье человека».

Получив щедрое финансирование от Фонда Эвелин Вуд (Evelyn Wood Foundation), Отт провёл исследования влияния телевизора на детей с отклонениями в поведении. При поддержке Арнолд С. Таккет, директрисы школы для проблемных детей в городе Сарасота, штат Флорида, Отт проверил домашние телевизоры, которые смотрели ученики этой школы. Учёный обнаружил значительное рентгеновское излучение, исходящее от большинства телевизоров, а особенно от работающих многие часы без перерыва. Родителей попросили проследить, чтобы во время летних каникул дети проводили больше времени на улице, а при просмотре телевизора садились от него как можно дальше.

К ноябрю нового учебного года миссис Таккет сообщила, что проблем с поведением у детей заметно уменьшилось.

К концу 1960-х годов Конгресс США единогласно (381 голос) принял Закон о контроле за излучением. Конгрессмен от Флориды и соавтор закона Поль Роупс выразил Отту признательность за то, что тот «подтолкнул нас к контролю излучения от электронных приборов». Отт же поблагодарил свои растения за то, что они пролили свет на эту проблему.

Работы Гурвича, Рана, Криля и сторонников электрорастениеводства указывают на то, что Гальвани и Месмер, утверждая, что все живое обладает электрическими и магнетическими свойствами, были всё-таки правы. Странно только, что никто из них не подумал, что все живые организмы также имеют вокруг себя те же электромагнитные поля, о которых говорит современная физика частиц. Именно такую теорию разработали два профессора из Йельского Университета, один — философ, Ф. С. Нортроп (F.S.C. Northrop), другой, как и Гальвани, врач и анатом, Гарольд Сакстон Бурр (Harold Saxton Burr).

Нортроп и Бурр утверждали, что электрические поля и есть основная упорядочивающая сила в живых системах. Учёные предложили химикам новую теорию, позволяющую соединить в единое целое тысячи отдельных, открытых химиками, компонентов. Они объявили биологам, что их долгие поиски «механизма», согласующего работу клеток человеческого тела (которые обновляются каждые 6 месяцев, но это не приводит к изменению формы тела), могут быть окончены. Эти заявления, похоже, вернули к жизни забытые теории месмеровского животного магнетизма и животного электричества Гальвани и, казалось, предоставили вещественные доказательства существования некой неуловимой «жизненной силы» французского философа Генри Бергсона (Henri Bergson) и энтелехии (entelechy) немецкого биохимика Ганса Дриша (Hans Driesch).

Для проверки этой теории Бурр и сотрудники его лаборатории соорудили новый вид вольтметра, который не оттягивал на себя ток от изучаемых живых организмов и поэтому не искажал окружающее их общее поле. Двадцать лет исследований с помощью этого и более сложных приборов выявили поразительные феномены в растительном и животном мире. Акушер-гинеколог д-р Луис Лангман (Louis Langman), переняв методы Бурра, смог, к примеру, с предельной точностью зафиксировать момент овуляции у женщин, а также определил, что у многих женщин овуляция происходит несколько раз в течение менструального цикла, а иногда даже без появления менструаций. Эта процедура определения овуляции чрезвычайно проста и ни в коей мере не противоречит календарному методу предохранения от беременности, одобренному католической церковью. Но этот способ пока неизвестен миллионам женщин, желающим узнать лучшие методы предохранения от беременности или удачного зачатия.

Сам Бурр понял, что болезни некоторых органов можно выявить до появления клинических симптомов, а также можно точно измерить прогресс заживления ран. Так же стало возможным определить с первого же дня инкубации будущее расположение головы цыплёнка в яйце, не разбивая яичную скорлупу.

Работая с растениями, Бурр измерил так называемое «поле жизни» вокруг семян, а также заметил сильные колебания напряжения поля при изменении даже одного родительского гена. По электрическим характеристикам семян Бурр научился предсказывать, насколько здоровым и жизнеспособным будет будущее растение — что могло бы стать отличным подспорьем для учёных-селекционеров.

Поскольку деревья отличаются особой выносливостью и наименьшей подвижностью из всех живых существ, Бурр на протяжении более двадцати лет фиксировал на бумаге поля жизни деревьев, растущих на территории Йельского университета и своей лаборатории в Коннектикуте. Учёный заметил, что поля жизни реагируют на лунные циклы и пятна на солнце, появляющиеся на нашем светиле с довольно продолжительными интервалами. Кроме того, он зафиксировал краткосрочные циклы в три и шесть месяцев, которым он не нашёл никакого объяснения. Результаты его исследований в какой-то мере оправдали древнюю практику садоводов сажать растения по лунному календарю.

Один из учеников Бурра, Леонард Равитц (Leonard J. Ravitz), ставший впоследствии психиатром, ещё в 1948 г. с помощью оборудования Бурра смог измерить глубину гипнотического погружения. Оказалось, что даже в состоянии «бодрствования» все люди находятся как бы под гипнозом.

Постоянное измерение полей жизни человека выявили циклический подъём и падение напряжения поля, причём высшие и низшие точки кривой совпадали с днями «хорошего» и «плохого» самочувствия. Исследователи биоритмов человека предлагают, экстраполируя эти тенденции в будущее, заранее предсказывать благоприятные и неблагоприятные дни каждого человека. Впервые теорию биоритмов выдвинул д-р Вильгельм Флисс (Wilhelm Fliess), чьи письма так вдохновляли Зигмунда Фрейда во время его самоанализа.

Многолетние исследования Бурра, затем продолженные Равитцем, продемонстрировали, что упорядочивающие поля вокруг «тел» живых организмов уже содержат информацию о будущих изменениях в физическом теле и, как говорил Марсель Вогель, направленная мысль может изменять это поле и таким образом оказывать положительное или разрушительное воздействие на физическое тело.

Но этим революционным открытиям ещё предстоит проникнуть в сознание современных медиков, которые только недавно начали принимать их всерьёз.

Теперь учёных-медиков ждёт ещё одно потрясение. В 1972 г. в Институте клинической и экспериментальной медицины в г. Новосибирске было сделано очередное удивительное открытие, которое полностью подтвердило находки Гурвича, Рана и Криля.

С. П. Щурин и двое его коллег из Института автоматики и электрометрии были награждены Государственным комитетом по изобретениям и научным открытиям СССР специальными дипломами за открытие «общения» клеток друг с другом. Учёные установили, что клетки облекают свои сообщения в форму особого электромагнитного луча.

Экспериментаторы поместили идентичные колонии клеток в два герметичных сосуда, отделённых друг от друга стеклянной перегородкой. Затем одну из колоний заразили смертельным вирусом, убившим все клетки в сосуде. Вторая колония продолжала жить как ни в чем не бывало. Тогда стеклянную перегородку заменили на кварцевую и снова заразили одну из колоний смертельным вирусом. Советские учёные были поражены полученным результатом: вторую колонию постигла та же печальная участь, что и первую, хотя вирус был внедрён лишь в одну из колоний, и не имел никакой возможности проникнуть сквозь заградительный барьер. Провели также и другие эксперименты, где одну из колоний клеток убивали химическими ядами или смертельными дозами радиации. Но результат был один: вторая, казалось бы полностью изолированная колония, погибала вместе с первой. Что же убивало вторую колонию во всех этих случаях?

Известно, что обычное стекло фильтрует ультрафиолетовые лучи, а кварцевое — наоборот, пропускает их. Похоже, в этом был ключ к разгадке. Советские учёные вспомнили о Гурвиче, утверждавшем, что клетки лука могут испускать ультрафиолетовое излучение. Идеи Гурвича, о которых было забыто с 1930-х годов, снова оказались в центре внимания. В экспериментах использовали специальный прибор — электронный глаз с фотоувеличителем и самописцем. Самописец регистрировал уровень энергии в виде кривой на движущейся ленте. Учёные заметили, что когда жизненные процессы в клетках колонии протекают нормально, то невидимое глазу ультрафиолетовое излучение, фиксируемое самописцем в виде кривой на ленте, остаётся стабильным. Как только колония начинает борьбу с инфекцией, испускаемое ею ультрафиолетовое излучение усиливается.

В опубликованных московской прессой отчётах сообщалось, что как бы фантастично это не звучало, но ультрафиолетовое излучение заражённых клеток содержало информацию, зашифрованную в колебаниях его интенсивности, которая каким-то образом была воспринята второй незараженной колонией. Это похоже на принятие радистом сообщения, зашифрованного в виде точек и тире азбуки Морзе.

Так как вторая колония погибала совершенно так же, как и первая, советские учёные сделали вывод, что сигналы умирающих клеток воздействуют на здоровые клетки так же губительно, как и сами вирусы, яды и высокие дозы радиации. После получения сигнала тревоги от гибнущей первой колонии клетки второй колонии начинали готовиться к отражению атаки. И эта мобилизация и подготовка к отражению нападения несуществующего врага оказалась такой же фатальной для клеток, как если бы на них напал реальный вирус.

В газетных отчётах упоминалось, что новосибирские эксперименты могут помочь выявить скрытые резервы человеческого организма в борьбе с болезнями. Московские газеты, ссылаясь на Щурина, писали о новых горизонтах в медицинской диагностике: «Мы уверены, что излучение первым сигнализирует о приближении болезненных изменений и наличии конкретных вирусов. На сегодняшний день выявление на ранних стадиях многих заболеваний, например различных форм гепатита, представляет особую трудность для медицины».

Так, пятьдесят лет спустя, соотечественники Гурвича наконец признали его выдающиеся открытия. Также получили признание работы и другого забытого учёного, Семена Кирлиана, запечатлевшего на фотоплёнку удивительные снимки энергетических полей вокруг человека и растений, которые детально изучили и измерили Бурр и Равитц.

Тайны ауры растений и человека



Однажды в 1950 г. длинный поезд Москва-Краснодар, извиваясь, приближался к пункту своего назначения, внутреннему южному порту на реке Кубань, что в 300 километрах на северо-запад от потухшего вулкана Эльбрус, высочайшей горы Европы, принадлежащей к Большой Кавказской горной цепи.

В этом поезде, в «мягком» вагоне для советских чиновников, сидел учёный-ботаник. Ему наскучило смотреть на проплывавшие за окном унылые плоские пейзажи, нёсшие на себе отпечатки недавней войны. Он открыл свою сумку, чтобы проверить состояние двух с виду одинаковых листьев, сорванных в теплице до отъезда из столицы.

С облегчением отметив, что листья, заботливо уложенные на подушечку из влажной ваты, выглядят зелёными и свежими, он откинулся на спинку сиденья и снова посмотрел в окно. На горизонте замаячили предгорья Кавказа.

В тот же день поздним вечером в маленькой краснодарской квартирке с импровизированной лабораторией в одном из закутков, электрик и фотограф-любитель Семён Давыдович Кирлиан и его жена Валентина настраивали оборудование, которое начали собирать за два года до нападения на СССР фашистов.

С помощью своего оборудования даже без объективов и фотоаппарата они смогли запечатлеть на фотоплёнку невидимое для человеческого глаза странное свечение, которое, похоже, исходило от всех живых существ.

Супруги с удивлением услышали стук в дверь. Кто же мог прийти к ним на ночь глядя? Каково же было их изумление, когда они увидели на пороге незнакомого человека. По его словам, он приехал из Москвы, чтобы попросить их сделать снимки странной энергии, которые, по слухам, умеют делать только они. Незнакомец достал из портфеля два схожих с виду листа и вручил их супругам Кирлиан.

Семён и Валентина обрадовались возможности продемонстрировать работу своего изобретения и трудились до полуночи. Снимок первого листа вышел отлично — лист окружало яркое сияние энергии. Но хотя внешне листья были совершенно одинаковыми, снимок второго листа напоминал очень плохую фотокопию первого. Кирлиан бились всю ночь напролёт, пытаясь получить отчётливые снимки исходящей от второго листа энергии. Но у них так ничего и не вышло.

К утру удручённые супруги показали свои результаты учёному, который изумлённо воскликнул: «Вот это да! Вы зафиксировали это на фотоплёнку!» Он объяснил, что первый лист сорвал со здорового растения, а второй — с больного. Хотя на первый взгляд оба листа ничем не отличались друг от друга, на снимках их различия были очевидны. Болезнь явно проявлялась в энергетическом поле растения ещё до появления симптомов в физическом теле.

На протяжении многих веков философы и ясновидящие утверждали, что все растения, животные и человек окружены тонкой полевой оболочкой из субатомной энергии и энергии протоплазмы; эта оболочка пронизывает плотное физическое тело до последней молекулы и атома. Об этом неведомом измерении, «ауре», которую можно увидеть на иконах в виде золотого нимба над головами святых, с незапамятных времён твердят люди с экстрасенсорными способностями. Наложив на изучаемый объект фотоплёнку и пропустив через него электрический ток от высокочастотного генератора зажигания, который производит от 75 000 до 200 0000 электрических импульсов в секунду, супруги Кирлиан смогли сфотографировать «ауру» или что-то ей подобное.

Листья растений, переложенные плёнкой и помещённые между электродами, открыли потрясающую фантасмагорию — маленькую вселенную крошечных лучащихся точек света, которую раньше могли видеть лишь ясновидящие. На снимке видны белые, голубые красные и жёлтые сполохи, вырывающиеся из каналов листьев. При повреждении листа это излучение — энергетическое поле вокруг листа — искажается, постепенно затухает, а после гибели листа и вовсе исчезает. Супруги Кирлиан смогли увеличить это свечение, приспособив своё оборудование к оптическим инструментам и микроскопам. На увеличенных снимках предстали лучи энергии и крутящиеся шары света, вылетающие из растения в пространство.

Также супруги Кирлиан изучили всякие «неодушевлённые» предметы и вещества, включая металлические монеты. У каждого объекта наблюдалось своеобразное свечение. Примечательно, что двухкопеечная монета имела лишь ровное свечение по краям, а отпечатки пальцев человека испускали излучение в виде ритмичных сполохов энергии, похожих на миниатюрные вулканы.

Только через десять лет после визита московского учёного и изготовления снимков здорового и больного листа никому неизвестные достижения Кирлиан стали привлекать внимание советских учёных.

В начале 1960-х годов д-р Лев Фёдоров из Министерства здравоохранения СССР, поражённый перспективами использования кирлианской фотографии в медицинской диагностике, выделил супругам Кирлиан средства на исследовательские цели. Но вскоре после смерти Фёдорова финансирование из Москвы пошло на убыль, уступив место скептицизму и критике.

Об открытиях Кирлиан вспомнили лишь после того, как один журналист осветил их историю в прессе. «Сегодня ситуация не лучше, чем до революции, когда царские бюрократы боялись нового и подавляли прогрессивную мысль. С тех пор, как Кирлиан сделали свои открытия, прошло двадцать пять лет, а соответствующие министерства так и не удосужились выделить средства на дальнейшие исследования», — писал И. Белов.

Выступления Белова в прессе не пропали даром. В 1966 г. на конференцию в казахской столице Алма-Ате съехалось множество учёных, интересующихся самыми разными аспектами «биологической энергии». В материалах конференции под названием «Проблемы биоэнергетики», была опубликована важнейшая статья «Исследования биологических объектов в высокочастотном электрическом поле», написанная супругами Кирлиан в соавторстве с московским биофизиком Виктором Адаменко. Авторы отметили огромные трудности, связанные с изучением спектра «электробиоизлучения», но когда все проблемы будут решены, то они смогут «получать важную информацию о биоэнергетических процессах в живом организме».

Несмотря на растущий интерес к этой теме в СССР, американской науке (окрестившей шарлатаном Вильгельма Рейха, открывшего в 1939 г. оргон, или жизненную энергию в растениях и человеке) понадобилось ещё 3-4 года, чтобы обратить внимание на новые научные открытия. Причём интерес возник не из-за советских научных публикаций по биоэнергетике, а благодаря книге двух североамериканских журналистов Шейлы Острандер и Линна Шрёдера «Психические открытия за железным занавесом» (Sheila Ostrander, Lynn Schroeder: Psychic discoveries behind the iron curtain), опубликованной летом 1970 г.

Эта книга призвела большое впечатление на д-ра Телму Мосс (Thelma Moss), профессора Института нейропсихиатрии Университета Калифорнии в Лос-Анжелесе. Она связалась с советскими учёными и получила приглашение посетить профессора Владимира Инюшина в Алма-Ате.

Совместно со своими коллегами в 1968 г. Инюшин написал объёмистый научный труд по результатам своих исследований работ Кирлиан: «Биологическая основа Эффекта Кирлиан». Хотя сам Кирлиан утверждал, что странная энергия на снимках является результатом «превращения неэлектрических свойств тела в электрические характеристики, отражаемые на плёнке», Инюшин пошёл дальше. Он заявил, что запечатлённое на кирлиановских снимках биоизлучение является не только отражением электрических характеристик организма, но и «биологической плазмы тела». Этот последний термин, похоже, просто подменил «эфирное» или «астральное» тело, описанное в древних трактатах.

В современной физике под плазмой понимается электрически нейтральный, чрезвычайно ионизированный газ, состоящий из ионов, электронов и нейтральных частиц. Плазму также называют «четвёртым состоянием вещества» (помимо твёрдого, жидкого и газообразного). Ещё в 1944 г., пока армии союзников освобождали Европу, в Париже вышла книга «Четвёртое состояние материи» русского учёного В. С. Грищенко. Поэтому введение термина «биоплазма» можно приписать именно ему . В том же году первооткрыватель «митогенетического излучения» А. Г. Гурвич опубликовал в Москве свою книгу «Теория биологического поля», подытожившую 20-летние исследования учёного.

По словам Инюшина, в «биоплазменном» теле биоплазма движется словно по лабиринту, совсем не так, как энергия циркулирует в физическом теле. Однако биоплазменное тело — это не хаотическое скопление частиц, а упорядоченный организм, работающий как единое целое. Он производит собственное электромагнитное поле, являющееся основой «биологических» полей.

Когда Телма Мосс прибыла вечерним рейсом в Алма-Ату, Инюшин пригласил её посетить его лабораторию и прочитать лекцию для студентов, чем несказанно обрадовал американку. Телма Мосс легла спать с мыслью о том, что она станет первым американским учёным, посетившим советское учреждение, исследующее кирлианскую фотографию. Но на следующее утро Инюшин заехал за ней в гостиницу и сообщил, что, к сожалению, «Москва не дала разрешение на посещение».

Тем не менее, Мосс удалось получить некоторую информацию от Инюшина. К примеру, за шесть лет работы с кирлианской фотографией он обнаружил, что некоторые участки тела человека производят характерное цветовое излучение, которое можно с успехом использовать в медицинской диагностике. Причём самые отчётливые кирлианские снимки получаются в четыре часа дня, а самые плохие — в полночь. Когда Мосс напрямую спросила Инюшина, правда ли, что его «биоплазма» — то же, что и «аура» или «астральное» тело, описываемое в популярной на Западе эзотерической литературе, Инюшин ответил так же прямолинейно: «Да!»

В древних традициях, в учениях Востока и в теософии энергетический «дубль» физического тела называется эфирным, флюидным или дофизическим телом. Считается, что оно является объединяющей и упорядочивающей силой для плотного тела; магнитным полем, где нематериальные, или субатомные, вихри космоса превращаются в материальное тело человека; канал общения жизненной силы с физическим телом; среда для телепатических и ясновидческих проекций. Учёные потратили немало лет, чтобы сделать это тело видимым для глаза человека.

Пока Мосс гостила в Алма-Ате, именитый американский психиатр Монтег Ульман (Montague Ullman), директор психиатрического отделения Медицинского центра Маймонидес в Нью-Йорке, брал интервью у Виктора Адаменко в Москве.

Ульман с некоторым удивлением узнал, что Адаменко и другие советские учёные установили следующее: в помещённой в магнитное поле «биоплазме» происходят резкие изменения, и она начинает концентрироваться в сотнях точек на теле человека, которые, похоже, соответствуют древнекитайской системе акупунктуры.

Тысячи лет назад китайцы определили сотни точек на поверхности кожи человека, связанные каналами, по которым, по их убеждению, циркулирует жизненная сила. Китайское иглоукалывание в эти точки исправляет дисбаланс течения энергии и лечит заболевания. Похоже, точки, где на кирлианских снимках сполохи света видны наиболее ярко и отчётливо, совпадают с акупунктурными точками древних китайцев.

Адаменко не разделял уверенности Инюшина, что этот феномен является «биоплазменным телом», так как все ещё нет «твёрдых доказательств» существования последнего. Поэтому он предпочитал называть видимое на снимках излучение «холодным излучением электронов от живого объекта в атмосферу».

В США это самое «холодное излучение электронов» практически неизменно переводится как «коронный разряд», который сравнивается с разрядом статического электричества от тела человека, если тот пройдётся по ковру и прикоснётся к заземлённому металлическому предмету. Название «коронный разряд» происходит от термина «корона» — слабо окрашенного светящегося кольца вокруг небесных тел, видимого при лёгком тумане или слабой облачности; или от понятия «солнечной короны» — светящейся оболочки неправильной формы из чрезвычайно ионизированного газа за пределами солнечной хромосферы. Но одно дело — присвоить явлению научный термин, и совсем другое — объяснить его суть и принцип действия.

Ульман, являющийся также президентом Американского общества психических исследований, чрезвычайно заинтересовался открытием киевского электрофизиолога д-ра Анатолия Подшибякина. Тот обнаружил, что биоплазма, если это, конечно, она, мгновенно реагирует на изменения солнечной активности, хотя частицы, выбрасываемые при этом Солнцем, доходят до Земли только через двое суток.

Многие парапсихологи рассматривают человека как неотъемлемую часть жизни на Земле и во Вселенной. По их утверждению, человек связан с космосом через своё биоплазменное тело и реагирует на движение планет, на смену настроения и заболевания других людей, на мысли, эмоции, звук, свет, цвет, магнитные поля, времена года, лунные циклы, приливы и отливы, грозы, сильные ветры и даже на уровень шума. Изменения во Вселенной и окружающей среде, по словам парапсихологов, отражаются на жизненной силе тела человека, которая, в свою очередь, влияет на физическое тело. Именно через биоплазменное тело человек может напрямую контактировать с живым растением.

Ещё один американский парапсихолог д-р Стенли Криппнер (Stanley Krippner), директор необычной лаборатории сновидений клиники Маймонидес в Нью-Йорке (знаменитой своими опытами по управлению снами при помощи рисунков, направляемых на спящего человека) отправился летом 1971 г. в Россию. В Москве Криппнер стал первым американцем, приглашённым выступить с докладом по парапсихологии в Институте психологии при Академии педагогических наук. На его лекцию собралось около двухсот психиатров, физиков, инженеров, космических учёных и готовящихся к полётам космонавтов.

Криппнер узнал о нейрофизиологе Геннадии Сергееве, работавшем в Ухтомском военном институте в Ленинграде, который сделал кирлианский снимок Нины Кулагиной. Эта женщина-экстрасенс могла двигать по поверхности стола скрепки, спички, сигареты, и другие предметы, проводя над ними рукой, но не касаясь их.

На снимках Сергеева явственно видно, что во время этих психокинетических подвигов «биоплазменное тело» вокруг Нины Кулагиной расширяется и начинает ритмично пульсировать, а её глаза испускают светящиеся лучи.

Осенью 1971 г. Вильям Тиллер (William A. Tiller), заведующий кафедрой физики материалов Стенфордского университета в Пало Альто, штат Калифорния, специалист по кристаллам с мировым именем, стал первым американским физиком, приглашённым Эдуардом Наумовым, заведующим лабораторией технической парапсихологии в Москве, познакомиться с советскими достижениями в области кирлианской фотографии.

Как Мосс и Ульману, Тиллеру не позволили посетить советские лаборатории, но он провёл несколько дней в обществе Адаменко. По возвращении в США, Тиллер в своём отчёте, написанном чрезвычайно техничным языком, подчёркивал, что кирлианский метод и аппаратура являются «настолько важными для парапсихологических и медицинских исследований, что необходимо немедленно создать подобное оборудование и повторить советские достижения в США».

Тиллер, как и Адаменко, не видел смысла вводить в обиход новые термины вроде «биоплазмы» и предпочитал говорить о «холодном излучении электронов». Он занялся созданием чрезвычайно сложного оборудования для получения кирлианских снимков в своей лаборатории в Пало Альто.

Первый в США кирлианский снимок получила Тельма Мосс и один из её студентов Кендалл Джонсон. Мосс и Джонсон стали первыми американцами, которые с помощью своего аппарата смогли получить цветные фотографии листьев и отобразить на снимках практически все цвета видимого спектра их излучения. На снимках было видно, что от американских монет исходит, красно-бело-синее свечение, так же как и от кончиков пальцев человеческой руки.

Электроинженер из Нью-Мексико Генри С. Монтейс (Henry С. Monteith) сделал у себя дома аппарат из двух 6-вольтных батареек, вибратора, на котором работает автомобильное радио, и блока зажигания с катушкой индуктивности. Как и советские исследователи, Монтейс обнаружил, что живой лист испускает красивое разноцветное излучение, которое современная наука объяснить не в состоянии. Кроме того, он увидел, что от мёртвого листа, в лучшем случае, исходит ровное излучение. Под воздействием 30 000 вольт мёртвый лист не давал на снимке вообще никакого изображения, даже если его окунали в воду; а живой лист переливался в радуге собственного излучения.

Большинство западных учёных считают все идеи о существовании ауры просто блефом. Между тем, кирлианская фотография, изобретённая ещё в конце 1930-х годов, похоже, даёт наглядные доказательства существования ауры, что вызвало в США огромный интерес к продолжению исследований в этой области. Заручившись поддержкой нескольких спонсоров, Стенли Криппнер организовал весной 1972 г. первую на Западе конференцию по кирлианской фотографии и ауре человека, которая прошла в Инженерно-промышленном центре в Манхеттене. Конференц-зал был битком набит врачами, психиатрами, психоаналитиками, психологами, парапсихологами, биологами, инженерами и фотографами всех мастей. Мосс и Джонсон продемонстрировали шокирующие снимки листа до и после прокалывания. На кирлианском снимке повреждённого листа была отчётливо видна огромная кроваво-красная лужа энергии на том самом месте, где до прокалывания сияло ярко-лазурное излучение с розоватым оттенком.

Мосс также удалось отразить загадочную зависимость между эмоциональным и психическим состоянием человека и излучением от кончиков его пальцев. С помощью кирлианской фотографии Мосс обнаружила, что излучение от кончиков её пальцев и пальцев Кендалла Джонсона изменяется с течением времени.

Снимки листьев также отличаются в зависимости от выбранных параметров фотосъёмки. Мосс объясняла это тем, что «когда мы делаем снимок на определённой частоте, мы резонируем, или вибрируем, на одинаковой частоте лишь с одним, определённым аспектом изучаемого объекта; а поэтому на снимке отражается не целостная картина, а лишь отдельные аспекты биоизлучения».

По предположению Тиллера, излучение энергии от листа или кончиков пальцев человека, на самом деле, может исходить от чего-то, существовавшего до образования плотной материи По его словам, это что-то, «возможно, есть следующий уровень материи, образующей голограмму, целостную энергетическую структуру листа, являющуюся упорядочивающей силой для плотной материи. Последняя уже под воздействием голограммы организует себя в определённую физическую структуру».

По мнению Тиллера, даже если удалить часть этой физической структуры, упорядочивающая голограмма останется невредимой. Это предположение подкрепляется результатами опытов советских учёных с листьями растений. В английском «Журнале парафизики» (Journal of Paraphysics) была опубликована кирлианская фотография листа с отсечённой частью. Очертания недостающей части листа были отчётливо видны на снимке.

Подлинность метода кирлианской фотографии была подтверждена многочисленными исследователями Северной Америки. Так, Дуглас Дин (Douglas Dean) сделал снимки кончиков пальцев одной очень успешной целительницы из Нью-Джерси по имени Этель де Лоах (Ethel de Loach). Один снимок был сделан во время отдыха целительницы: от кожи пальцев исходило темно-синее излучение; угадывались очертания ногтей. На другом снимке, сделанном во время сеанса целительства, помимо синего излучения из-под подушечек пальцев вырывалось огромное огненно-красное пламя. Впоследствии оба снимка были опубликованы на обложке медицинского журнала «Врач-остеопат» (Osteopathic Physician). На кирлианских снимках видно, что излучение от народных целителей после сеанса уменьшается, тогда как излучение от их пациентов увеличивается. По всей видимости какая-то энергия перетекает от рук целителя в тело пациента, что подтверждает теорию Гальвани и Месмера о «животном магнетизме».

В Институте человека (Human Dimensions Institute) при Колледже Розари Хилл (Rosary Hill) в Буффало, штат Нью-Йорк, одна из профессоров, сестра М. Жуста Смит (М. Justa Smith), католическая монашка и биохимик, выдвинула предположение, что целительная энергия, исходящая от рук целителя, возможно, влияет на ферментативную деятельность организма и тем самым возвращает здоворье больным клеткам. Заручившись сотрудничеством одного целителя, сестра Жуста (окончившая работу над докторской диссертацией, доказывающей, что магнитные поля усиливают, а ультрафиолетовое излучение ослабляет активность ферментов) выявила, что в «оптимальном психологическом состоянии» — то есть в хорошем настроении — целитель мог энергией рук активировать фермент поджелудочной железы трипсин с тем же успехом, что и магнитное поле от 8000 до 13 000 гауссов. (В среднем же окружающая человека среда имеет магнитное поле в 0,5 гаусса). Сестра Жуста продолжает выяснять, могут ли целители активизировать другие ферменты и ведёт ли эта активизация к улучшению здоровья человека.

Как магнитные поля влияют на все живое и какое отношение они имеют к энергии «ауры»? Эта тайна ещё далека от разгадки. В последние годы учёные обнаружили, к примеру, что улитки чувствуют даже чрезвычайно слабые магнитные поля и их направленность; они как бы обладают особым чувством, наподобие «встроенного» навигационного компаса.

По словам Жана Мерта, ему удалось потоком энергии ауры привести в движение рамку в руках врача помимо его воли и усилий остановить вращение. Кроме того, его биоэнергия оказала столь сильное воздействие на снимавшее их видео­записывающее оборудование, что на видеоплёнке эта сцена вообще не отобразилась. Мерта разработал целую теорию ауры, которая, в частности, предполагает, что магнитные поля оказывают сильное влияние на процесс обучения. Он посадил тридцать мышей в маленькие клетки из прозрачного пластика. Десять мышей обрабатывали воздействием южного полюса, другие десять — северного полюса магнита с силой поля в 5-10 гауссов. Третий десяток мышей не подвергался никакой обработке. Мерта с помощью специального обучающего устройства установил, что живущие в магнитных полях мыши были более активны и обучались быстрее, чем «ненамагниченные».

Похоже, внешние излучения влияют на активность полей «биоплазмы» или «ауры» (если это они и есть) вокруг живых существ. Вне всякого сомнения, в свете первых советских работ и их подтверждения в Америке, состояние физического и эмоционального здоровья растений и животных можно выявить с помощью метода Кирлиан.

По словам профессора Тиллера, советские исследователи оказали науке неоценимую услугу, «разработав измерительное оборудование и приспособления, при помощи которых можно показать причинно-следственную связь, влияние психо-энергетических феноменов на материю и, следовательно, на показания приборов. Учёные и наша логика принимают в качестве приемлемых доказательств только показания приборов. Сейчас мы настолько наивны, что нам все ещё нужны доказательства».

Первая конференция по кирлианскому методу оказалась настолько успешной, что в феврале 1973 г. в Таун Холле (Town Hall) в Нью-Йорке состоялось второе собрание на эту тему. Доклад греческого психиатра д-ра Джона Пьерракоса (John Pierrakos) стал одним из самых впечатляющих выступлений на собрании. Врач продемонстрировал подробные рисунки аур, которые он видит вокруг растений, животных и людей. Он также способен отслеживать постоянные изменения ауры вокруг невротически и психически больных пациентов. Врач Шафика Карагулла (Shafica Karagulla) в своей книге «Раскрытие творческих способностей» (Breakthrough to Creativity), опубликованной в 1967 г., утверждала, что многие терапевты пользуются своими наблюдениями энергетических полей человека в целях диагностики. Однако так как врачи опасаются обсуждать свои необычные способности за пределами близкого круга друзей, Карагулла в своей книге не стала раскрывать их имён. Пожалуй, Пьерракос был первым терапевтом, не побоявшимся публично заявить о том, что наблюдения человеческой ауры стали для него подспорьем в диагностике заболеваний.

«Человек — это вечный маятник движения и вибраций, — сказал Пьерракос собравшимся в Таун Холле. — Его дух заперт в теле, где клокочут и пульсируют, словно сердце, энергии и силы. При переживании сильных эмоций воздействие этих сил может быть настолько сокрушительным, что они потрясают сами основы физического тела. Жизнь идёт, она то тихо и ритмично пульсирует в тёплых чувствах любви, то обрушивается лавиной неистовых эмоций. Движение и пульсация — и есть жизнь. Движение замедляется — приходит болезнь, движение останавливается — приходит смерть».

Пьерракос сравнил тело человека с временной капсулой, исполняющей биологические функции «около сотни лет», после чего капсула меняет форму своего существования. «В это время, как растение, приносящее цветок или семя, рождающее растение и плод, человеческая капсула должна осознать происходящее внутри и снаружи». По утверждению Пьерракоса, «мы должны описать и понять, совместить и осмыслить две составляющие: жизненную энергию и сознание». Первая — это аура вокруг тела, по структуре напоминающая слои атмосферы, которые становятся все более разрежёнными по мере удаления от поверхности Земли. Для эллинов, предков Пьерракоса, энергия была «чем-то, производящим движение». Пьерракос посчитал нужным прояснить это чересчур туманное определение. По его предположению, «энергия — это жизненная сила, проявляющаяся при помощи сознания». «Если внимательно понаблюдать за паром над кипящей водой, можно понять природу воды. Так же наблюдение исходящего от тела энергетического поля даёт мне представление о состоянии этого тела», — сказал Пьерракос.

Своими рисунками Пьерракос проиллюстрировал три видимых вокруг большинства пациентов слоя энергетического поля. Первый представляет собой тёмную кайму толщиной от 1,5 мм до 3 мм, которая прилегает вплотную к коже и выглядит как прозрачная кристаллическая структура. Второй, более широкий темно-синий слой напоминает скопление железных опилок и, если смотреть спереди, образует яйцевидную оболочку вокруг тела. Третий слой — голубоватый туман лучащейся, светящейся энергии, которая (если человек здоров) простирается на метр и более от физического тела. Вот почему говорят, что жизнерадостный, энергичный человек «светится от счастья».

Также Пьерракос продемонстрировал вид ауры пациентов с психическими расстройствами: слои их поля имеют провалы и пробоины, а также меняют свой цвет. Правда, цветовой аспект поля Пьерракос видел лишь в общих чертах. Одна пациентка с психическим заболеванием рассказала Пьерракосу о том, что она чувствует себя «в безопасности», потому что рядом с ней постоянно стоит «на страже» другой человек. Тогда врач попросил её показать этого другого человека. И он сразу же заметил рядом с пациенткой массу голубовато-серой энергии в форме человеческого тела.

Пьерракос отметил, что психически нездоровые пациенты могут также оказывать влияние на энергетическое поле растений: «Вместе с д-ром Весли Томасом мы провели несколько экспериментов в моем офисе и обнаружили, что если на хризантему накричать с расстоянии полутора метров, поле растения уменьшается в размере, теряет свой лазурно-голубой цвет, а пульсация замедляется на одну треть. В другой серии опытов мы ставили живые растения на метр от головы буйных кричащих пациентов на два и более часа ежедневно. В результате нижние листья начинали опадать, и в течение трёх дней растение увядало и погибало».

Пьерракос рассказал, что количество пульсаций энергетического поля в минуту также отражает внутреннее состояние человека. Поле стариков и спящих пульсирует значительно медленнее, чем у детей и людей в бодрствующем состоянии.

Энергия начинает своё движение из живота и стекает вниз в виде плавной перевёрнутой буквы «Г» к одной из ног, затем в виде «Г» поднимается к противоположному плечу и проделывает тот же путь сзади тела. В результате траектория течения энергии вокруг тела напоминает цифру 8. Если в символической форме сложить вместе две пары «Г», которые описывает энергия спереди и сзади, то получается «свастика» (в переводе с санскрита «благополучие»), символ, существовавший во многих культурах с незапамятных времён.

Пьерракос наблюдал ауру, похожую на человеческую, и в макрокосмических масштабах над океаном. Над более узкими слоями, пульсирующими снизу, вырывались фонтаны излучения высотой в несколько километров. Пьерракос сопоставил активность земной ауры с временем суток и обнаружил, что время сразу после полуночи является низшей, а время сразу после полудня — высшей точкой этой активности. Это наблюдение в точности совпадает с описанным Рудольфом Штайнером процессом вдоха и выдоха химического эфира нашей планетой.

В настоящее время исследовательская группа физиков и электронщиков пытается найти способы объективного наблюдения полей, видимых Пьерракосу. Под покровительством научно-исследовательского центра биоэнергетики они разрабатывают средства исследования ауры человека и растений с помощью чувствительной фотомультипликационной трубки. Этот инструмент измеряет фотоны световой энергии от «эфирного» поля вокруг тела. В предварительном отчёте в Таун Холле они сообщили, что к тому моменту результаты их исследований полностью подтверждали излучение странного поля от тела человека. Это поле регистрируется прибором, однако его свойства требуют дальнейшего изучения.

Пьерракос также видит энергию, излучаемую растениями и деревьями. По его словам, феномен, обнаруженный кирлианской фотографией, нельзя сравнивать с уже известными излучениями, такими как рентгеновские лучи: «Изучение ауры может стать более объективным. Но тогда, вооружившись приборами, мы рискуем забыть, что перед нами живое существо, проявление святого феномена жизни».

Это высказывание Пьерракоса перекликается с работами философа и математика Артура М. Янга (Arthur М. Young), конструктора вертолёта Белл Янг, подчёркивавшего, что за всем многообразием упорядоченных в иерархию энергий, известных или неизвестных человеку, может скрываться смысл. «Любое явление предполагает смысл, намерение, сущность. Это относится как к материальному миру, так и к миру человеческих чувств. Материю структурирует энергия. Поведение людей структурирует мотивация». Могут ли живые организмы влиять на своё физическое тело мотивацией, намерением или другим проявлением воли? Могут ли растения и человек, которых материалисты сводят лишь к набору атомов, развиваться так, как они этого хотят?

В Советском Союзе — стране, основанной на чрезвычайно материалистичном мировоззрении, научном материализме — достижения кирлианской фотографии подняли некоторые глубинные вопросы об истинной природе жизни растений, животных, человека, о сознании и теле, о материальном и духовном. По мнению Тельмы Мосс, исследования в этой области уже приобрели столь огромное научное значение, что правительства СССР и США засекретили свои исследовательские программы. Тем не менее, это не помешало сотрудничеству и налаживанию дружеских отношений между советскими и американскими учёными и научными коллективами.

В своём письме, адресованном участникам первой на Западе конференции по кирлианской фотографии, Семён Кирлиан писал: «новые исследования будут иметь столь огромное значение, что только будущие поколения смогут оценить их по достоинству. Перед нами открывается мир огромных, даже, скорее, бесконечных возможностей».

Загрузка...