АНАЛИЗ

Перед вами стоит сложная, объемная задача, которую можно решить только тщательным скурпулезным анализом. Какие стадии вы должны пройти для ее решения?

Первое — требуется правильно сформулировать задачу, выбрать главные направления.

Почему танк Т-34 признан лучшим танком Второй мировой войны? Были танки и мощнее, и с большей броней, и более быстрые. Он стал лучшим потому, что его создатели выбрали три главных критерия — вооружение, броня и подвижность — и создали танк, чтобы в нем оптимально сочетались именно эти три качества. Остальные параметры учитывались, но лишь во вторую очередь.

Сейчас мало кто знает, что первоначальное задание, поставленное перед конструкторами танка, было совершенно другим. Требовалось создать легкий быстроходный танк с тонкой броней и колесо-гусеничным движителем. Однако М.И. Кошкин смело пошел наперекор требованиям, отстаивая свои взгляды, — и оказался прав. Сочетание сильного вооружения, брони и подвижности оказалось оптимальным. Танки БТ-7 превосходили Т-34 в скорости, но достигалось это благодаря тонкой броне, поэтому их легко было уничтожить. Танки КВ имели мощную броню, были чересчур тяжелы для большинства мостов, у них часто выходила из строя ходовая часть, недостаточный для веса танка мотор сгорал при увязании танка в грязи. Что касается легкого пехотного танка Т-26, то он оказался слишком тихоходным и слабобронированным.

Только с Т-34 — когда эти танки использовались умело — немцам пришлось туго…

Создав паровую машину, Джеймс Уатт вынужден был решить задачу, как превратить круговое движение в прямолинейное. Путем проб и ошибок он создал "параллелограмм", который с грехом пополам справлялся с этой ролью. Однако, строго говоря, параллелограмм Уатта давал не прямолинейное движение, а криволинейное. Это преждевременно изнашивало механизмы и заставляло изобретателей искать новые принципы преобразования — методом проб и ошибок, которые лишь иногда приносили некоторые улучшения.

Русский математик Чебышев проанализировал эту проблему с точки зрения математики. Он решил не улучшать существующие машины, а рассчитать идеальный вариант — то есть создать механизмы, в которых криволинейное движение возможно бы меньше отклонялось от прямолинейного, определив при этом наивыгоднейшие размеры частей машины.

Благодаря проделанной работе Чебышев получил несколько новых конструкций приближенно-направленных механизмов. Некоторые из них сразу нашли применение.


За этапом правильной постановки задачи следует этап определения стратегий изучения объекта. Это необязательно значит, что мы разбираем объект на детали; в первую очередь мы выделяем именно области исследования, определяем метод изучения объекта.

Относительно тех же танков первой стратегией можно выбрать стратегию рассмотрения "кинематических характеристик" танка. Кинематический анализ определяет параметры танка в движении. Эту большую стратегию лучше всего разбить на более мелкие подстратегии, такие как "скорость", "ограничения на перемещение" и т. д.

Переходя к подстратегии "скорость", конструкгор в первую очередь определяет, с какой скоростью должен двигаться танк. Эта скорость обусловит требования к двигательной установке, ходовой части и т. д. Заметим, что эти требования, в свою очередь, обусловливают и размеры моторно-трансмиссионного отделения и диаметр катков и т. д. — то есть затрагивают общую компоновку. Отсюда можно сделать вывод: стратегии нельзя применять по одиночке, проектировщику какого-то отдельного элемента следует иметь представления обо всем изделии.

Рассмотрев подстратегию скорости собственно танка, следует перейти к подстратегии скоростных характеристик перемещения его частей. К примеру, можно задаться вопросом: "Насколько существен такой параметр, как скорость поворота башни?". Ответы на подобные вопросы обычно дает опыт. Сражения Второй мировой войны показали, что скорость поворота башни принципиально важна. Экипажи Т-34 использовали большую подвижность башни при встрече "лоб в лоб" с немецкими танками. После выстрела, за которым следовала перезарядка орудия, Т-34 немедленно уходил в сторону, поворачивая башню. Медлительный же "Тигр" повернуться не успевал — и Т-34 делал еще один выстрел.

Рассмотрев все скоростные характеристики, следует перейти к следующей подстратегии — "ограничение на перемещение". К примеру, если угол подъема пушки выбрать слишком малым, во время боев в городе танк не сможет стрелять по верхним этажам. Но это относится к легким танкам; к тяжелым это требование обычно не предъявляется — в боях за крупные населенные пункты такие танки, как правило, не используются, поскольку они слишком уязвимы и могут в лучшем случае служить для поддержки пехоты.

Перебирая элемент за элементом, следует определить "ограничения на перемещение" для всех подвижных частей конструкции.

Следующей стратегией может быть "энергетический анализ". Он подразумевает исследование изменения состояния вещества с высвобождением энергии. К примеру, в пушке после выстрела в боевом отделении возникают пороховые газы, ударная волна и высокая температура. Из-за недостаточно полно проведенного энергетического анализа порой приходилось после испытаний переделывать башню. А созданное после войны самоходное орудие СУ-102 с мощной 122-миллиметровой пушкой в серию вообще не пошло именно из-за большого объема пороховых газов, возникающих в тесной башне. Видимо лучше просчитав энергетические процессы, американцы и англичане сразу делали свои самые мощные самоходные установки только с открытой башней.

Следующей стратегией может быть "химический анализ". В объекте могут и не происходить какие-либо химические реакции, но проанализировать химический состав объекта бывает весьма полезно. К примеру, немцы потратили много сил и изобретательности на то, чтобы создать истребитель танков "Фердинанд". Однако необходимость использовать в нем большое количество дефицитной меди не позволила выпускать эти танки серийно. Другой пример — во время войны корпуса советских танков оказались прочнее немецких. А причина в том, что немцы сваривали броневые листы на воздухе, азот и кислород поглощались расплавленным металлом, что ухудшало качество брони. На уральских же заводах применялась сварка под флюсом, изобретенная инженером Дульчевским. Флюс не пускал азот и кислород в шов.

Из этого примера напрашивается вывод: необходимо рассматривать ВСЕ параметры, какими бы незначительными они не казались на первый взгляд.

Следующими этапами анализа могут быть "механический" (определение механизмов, в которых нужны силовые приводы, амортизация и т. д), "человеческий" (анализ действий и передвижений экипажа во время боя, марша, обстрела с закрытых позиций, эвакуации и т. д.), анализ взаимодействия с внешними факторами (защита от непогоды, преодоление распутицы и т. д.), технологический — и так далее.

Задаваясь лишь "энергетическим" или "химическим" подходом, мы в значительной мере ограничиваем себя в рассмотрении объекта — но этот подход своими внутренними чаконами (энергетическими или химическими) подсказывает большое количество идей.

Выбрав стратегию, неизбежно приходится заниматься разработкой подстратегий. Их может быть много. К примеру, при "кинематическом анализе" такими подстратегиями являются "скорость", "ограничение на перемещение", "точность позиционирования", "вид привода", "удобство управлением перемещением" и т. д.

В свою очередь подстратегия "удобство управления перемещением" может также делиться на свои подстратегии ("дистанционное управление перемещением", "стабилизация при движении" и т. д.).

Появление новых подстратегий не усложняет, а УПРОЩАЕТ работу по поиску идей — к примеру, мы привыкли относить стабилизацию лишь к пушке, рассматривая же "стабилизацию" как универсальную подстратегию и применяя ее к различным объектам танка, можно получить ряд новых идей — "стабилизация кресла наводчика", "стабилизация пулемета" и т. д.

Конечно, при анализе возможно и появление нестандартных, побочных идей и стратегий. Их следует ценить особо. Нестандартная идея вряд ли придет в голову противнику или конкуренту — и это может обеспечигь преимущество или нейтрализовать другие "побочные" идеи конкурента.

Известно, что Генри Форд сколотил свою могучую империю, одним из первых умело применив анализ операций. Но мало кто знает, что завоевать рынок ему помогла случайная находка — деталь, найденная автопромышленником у места аварии французского гоночного автомобиля. Любой другой отшвырнул бы пыльный обломок ногой, но Генри Форд пройти мимо и не изучить необычное изделие не мог. Деталь машины удивила Форда прочностью при ее легкости.

Форд отдал деталь на анализ. Оказалось, что в ней присутствует ванадий — элемент, делающий изделия особо твердыми. Форд стал добавлять ванадий в шасси и кузова своих автомобилей — хотя это поначалу стоило дорого и требовало перестройки некоторых процессов. Но скоро это окупилось. Нововведение позволило уменьшить количество стали на одну машину. Кроме того, поскольку в начале века Америка не имела хороших дорог, надежные "форды" быстро снискали популярность, и возросший на них спрос позволил запустить конвейеры на полную мощность. Закон капиталистической экономики: качество переходит в количество.

Форду просто повезло — и это сделало его богатым. А потом еще повезло — он изобрел конвейер. А потом еще — он первым внедрил разделение операций. А потом еще — он решил, что квалифицированного работника нужно использовать только для высококвалифицированного труда, и это повысило отдачу от специалистов. А потом еще — ему пришла в голову мысль резко повысить зарплату своим работникам; к нему перешли квалифицированные рабочие с других предприятий, люди стали дорожить своим местом — и в результате качество улучшилось. К тому же эти деньги вернулись, и с лихвой: рабочие стали покупать машины Форда. А потом ему в голову пришла еще идея: снижать как можно ниже цену на машины; они стали общедоступными, и это повысило спрос и тем самым — прибыль. А потом — еще…

Да что же такое? Почему же этому американцу так везло?

Потому что Форд умел, при всех своих аналитических способностях — которые были как бы мотором его дела, — ставить перед собой нестандартные задачи, позволявшие ему обходить конкурентов с самых неожиданных сторон.

…Когда Генри Форд поставил задачу получить монолитный моторный блок с восемью цилиндрами, конструкторы дружно заявили, что в бензиновом двигателе это невозможно. Однако Форд своего задания не отменил.

Прошло полгода — разработки не дали результатов. Прошел год. Форд продолжал выделять деньги на решение непосильной задачи.

И новый двигатель, V-8, наконец был создан. Он позволил компании резко обогнать конкурентов. Может, в этом и был главный секрет Форда, некогда самого богатого человека планеты, — уметь поступать порой невероятно нелогично?

Одно время рабочие Форда жаловались, что посетители завода их отвлекают, и просили не пускать посторонних.

Не давать полюбоваться главным конвейером? Детищем компании? Только не это!

Форд распорядился сделать посещения регулярными — для школьников, студентов, гостей. Скоро работники к таким визитам привыкли и перестали их замечать. А школьники, студенты и гости становились затем обладателями "фордов".

Форд снова вступил в прямое противоречие с логикой. И снова выиграл.

Следует, однако, отметить, что "нелогичные" ходы воплощает в жизнь все-таки именно логика. Именно Форд первым всерьез занялся анализом трудовых операций, что позволило резко сократить расходы на производство автомобиля.

Используя стратегии, следует все же помнить о том, что, задаваясь лишь, скажем, "механическим" анализом, мы себя в некоторой степени ограничиваем — и потому следует посте анализа всех стратегий изучить связи МЕЖДУ стратегиями. Яркий пример неучета таких связей — Цусимское сражение. Русский флот имел технические преимущества, но бронебойные снаряды на большой дистанции теряли пробивающую мощь, в то время как японские снаряды с "шимозой" (взрывчатка, названная так в честь ее создателя, японского профессора Шимозы. — А.П.), тоже теряя скорость, прожигали этой "шимозой" броню. Для снаряда с "шимозой" скорость и калибр снаряда были не так важны. "Механический" принцип поражения противника японцы заменили на "энергетический".

Нечто подобное произошло много позже в сражении на Курской дуге. Бронированным танкам с мощной броней — "тиграм" и "пантерам" — были противопоставлены не гиганты с еще более мощной защитой, а ПТАБы — разработанные И.А. Ларионовым малогабаритные противотанковые авиабомбы кумулятивного действия. Только за пять дней Курской битвы, используя ПТАБы, летчики 291-й штурмовой авиадивизии уничтожили и повредили 422 вражеских танка.

Любопытно, что ленинградец И.А. Ларионов не был специалистом в области взрывчатых веществ. Наверное, это и помогло ему прийти к своей идее, в которой используется "чужой" подход.

Из всего этого следует сделать вывод: на этапе рассмотрения стратегий анализа надо внимательно определять не только эти стратегии, но и их взаимодействие между собой. В вычислительной технике, к примеру, этот этап носит название "определение подсистем и их интерфейсов".


Может возникнуть вопрос — а так ли уж нужны все эти стратегии? Все обычно решается как-то само собой, в рабочем порядке. Когда возникают проблемы, на них и ищутся ответы.

Верно. Но далеко не всегда. В программе испытаний, которые проводили на Чернобыльской АЭС, не было, в частности, указано, куда в ходе проведения эксперимента нужно отводить излишки горячего пара, так как для турбогенератора он уже не требовался (это относится к "энергетическому анализу"). Отключить систему аварийного охлаждения реактора, по мнению строившего первый энергоблок Чернобыльской АЭС Г. Медведева, можно было "только при отсутствии понимания нейтронно-физических процессов в атомном реакторе" ("физический анализ"). Пожар на крыше пожарные загасили, но о пожаре в самом реакторе никто не подумал, продукты горения и составили основной выброс ("химический анализ"). Сбрасывание мешков с песком на станцию привело к новым выбросам ("механический анализ").

Авария произошла. Далее началась цепь ее последствий, которые не были проанализированы заранее.

1. Точно установить уровень радиации и оценить степень опасности не было возможно, поскольку дозиметры оказались слабыми. Это стало причиной того, что эвакуация населения началась с запозданием.

2. Индивидуальные дозиметры на станции имелись, но находились под замком и, кроме того, не были подготовлены к работе. Борющиеся с последствиями аварии люди не имели представления, какую дозу получают.

3. Последовательность действий во время аварии заранее определена не была. Из-за этого, в частности, следующую смену никто не предупредил об опасности — и она, прибыв на станцию, подверглась облучению.

4. Система автоматического оповещения всех должностных лиц оказалась неисправной. Результат — руководство стало предпринимать действия с запозданием.

5. У вызванного на станцию медперсонала не было даже легких респираторов из ткани. Санпропускник самой станции не работал, на его дверях был замок. Вызванные врачи вынуждены были делать главным образом успокаивающие уколы — на станции не оказалось йодистых препаратов.

6. Поскольку учений не проводилось (кроме противопожарных), персонал оказался не готов к действиям в условиях радиационной опасности. Многие не знали даже, как правильно надевать респираторы из ткани.

7. Вызванные пожарные не имели понятия про радиационную защиту. Некоторые брали выброшенные из реактора куски графита в руки.

И т. д.

И т. д.

И т. д.

В результате — по данным "Гринпис" — в разной степени пострадали 12 миллионов человек.

Ущерб, несомненно, был бы гораздо меньше, если бы разработчики создали "дерево событий". Подобное "дерево" описывает все играющие серьезную роль события, которые могут произойти. Каждому элементу такого дерева эксперты должны присвоить определенный "вес" — и самые "весомые" и потенциально опасные варианты должны быть отражены в инструкциях, а также отработаны, хотя бы в учебном классе.

Но "дерево событий" создается, когда конструкция уже существует. Ему предшествует — еще на стадии создания изделия — "анализ операций" каждого работающего.

Вернемся к тому же Т-34. Командир танка руководил экипажем и одновременно был стрелком-наводчиком. Это было явно большой нагрузкой, и потому в танке Т-34—85 появился еще один, пятый, член экипажа.

Другой пример анализа операций. В Т-34 отсутствовала командирская башенка, и потому командир имел плохой обзор. Порой танки подбивались даже легкими самоходками, которые благодаря малошумности могли подобраться почти вплотную. Сделанная на Т-34—85 командирская башенка немецким самоходкам шансов почти не оставила.

Но анализ изделия на анализе операций не кончается.

Следующей стадией является выявление визуальных несоответствий, то есть поиск очевидных несоответствий в компоновке.

Какие, к примеру, выявились несоответствия в компоновке Т-34? Обнаружилось, что узкий двигатель можно поставить не вдоль танка, а поперек. Это помогло сократить длину танка, повысить его маневренность, уменьшить вес.

Но затем оказалось, что с повернутым двигателем можно также переместить башню в центр танка. Когда танк едет по пересеченной местности, танкисты раскачиваются, как на качелях, — и тем меньше, чем ближе они расположены к центру. Исходя из этих соображений, башню перенесли назад. При этом уменьшилась и вероятность того, что при преодолении препятствий пушка упрется в землю. Это позволило удлинить пушку — а значит, увеличить точность огня и пробивающую способность.

Но когда разгрузили передние катки, появилась возможность усилить лобовую броню. Новая броня имела толщину 120 мм (у Т-34 — только 45 мм).

Новый танк, Т-44, имел столь блестящие характеристики, что было принято решение всем формирующимся танковым бригадам присвоить звание гвардейских. Никто не сомневался, что это звание они оправдают.

Любопытно, что все вышеназванные изменения можно было сделать на пять лет раньше. Даже существовал такой вариант — Т-34М, но в серию уже пошел Т-34, а "лучшее — враг хорошего". Т-44 же был принят на вооружение только потому, что он вобрал в себя еще целый ряд изменений, накопленных за пятилетие.

Аналогичные "методу визуальных несоответствий" методы применяли многие конструкторы и ученые. В своих воспоминаниях о Сикорском Н.Н. Поликарпов отмечает такую особенность конструктора: Сикорский подолгу застывал пред своим аппаратом, его внимательно рассматривая. Это "вглядывание" рождало идеи. Впоследствии Сикорский тщательно проверял эти идеи логикой.

Научный метод Леонардо да Винчи в основном базировался на визуальном исследовании. Он состоял из трех элементов: "1) внимательное наблюдение; 2) многочисленная проверка результатов наблюдения с разных сторон зрения: 3) зарисовка предмета и явления, возможно более искусная, так чтобы они могли быть увидены всеми и поняты с помощью коротких сопроводительных пояснений". (Роберт Уоллэйс. Мир Леонардо.)


Пятая стадия анализа — анализ функций. Этот анализ может быть проведен различными методами; мы коснемся важнейших из них.

1. Первый метод — "метод выявления функциональных несоответствий", то есть поиск несоответствия в назначении деталей конструкции, мешающего действию деталей друг на друга.

Шаровая установка курсового пулемета на Т-34 уменьшала прочность лобовой брони. В Т-44 и последовавших после него танках от шаровой установки отказались.

2. Второй метод анализа функций — "использование вспомогательных функций". Обычно любое устройство выполняет и полезное, и побочное действия. Если подробно расписать все побочные действия и проанализировать их, может выясниться, что вред можно обратить в пользу. Самый простой пример — пороховые газы, которые конструкторы стали использовать для работы автоматического оружия.

Принцип этот, казалось бы, совсем прост — но вот что любопытно: в самолете МиГ-3 патрубки не просто выводили отработанные газы, а создавали при этом дополнительную тягу; в других самолетах этого не было — и это внесло свой вклад в то, что МиГ-3 являлся самым быстроходным одномоторным истребителем мира (его опережал только двухмоторный американский "Лайтнинг"). МиГ-3 на форсаже уходил от "мессершмитов"; выпуск этих самолетов пришлось прекратить потому, что заводы потребовались для выпуска аналогичных двигателей для Ил-2.

…Однажды американец по имени Шон Нельсон забрался в танк и поехал, давя людей и круша автомашины на своем пути.

Перед полицейскими возник вопрос: как быстрее обезвредить этого сумасшедшего?

Против танка нет приема. Кроме… Раз обезвредить танк в целом нельзя, то можно постараться сделать для него невозможной хотя бы какую-нибудь одну операцию. К примеру, можно набросить на стекло смотрового устройства водителя мокрую тряпку. С обычным танком это не проходит, поскольку наблюдение за дорогой осуществляет не только водитель, но и командир танка; одновременно же сидеть за рычагами и наблюдать из башни невозможно, это две разные функции.

Полицейские набросили тряпку, и танк, заехав на ограждение между дорогами, застрял. Но после этого возник вопрос: что делать дальше?

Еще одной из функций бронированной машины является забор воздуха для экипажа. Это можно использовать, запустив в отверстие для воздуха газ из газового баллончика.

Судя по документальной хронике, американские полицейские сделали что-то в этом роде. Когда Нельсон показался из танка, полицейские немедленно его застрелили.

Итак, полицейские восприняли танк не как единое целое, а как набор функций — и выбрали те, которые могли использовать в своих целях.

3. Третьим методом анализа функций является "нейтрализация вредных функций". То есть необходимо выявить вредные функции и привлечь принцип, позволяющий избавиться от их вредного действия.

Когда в 1880 году Эдисон создал достаточно долговечную лампу, он попросил руководителя своего исследовательского отдела Фрэнка Аптона спроектировать динамо. Сам Эдисон, не имея специального образования, с этой задачей никогда бы не справился. Проведя анализ, Аптон обнаружил, что самым крупным источником потерь в генераторах являются токи Фуко, бесполезно нагревающие сердечники машин. Как снизить ток при заданном напряжении? Только подняв сопротивление. Аптон поднял сопротивление для токов Фуко, использовав вместо одного большого сердечника множество изолированных друг от друга пластин. КПД первого же генератора Аптона перевалил за 90 %, тогда как никому не удавалось получить КПД выше 40–50 %.

В методе "нейтрализации вредных функций" следует: а) выявить вредную функцию; б) определить ее физическую природу; в) определить путь уменьшения функции; г) найти принцип реализации этого уменьшения.

Алгоритм прост — настолько прост, что кажется само собой разумеющимся. Однако систематическое исследование человеку несвойственно, и потому можно привести много примеров, когда выдающиеся изобретатели годами мучились с какой-нибудь побочной функцией, пытаясь одолеть ее с наскока.

При строительстве первых электромоторов выяснилось, что ток к обмоткам якоря через медные щетки и коллектор подвести трудно, почти невозможно. Во время запуска или перемены направления вращения коллектор вспыхивал от искр и через несколько минут буквально рассыпался в прах. За восемь лет совершенствования электромотора изобретатели Спрэг, Ван-Деполе, Бентли Найт, доведя до совершенства все остальные части электромотора, с проблемой щеток так и не справились.

Ответ оказался прост: если ток большой, то его надо уменьшить. Большое сопротивление дает графит (графит стоит во всех регуляторах громкости). Сопротивление графита больше сопротивления меди в 1000 раз. Но, уменьшая вредную функцию (большой ток), графит уменьшает и полезную (тот же самый большой ток). Ничего страшного — площадь контакта графитной щетки можно сделать в 1000 раз больше медной.

Приведенное решение проблемы кажется логичным — однако оно было найдено методом проб и ошибок.

4) Четвертый метод анализа функций — "анализ положительных и отрицательных функций для их наиболее рационального использования".

Этот метод — самый важный, а порой просто жизненно необходимый. Пример из истории.

После окружения советских армий под Брянском в 1941 году единственной мобильной силой на Западном фронте оказались 50 танков 4-й танковой бригады М.Е. Катукова.

Казалось, судьба Тулы, а затем и Москвы была решена. Но вдруг. О том, что случилось 6 октября 1941 года, гитлеровский генерал Гудериан написал следующее:

"Южнее Мценска 4-я танковая дивизия была атакована русскими танками, и ей пришлось пережить тяжелый момент. Впервые проявилось в резкой форме превосходство русских танков Т-34. Дивизия понесла тяжелые потери. Намеченное быстрое наступление на Тулу пришлось отложить".

Что же произошло? Танки Т-34 сражались с танками Гудериана еще в Белоруссии — но именно сейчас прославленный полководец признал их превосходство и был вынужден приостановить наступление.

Ответ на этот вопрос содержится в записи, сделанной Гудерианом чуть позже:

"Особенно неутешительными были полученные нами данные о действиях русских танков, а главное, об их новой тактике".

Вот в чем дело! Танки Т-34 стали применять иначе? Как?

Катуков прекрасно знал, что немецкие танки имеют слабую броню с бортов. Когда 6 октября немецкая 4-я танковая дивизия направилась на позиции русских стрелков, ее ждал внезапный фланговый удар. После удара Катуков сразу отвел бригаду, предпочтя сохранить ее для последующих внезапных нападений.

Катуков знал также, что узкие гусеницы немецких танков застревают в грязи, и потому танки способны в распутицу двигаться только по шоссе.

"Вечером 11 октября, когда передовые части дивизии вступили в охваченное пожаром предместье Мценска, дивизия растянулась по шоссе километров на двадцать, а приданная ей артиллерия и пехотные части оказались почти за пределами радиосвязи. Именно этот момент Катуков выбрал для нового удара. Почва с наступлением сумерек начала подмерзать, широкие гусеницы Т-34 позволяли пройти там, где тяжелые немецкие танки T-IV садились на бронированное брюхо.

Удар русских танкистов был стремительным и свирепым. Немецкая колонна оказалась рассеченной на части, которые затем были методично уничтожены". (Алан Кларк. Москва 1941 года.)

Похоже, что танки Т-34 смогли "в резкой форме" проявить свое преимущество потому, что Катуков тщательно проанализировал слабые и сильные стороны немецких и советских танков — другими словами, провел анализ функций.

Танки Т-34 превосходили немецкие и в скорости. Немецкий офицер-танкист написал после атаки Катукова:

"Но когда у противника танк лучше, это — страшно. Ты даешь полный газ, но твой танк слишком медленно набирает скорость. Русские танки такие быстрые, на близком расстоянии они успевают взмахнуть на холм или проскочить болото быстрее, чем ты можешь развернуть башню".

Вот бы использовать это свойство с самого начала боев! Но, судя по мемуарам, многие крупные советские военачальники вплоть до 1945 года считали, что танк во всех обстоятельствах обязательно должен сопровождаться пехотой. Вот и шел Т-34 со скоростью 7—10 километров в час, представляя из себя прекрасную цель.

Танки Т-34 имели и более мощную пушку, чем у немцев — но, согласно предвоенной наступательной доктрине, танки посылали в непрерывные атаки, когда гораздо выгоднее было уничтожать противника издали и из засад, не подвергаясь риску быть пораженными. "Опыт боев на Украине, и в частности именно этот бой под Клеванью, впервые заставил меня задуматься над вопросом использовании тактики танковых засад. Эта тактика впоследствии в боях под Орлом помогла нам с малыми силами нанести серьезный урон 24-му танковому корпусу Гудериана", — писал Катуков в своей книге "На острие главного удара".

Увы, но в войну Красная Армия вступила с предвоенным лозунгом "Малой кровью, могучим ударом". 22 июня в войска была отправлена директива — перейти в контрнаступление. Не выяснив главных направлений продвижения противника, не организовав оборону, не обеспечив пехоту и артиллерию необходимым для наступления числом грузовиков и лошадей, не дав подготовить планы наступления. Совершенной неожиданностью для танкистов оказались немецкие противотанковые ружья, которые с малых дистанций легко поражали танки с тонкой броней.

В книге "Неизвестный Жуков" Б. Соколов пытается восстановить картину тех дней:

"Контрнаступление Юго-Западного фронта началось 23 июня при значительном перевесе советской стороны в людях и, особенно, в танках. Всех танков в войсках фронта насчитывалось 4201. Одних новейших Т-34 и КВ было 761… К 30 июня Юго-Западный фронт безвозвратно потерял 2648 танков — почти две трети тех, что имел к началу войны. А к 9 июня потери возросли до 3464 машин, и танков в строю у советской стороны почти не осталось".

В 1943-м году, на Курской дуге, получив приказ перейти в контратаку, Катуков осмелился возразить самому главнокомандующему:

"По-моему… мы поторопились с контрударом. Враг располагает большими неизрасходованными резервами, в том числе и танковыми.

Что вы предлагаете?

Пока целесообразно использовать танки для ведения огня с места, зарыв их в землю или поставив в засады. Тогда мы могли бы подпустить машины врага на расстояние триста — четыреста метров и уничтожить их прицельным огнем.

Сталин некоторое время молчал.

Хорошо,сказал он наконец.Вы наносить удар не будете". (М.Е. Катуков. На острие главного удара.)

И немецкий меч разбился о щит танков Катукова.

1943-й год. А должен был быть 1941-й.

Итальянский сказочник Дж. Родари в книге "Грамматика фантазии" рассказывает, как он учил детей "анализу функций":

"Характерной чертой гения Леонардо, является то, что он впервые в истории стал рассматривать машину не как что-то органически целое, а как сочетание более простых устройств.

Леонардо да Винчи "расчленил " машину на единичные элементы — "функции"; так, например, он специально изучил "функцию " трения, что позволило ему сконструировать подшипник, шариковый и конусный, он даже придумал устройство, которое стало производиться лишь в самое последнее время для гироскопов, применяемых в авиации".

Есть в книге Д. Родари еще один любопытный метод — "анализ исходных материалов":

"Из характерных особенностей данного персонажа, будь он уже знакомым… или только что придуманным (как только что пришедший мне на ум человек из стекла), можно логически вывести и его приключения

Анализ материала, в данном случае стекла, подскажет, с какой меркой мы должны подходить к нашему герою.

Стекло прозрачно. Стеклянный человек прозрачен. Можно читать его мысли… Он не может говорить неправду, это сразу бы увидели; один выход — найти шляпу…

Стекло хрупкое. Раз так, то, значит, дом стеклянного человека должен быть весь обит чем-нибудь мягким. Тротуары будут застелены матрацами. Рукопожатия отменяются (!). Тяжелые работы — тоже. Врачом в подлинном смысле этого слова будет не медик, а стеклодув.

Стекло может быть цветным. Стекло можно мыть. И так далее".

Анализ исходных материалов порой бывает полезен. В самом деле, какая бы блестящая идея ни посетила нашу голову, она бесполезна, если мы не можем воплотить ее в жизнь.

Подобный анализ труден по чисто психологическим причинам. В ходе эволюции человек привык решать задачи в терминах препятствий, а не в терминах средств. Это понятно: еще в недалеком прошлом задача могла нести смертельную опасность, человек привык искать ХОТЬ КАКОЙ выход, то есть те особенности преграды, которые помогли бы эту преграду немедленно преодолеть. Но нашей жизни ничего не угрожает; и потому мы можем осмотреться: что мы имеем для решения задачи?

Поскольку вспомнил Леонардо да Винчи, мы также прибегнем к примеру из итальянской истории.

Галилей вел астрономические наблюдения при помощи подзорной трубы, которую сам и изготовил. Строго говоря, идея подзорной трубы принадлежала не ему. Находясь в Венеции, Галилей услышал, что какой-то голландец преподнес местному правителю Морису Нассаускому трубку" которая по-зволяла ясно видеть отдаленные предметы, словно они находятся вблизи. Галилей стал размышлять, как мог быть устроен этот "волшебный снаряд", и, не зная никаких подробностей, все-таки догадался — по сути, используя метод анализа исходных материалов.

"Вот,говорил Галилей,каким было мое рассуждение. В устройство снаряда должны входить стекла, одно или многие. Одного быть не может. Стекло может быть или выпуклое, то есть более толстое в середине, или вогнутое, то есть тонкое в середине, или, наконец, с параллельными поверхностями. Стекло последней формы не уменьшает и не увеличивает видимых предметов; вогнутое их уменьшает, выпуклое увеличивает, но кажется смутным и неясным. Значит, одно стекло действия произвести не может; переходя к сочетанию двух стекол и зная, что стекла с параллельными поверхностями ничего не изменяют, я заключил, что от соединения его с тем или другим из остальных родов стекол также нельзя ждать действия. Поэтому я сосредоточил опыты на том, чтобы исследовать, что произойдет от соединения этих двух стекол, то есть выпуклого и вогнутого, и достиг результата, которого искал".

Галилей открыл горы на Луне, четыре спутника Юпитера, фазы у Венеры и пятна на Солнце. Каждое из этих открытий в отдельности могло бы сделать его имя бессмертным.

Всего этого он добился благодаря искусству "анализа исходных материалов".

А вот пример из нашей истории. В 1920-х годах на Балтийском заводе в Ленинграде начали проектировать лесовозы — чуть ли не первые после революции. Естественно, обсуждался вопрос, какой двигатель выбрать. Известно, что дизель значительно экономичнее паровой машины; по этой причине паровые машины в 1920-е годы уже доживали свой век. Тем не менее конструкторы Балтийского завода все же предпочли пар, и вот почему. Лесовозы должны были доставлять лес из Архангельска в Англию. В Архангельске не было нефтяного топлива, к тому же, выгрузив лес в Лондоне, корабль должен был идти обратно с балластом — таким балластом и стал дешевый английский уголь, который судно использовало в следующем рейсе.


Перед решением любой задачи полезно прежде всего прикинуть: что имеется? И составить перечень — но не только материалов, но и их возможных функций. Любой анализ исходных материалов в конечном счете — тот же анализ функций.

Зададимся, к примеру, следующим вопросом: что можно предложить для того, чтобы предотвратить снос морских буровых вышек ледовыми полями? Это довольно сложная проблема — но посмотрите, как легко генерировать идеи, если мы составим список элементов, находящихся в нашем распоряжении, и свойств этих элементов. Элементов немного — вода, воздух, нефть и попутный газ, но, подробно расписав их свойства, мы можем сразу найти целую серию решений.

Первое — вода. Что делает вода? Поддерживает лед. Отсюда первая идея — использовать твердую металлическую камеру, которая, попеременно наполняясь водой и воздухом, вспарывала бы лед снизу.

Ломать лед можно и сверху — наполняя емкость водой, на манер ледокольного судна.

Какие еще свойства у воды? Она соленая. Можно лить воду на состоящий из пресной воды лед — от соли он растает быстрее.

Вода упругая — это дает возможность разбивать лед из водяной пушки.

Какие свойства у льда? Он крепкий. Это значит, что можно прибуксировать айсберг и поставить его на якорь с направления движения льда. Вместе с тем лед рыхлый там, где он находится в воде. Можно поставить подводный винт, который бы разрыхлял подводную часть льда, — подобный метод прежде использовали на некоторых ледокольных судах.

Лед способен плавать только на поверхности. Отсюда идея ограждений в виде огромного буя. Наползая на буй передней частью, задней частью льдина остается в воде — и ломается на более мелкие части.

Какие свойства у газа? Он горит. Можно использовать газовую резку.

Итак, мы буквально за несколько минут получили целый ряд вполне действенных идей.


Иногда в общий анализ включается этап анализа физических принципов. Зачем нужен этот этап?

В Первую мировую войну американцы столкнулись с такой проблемой — судно, на которое сбрасывается много бомб, не тонет. За советом обратились известному изобретателю (позднее — консультанту по военным делам при правительстве США), бывшему русскому военному летчику А. Северскому.

Ответ А. Северского был следующим — бомбы надо сбрасывать не на корабль, а… рядом с кораблем. Ударная волна распарывает швы, и корабль идет ко дну.

Подобный совет мог дать человек, хорошо знавший физические принципы.

К сожалению, о необходимости рассматривать физический принцип частенько забывают. Во время Второй мировой войны конструкторы тяжелых танков были озадачены тем, что даже самая мощная броня не спасала танковые экипажи — от внутренней части танковой брони откалывались осколки и поражали людей. Ударная волна, проходя по броне, составляла узлы и пучности, — из-за этого и отскакивали кусочки брони. Явление это было неожиданностью для конструкторов. С этой проблемой они тогда не справились толком (активная защита появилась много позже), а вот в самолете Ил-2 против этого явления были предприняты специальные меры. Бронеспинку делали не из одного толстого листа брони, а из двух более тонких. Ударная волна первого листа не проходила во второй лист. Это внесло свою лепту в легендарную живучесть "илов".

Конструкторы Ил-2 учли свойства ударной волны — но, к сожалению, не учли в полной мере другого физического принципа, и очень важного, — центра тяжести. Летчики столкнулись с тем, что прицельная очередь уходила ниже цели. При исследовании выяснилось, что виноват длинный магазин к авиационной пушке. Самолет стрелял в наклонном положении, магазин опустошался, центр тяжести самолета менялся, и нос опускался вниз. Немного, но достаточно, чтобы сбить прицел. Пришлось менять пушку — на ту, для которой снаряды располагались в крыле.

Хотя понятие "центр тяжести" занимает относительно небольшое место в учебниках физики, в технике оно играет огромную роль. О связанных с центром тяжести причудах техники можно написать отдельную книгу; мы ограничимся только несколькими примерами.

Перед Первой мировой войной на вооружение русской армии поступила "горская шашка". Автор ее, Горский, решил сделать шашку, которой можно было бы и колоть, и рубить. Шашка была изогнутой, как и прочие шашки, но рукоятка и кончик шашки находились на одной оси, что позволяло вонзать оружие в противника.

Однако в армии шашку сочли неудобной, и от нее со временем отказались. Что же было причиной неудобства? Изгиб шашки был впереди ее оси, а это значит, что центр тяжести тоже располагался впереди оси, хотя у шашки центр тяжести должен быть сзади. Вспомним топор с его изогнутым назад топорищем. То, что центр тяжести у топора находится позади, позволяет легко его направлять.

По сути, объединив шашку и палаш, Горский произвел "анализ функций" — но не сделал анализа физического принципа. Потому-то идея и оказалась негодной.

Там, где может вмешаться физический принцип, надо: 1) точно его определить; 2) подробно расписать все формы проявления этого принципа; 3) найти потенциально опасные или полезные формы; 4) привлечь уже известные принципы для борьбы с опасными формами и использования полезных.

Пример — задача уменьшения ущерба от землетрясений.

Первый этап. Сейсмическая волна — это такая же волна, как и всякая другая. Физический принцип явления — распространение волны.

Второй этап. Формы проявления волновых свойств — наложение и вычитание, огибание, пучности и узлы, резонансные и колебательные свойства, отражение, изменение угла и скорости при переходе сред.

Третий этап. Пытаемся найти среди форм проявления физического принципа потенциально полезные. К примеру, возьмем колебательные свойства.

Четвертый этап. Минареты в Средней Азии строят с полукруглым фундаментом, который покоится на полукруглом ложе. Между ложем и фундаментом есть слой из сухих веток. Приняв удар, минарет отклоняется, а затем, колеблясь, постепенно освобождается от энергии. Тогда как энергия волны с кнута срывается с резким щелчком, минарет, став резонансной системой, становится ловушкой для волны. Колебательные свойства сейчас используется при строительстве японских небоскребов (хотя вряд ли японские строители позаимствовали этот метод в Средней Азии).

Можно на третьем этапе выбрать другую форму — "отражение". Мы знаем, что волны отражаются от поверхностей. Это значит, что зданию мало что будет грозить, если оно будет покоится на массивной плите. Сейсмическая волна отразиться от плиты. Не в этом ли заключается разгадка тайны баальбекских плит? В Баальбеке храмы наверняка строили навечно.

Можно на третьем этапе выбрать и "наложение". Вспомним, как морские волны, дойдя до волноломов, меняют направление и начинают друг друга гасить. Полагают, что подобный принцип использовали древние зодчие. Иначе не объяснить уходящие глубоко в землю стены, сужающиеся к концам. Волны, накладываясь друг на друга в здании, могут вызвать негативный эффект. Значит, стенам здания нужно придать одинаковую толщину, а само здание не должно менять профиль по ходу распространения волны (то есть у большого здания не должно быть маленьких пристроек).


Анализ физических принципов подразумевает и анализ формул. Наверняка при слове "формулы" у читателя свело or скуки скулы — но вспомните, как в "Букинисте" вы листали книгу "Космонавтика" и обливались слезами — как же все это безумно интересно! Сухие формулы, которые вам приходилось зубрить в институте, обрели плоть и кровь. Как оказалось, с их помощью можно рассчитать фотонный двигатель, космический парус и еще много чудесных вещей. Почему же в институтах, думали вы, эти формулы не привязывали к конкретным интересным проектам, чтобы оживить этим непонятные криптограммы?

Мы не сделаем этой ошибки. Мы "привяжемся" к конкретным случаям.

Начнем с космонавтики.

1. Существуют проекты ионного, электрического, магнитоэлектрического и других двигателей. Их изобретатели предлагают на этих двигателях долететь до Марса, Венеры, Юпитера и так далее. Но мы знаем, что для полета на Марс требуется скорость не меньше второй космической. Потому и летают на жидкостных ракетах. На ионах и электричестве такой скорости не разовьешь…

Или разовьешь? Формула скорости V=at; время t у нас бесконечно. Достаточно небольшого, буквально микро-скопического ускорения а, чтобы со временем ракета разогналась до ураганных скоростей. Проблема лишь в том, чтобы все долгое время разгона это ускорение оставалось. Изобретателю следует продумать, как он будет получать ионы — от Солнца, батареи или от чего-либо еще.

Этим примером мы хотели продемонстрировать присутствующую в большинстве формул ПРЯМУЮ ЗАВИСИМОСТЬ. Она не так проста, как это кажется на первый взгляд. Непростой ее делают составляющие формулу элементы.

Приглядитесь к формуле V=at. Какими разными являются ее составляющие! Время t увеличивается, оно полно жизни, динамики, развития, энергии. Ускорение же а — это всего лишь коэффициент между скоростью и временем. Оно мертво, безжизненно и, как космос, холодно. Время увеличивается само; чтобы увеличить а, надо много потрудиться.

Чуть изменим формулу, представив ее в следующем виде: a=V/t. Из этой новой формы, похоже, следует, что ускорение само уменьшается со временем. Ух, как интересно! А не открыли ли мы какую-нибудь новую закономерность?

К сожалению, не открыли. Скорость V в данной формуле — это не мертвый коэффициент. Если тело движется в пространстве с ускорением, то с увеличением времени t меняется и скорость V — то есть ускорение а остается постоянным.

Действительно, изучать формулы надо только по таким книгам, как "Космонавтика". Не потому, что это интересно, а потому, что это правильно.

2. Теперь перейдем к КВАДРАТИЧНОЙ ЗАВИСИМОСТИ.

Русский оружейник Федоров потратил много сил на переход русской армии с оружия калибром 7,62 миллиметра на оружие калибром 6,5 миллиметра. Казалось бы, один миллиметр разницы — стоит ли ломать копья? Но лобовое сопротивление пули, помимо прочего, пропорционально площади среза, а площадь считается по формуле pR2. А это значит, что с уменьшением радиуса площадь падает не настолько же, а существенно больше. Если калибр падает на 13 процентов, то площадь падает на четверть — а это весьма солидно.

По аналогичной причине, в частности, авиаконструкторы и стремились сделать "радиус" самолета (мидель) как можно меньшим. Как и создатели авиадвигателей мидель мотора.

Из всего сказанного можно сделать вывод: если в формуле есть квадратичная зависимость, ради параметра с этой зависимостью следует бороться не покладая рук. Если зависимость кубическая — ради нее можно идти на любое преступление. Конечно, не наказуемое.

3. ЭКСПОНЕНТА по своей подлости сравнима только со старухой Шапокляк. Подтвердим это обвинение примером.

Прочность стальных деталей при нагрузках падает по экспоненте — но до определенного момента, когда сталь, несколько утратив от первоначальной прочность, не приобретает фиксированной твердости.

Вот привычка к такому характеру изменения прочности и подвела английских конструкторов. Алюминиевые "Кометы" — первые в мире реактивные лайнеры — падали вместе с пассажирами, поскольку англичане не учли, что у алюминия экспонента опускается очень низко. Во Вторую мировую алюминиевые бомбардировщики англичан летали без разрушений корпуса — но для послевоенных лайнеров потребовалась герметизация салона. Разница давлений на стенки лайнера со стороны атмосферы и со стороны салона, нагружая алюминиевый корпус рейс за рейсом, и погубила несколько крылатых машин.

На предварительных же испытаниях алюминий вел себя неплохо — поскольку эти испытания затрагивали еще только верхнюю часть коварной экспоненты, по которой точно просчитать дальнейшее ее поведение было нелегко.

4. У большинства читателей, без сомнения, со школы аллергия на формулы, поэтому мы и ограничим вышеизложенным разговор о формулах. Всем прочим — если они того пожелают — советуем посмотреть в курсе физики, как необычно ведут себя различные составляющие формул. Часто формула — это настоящая казацкая вольная республика, где каждый заявляет о праве жить по своим законам. Одни составляющие формул желают использоваться только в виде постоянных величин, другие — в виде моментальных значений, третьи не признают отрицательных значений, четвертые могут быть только коэффициентами, тогда как пятые могут служить аргументами функций — и так далее.

Все это говорит о том, что при изучении формул надо в первую очередь изучать смысл физических явлений, которые эти формулы обозначают. Смысл достаточно ясно виден только на примерах.


Кроме анализа физических принципов иногда полезно сделать анализ на физический принцип. Вместо обычного, привычного метода иногда куда лучше работает какой-нибудь принцип из учебника физики. Примером могут служить хотя бы газовые рули на ракетах фон Брауна, использованные немецким конструктором вместо привычных механических рулей.

У самолета Ил-62 передняя кромка крыла имеет "изломанный" вид. В чем смысл этого излома? При переходе на стреловидное крыло обнаружилось, что поток встречного воздуха идет не под крыло, а скользит по крылу, срываясь с его конца. Чтобы загнать воздух под крыло, стали использовать перегородки. Но на пассажирском лайнере такие перегородки были бы слишком велики. Тогда обратились к физическому принципу. Излом на крыле создавал большой воздушный вихрь, препятствующий движению воздуха вдоль крыла.


Следующая стадия анализа — определение границ. При анализе следует помнить, что каждое правило имеет свои границы применения.

Во время операции по спасению экипажа подводной лодки "Курск" среди прочих удивительных сообщений прессы дважды промелькнуло утверждение, что капитан якобы хотел положить лодку на грунт. Позднее часть родственников погибших отказались принять участие в траурной церемонии, считая, что команда сама положила лодку на дно, и ее еще можно спасти. Ограничиваясь чисто технической стороной этой трагедии, заметим, что лодку, подобную "Курску", на дно класть было просто нельзя — поскольку после этого она вряд ли могла бы всплыть. Архимедова сила выталкивает вверх тело только потому, что давление воды на тело снизу больше давления сверху (эта разница появляется из-за разности в весе столба воды на разных глубинах). Если снизу не вода, а илисто-песчаный грунт, давить снизу нечему — остается лишь груз воды, которая с большой силой прижимает лодку к грунту! Лодки с круглым сечением, лежащие на небольших глубинах и на твердом грунте, могут всплыть без особых помех — но в случае с "Курском" все было иначе.

Это типичный пример "граничных условий" — в данном случае, области действия закона Архимеда. Ошибка прессы и родственников вполне объяснима — в школьном учебнике физики этот момент не освещен, поскольку учебник имеет склонность к формулам, а не к качественным процессам.

Другой пример граничных условий. Во время пожара на Останкинской телебашне пожарным мешало то, что проходы были очень узки. Архитекторы могли бы провести совсем небольшое исследование, чтобы найти оптимальные величины проходов. Английский ученый Дж. Джонс опубликовал в своей книге специальное исследование, посвященное проходам. Он установил, что любой человек с полным комфортом может пройти проход шириной 62,5 сантиметра. Меньшее расстояние допустимо — но это уже не свободный проход, и потому он имеет ограничения на применение: 40 сантиметров — касание стены, 37,5 сантиметра — придется повернуться, 35 сантиметров — проход преодолевается с трудом — с выдохом, приподниманием на цыпочки, поднятием плеч и локтей.

Французский архитектор Корбюзье, изучив этот вопрос установил, что 50 сантиметров стандартного прохода в средствах транспорта вполне достаточно, чтобы прошел человек любой комплекции, расстояние же шириной всего в 1 метр 83 сантиметра, то есть в человеческий рост, позволяет пройти большой толпе. Поскольку жилье связано с жизнью человека, Корбюзье рассчитал архитектурные размеры и пропорции в соответствии с человеческими размерами и пропорциями и неукоснительно руководствовался ими, создавая проекты зданий.

В конце 1940-х Корбюзье приступил к проектированию "жилого комплекса" — гигантского здания, в котором жилье размещалось вместе с предприятиями бытового обслуживанием и частично — с небольшими предприятиями. Подобная планировка освобождала окружающее пространство для зелени, расстояние до работы сокращалось до минимума. Но при проектировании столь массивного сооружения возникла проблема: население "жилой единицы" примерно в одно и то же время должно было отправиться на работу. Следовало сделать широкий проход, однако Корбюзье сделал его шириной всего в 1 метр 83 сантиметра, несмотря на критику других архитекторов. И оказался прав. В проходе к "жилой единице" действительно никогда не возникало заторов.

В начале 2000 года в авиакатастрофе погиб известный журналист Артем Боровик. Журналистских версий на эту тему было много, но с технической точки зрения этот случай также довольно хорошо подпадает под понятие "граничные условия". Когда самолет резко взлетает (а как показало расследование, колесо злополучного самолета оторвалось от взлетной полосы раньше, чем нужно), угол атаки может достичь критических углов, когда воздушный поток уже не обтекает крыло, а резко срывается с верхнего края, образуя вихри. Это снижает подъемную силу самолета. Если при этом двигатели расположены за крылом, как в случае с Як-40, это завихрение приводит к неустойчивой работе двигателя. Но этим неприятности не кончаются. 70 процентов подъемной силы крыла создает разряжение над его верхней частью. Воздушный вихрь "выключает" заднюю часть крыла, и самолет проседает хвостом, отчего турбулентный поток налетает уже на рули высоты — если они расположены сверху, как и было в Як-40. Рули высоты становятся неэффективными, и машина попадает в режим "глубокого срыва", выход из которого невозможен. Самолет теряет скорость и начинает падать подобно листку дерева (что и было в случае со злополучным Як-40). Впервые подобный эффект проявился 3 июня 1966 года во время сертификации английского самолета "Трайдент". Четыре летчика-испытателя погибли.

Позднее гибли и другие летчики. Создатели "Трайдентов" вынуждены были внести в конструкцию специальные изменения, которые препятствовали бы слишком резкому взлету; но порой пилоты отключали эти предохранительные устройства, поскольку они вызывали неудобства.

Расследование так и не выявило конкретную причину катастрофы Як-40. Возможно, какой-то одной причины и нет — просто граничные факторы, сами по себе достаточно безобидные, наложились друг на друга.

Из этой катастрофы следует сделать вывод, что граничные условия нужно определять не только в отдельности, но и в комплексе, как наложение малозначимых отклонений (ранний взлет, нерегламентное отклонение предкрылков, отсутствие обработки крыльев средствами против обледенения и т. д.).

Следующим этапом исследования может быть вероятностный и статистический анализ.

Танк во время Второй мировой войны бронировали одинаково по всей высоте, пока кто-то не установил, что по разным причинам 90 процентов попаданий происходят выше одного метра. Это означало, что броню сверху можно было усилить за счет брони снизу.

В вероятностном анализе иногда может применяться теория вероятностей, но с рядом оговорок, которых преподаватели обычно не делают.

Теория вероятностей имеет весьма малое отношение к вероятностям реальной жизни. Теория базируются на бесконечных выборках и законах больших чисел; в жизни же бесконечного числа проб, конечно, никто не делает. Если вероятность поражения самолета российской ракетой равна, скажем, 0,95, а американской — 0,9, сделать вывод, какая из них лучше, нельзя, поскольку число испытаний могло быть разным, как и условия эксперимента.

Непонимание ограниченности теории вероятностей может преподнести самые разнообразные сюрпризы. К примеру, если вероятность неисправности составляет 1 процент, это не значит, что она ничтожно мала. На самом деле она чудовищно велика — из 100 случаев практически гарантировано возникновение одной неисправности. Мало того — эта неисправность может проявить себя не в сотый раз, а в первый. При этом из 100 случаев все 100 могут привести к неисправности. Теория вероятностей рассматривает бесконечные выборки; при 100 000 000 выборках вероятность в конечном итоге действительно может оказаться 1 процент.

Из всего этого следует сделать вывод, что изделие должно быть настолько надежным, чтобы о вероятности речь вообще не шла. Любая "вероятность" имеет причину — ее и надо отыскать. Проверьте "люфты", зазоры, возможность попадания посторонних предметов, износ со временем, поведение болтов при вибрации, возможность интенсивной или неправильной эксплуатации.

Что касается случая с танком, то 90 процентов тоже имеют объяснение — неровности земли, которые берут на себя часть снарядов, а также правило, содержащееся в учебниках по тактике, предписывающее стрелять из-за возвышенности.

Итак, вероятностный анализ — это не использование формул, а статистическая обработка всех данных эксперимента и последующие выводы для внесения необходимых изменений в конструкцию.

Теперь рассмотрим использование в анализе эксперимента.

В качестве примера хотелось бы привести научную деятельность русского ученого Д.К. Чернова (1839–1921), основоположника металловедения и теории термической обработки стали. Его имя сейчас можно найти не во всяком словаре — однако если бы не этот человек, Россия в конце XIX века могла бы катастрофически отстать от других европейских стран в области металлургии, а следовательно, и в сфере вооружений.

На Всемирной парижской выставке директор одного из крупнейших металлургических заводов Франции Монгольфье сказал:

"Считаю своим долгом открыто и публично заявить в присутствии стольких знатоков и специалистов, что наши заводы и сталелитейное дело обязаны своим настоящим развитием и успехом в значительной степени трудам и исследованиям русского инженера Чернова".

Историк науки Лев Гумилевский пишет о Чернове:

"Он первым начал вводить науку в технологические процессы".

Первая эпохальная работа, проделанная Д.К. Черновым, обязана своим появлением перевооружению армии после поражения в Крымской войне. При изготовлении крупнокалиберных орудий в России часть стволов по неизвестной причине при выстреле разрушалась. Удивительным при этом было то, что все стволы изготовлялись примерно по одному технологическому процессу, однако одни выдерживали десятки выстрелов, другие же разрушались еще при ковке, рассыпаясь под молотом на части. Разобраться в этом явлении и было поручено совсем молодому в те годы инженеру Чернову.

Прежде всего инженер начал с внимательного изучения процесса. Он проводил у печей дни и ночи, учился у опытных рабочих определять температуру по цвету стальной поковки.

В ходе исследований выяснилось, что сталь с крупными зернами на изломе имеет меньшую прочность, чем сталь с мелкими зернами. За этим экспериментом последовали другие. Оказалось, что ковка не влияет на внутреннюю структуру металла (ковкой уплотняли заготовки, убирая внутренние пустоты).

Следующим экспериментом стала ковка при разных температурах. При этом обнаружились изменения в структуре. Мало того — каждому сорту стали соответствовала определенная температура.

Изучая эти температуры, Чернов определил две самые критические. Первая температура, которую он назвал "точка а", отличалась удивительным свойством: понемногу темнеющая при остывании масса вдруг снова раскалялась, как бы вспыхивала и потом снова начинала темнеть, но уже до конца. Такое явление наблюдалось не всегда; при быстром охлаждении его не было.

Непонятная вспышка требовала объяснения. Чернов предположил, что при этой температуре сталь претерпевает какое-то внутреннее преобразование.

Чернов провел еще один эксперимент — он приказал закалить две болванки: прошедшую критическую точку и не прошедшую. Болванка, не прошедшая критическую точку, закалки не приняла, оказалась мягкой. Это было первое из многих открытий Чернова.

Чернов повторил эксперимент десятки раз и убедился, что ошибки не было.

Но это не решило главный вопрос — почему сталь получается то крупнозернистой, то мелкозернистой. Многие полагали, что для получения мелкой зернистости нужно усилить давление на сталь при ковке. Эксперименты мало соответствовали этой теории, но Чернов внимательно стал ее проверять. И нашел ключ к решению — "точку b", которая стала вторым его открытием. Эта точка тоже соответствовала определенной температуре. Металл при ковке остывал, и в какое-то время наступал малозаметный момент, когда поверхность начинала словно морщиться и лущиться. Отмечали это, конечно, и до Чернова, но только он зафиксировал для себя эту точку и начал проводить с ней эксперименты.

Выяснилось следующее. Сталь, которую нагревали не доходя до "точки а", не закаливалась совсем. Сталь, прошедшая "точку а", но не достигшая "точки b", начинала принимать закалку, "но по виду излома можно заключить, что в ней не совершается еще заметной перегруппировки частиц", отчего и после быстрого, и после медленного нагрева структура стали оставалась такой же, что и до нагрева. После же нагрева выше "точки b" происходила быстрая перегруппировка частиц; сталь образовывала аморфную воскообразную массу, которая при быстром охлаждении ниже "точки b" оставалась без перемены аморфной. При медленном же охлаждении масса начинала кристаллизоваться, то есть снова распадалась на отдельные зерна.

Из новой стали начали делать не только стволы крупнокалиберных орудий, но и стволы винтовок Мосина, пулеметов "максим", вагонные оси, колеса, корпуса судов и броневые плиты…

Вскоре перед Д.К. Черновым встала новая задача. Генри Бессемер открыл новый способ получения стали. Изобретатель гидравлического пресса и нового метода золочения бронзовой пылью различных изделий, Бессемер пришел в металлургию из другой области и, не обремененный традиционными представлениями, как бы между делом революционизировал металлургию. Для изобретенного им орудия требовалось отлить сталь более дешевым и быстрым способом, чем тот, что применялся, и он стал продувать чугун в тигле воздухом, чтобы усилить реакцию окисления углерода.

В первых же своих опытах Бессемер обнаружил, что при продувании сгорающие примеси — углерод, марганец и кремний — быстро выгорают, значительно повышая температуру. Это повышение резко снижало потребности в горючих материалах. Но… при воспроизводстве в России конвертера Бессемера обнаружилось, что сталь получается разного качества. Почему?

Этим вопросом занялся Чернов. Первым делом он решил определить наилучший способ наблюдения процесса и выбрал спектроскоп. Изменения в спектре позволили ему четко фиксировать превращения в ходе плавки стали. Этих превращений оказалось четыре. Примеси сгорали в разное время, что меняло характер и режимы плавки.

И вскоре установил, что: в плохом качестве стали, полученной бессемеровским методом, виноваты большое количество кремния и "слишком горячий ход процесса при перегретом чугуне". Чернов определил и те режимы, которые требовались для русского малокремнистого чугуна.

Однажды ученик Чернова подполковник Берсенев привез из Англии большой стальной кристалл, из усадочной пустоты стотонного слитка. Такой кристалл, не встречая препятствий для своего роста со стороны других кристаллов, достигает больших размеров, причем его форма не искажается. На заводе этим кристаллом никто не заинтересовался, и англичане охотно подарили его Берсеневу.

Сейчас изображение этого кристалла можно видеть, наверное, во всех учебниках по сталелитейному делу. Этот кристалл помог Чернову понять образование внутренней структуры стали:

"Одно вещество, более мягкое, более углеродистое, бросает оси, а другое, менее углеродистое, оставаясь в то время еще жидким, тотчас же вслед за тем облепляет ростки".

Из чисто теоретического вывода Чернов сразу сделал практический вывод: для лучшего уплотнения стали наряду с применявшимся способом прессования жидкой стали он разработал метод разливки во вращающиеся изложницы "В самом деле, если при отливке стали в изложницу эту последнюю приводить в быстрое вращательное движение, то растущие нормально к поверхности изложницы разрывные кристаллы не в состоянии будут так сильно развиваться, как это имеет место при спокойном росте, и сталь будет нарастать гладкими, аморфного сложения слоями".

Но и найдя этот метод, Чернов не прекратил научных исследований. Немецкий промышленник Крупп, воспользовавшись "точками Чернова", стал выплавлять сталь, не худшую, чем в России, а затем — и лучшую. А Крупп выпускал и снаряды.

Русский ученый решил выяснить, почему немецкие снаряды оказались лучше русских. Он надрезал снаряд Круппа вдоль так, чтобы потом при помощи клиньев получить правильный его излом. Для анализа требовался не срез, а именно излом. При этом обнаружилась удивительная вещь — внешняя оболочка снаряда резко отделялась от внутренней, причем местами могла совершенно отделяться. Отсюда был сделан вывод, что закалке подверглась лишь внешняя часть снаряда и этой закаленной оболочке придавали не очень прочную связь с внутренней массой. Благодаря этому при ударе о препятствие трещины не распространялись внутрь снаряда и он не разлетался на куски.

Такая идея была совершенно неожиданной — чтобы снаряд меньше разрушался, создать в снаряде сравнительно непрочный слой.

Разгадав главный принцип крупповских снарядов, Чернов предложил свой метод — путем подбора скорости охлаждения и повторных охлаждений получить не одну простую корку твердой стали, а двойную.

Это был совершенно иной принцип, чем у Круша, но в какой-то мере навеянный крупповским снарядом.

Чернов провел опыт с однннадцатидюймовым снарядом.

После нагрева снаряд был погружен в холодную воду на две минуты, затем вынут из воды на полминуты, вторично погружен в воду на три четверти минуты и опять вынуть на полминуты, в третий раз погружен в воду на одну минуту и опять вынут на двадцать секунд, затем его перенесли в горячую ванну с температурой сто восемьдесят пять градусов, где он оставался двадцать минут.

Температура ванны поднялась за это время до двухсот тридцати градусов, и снаряд уже имел по всей массе одинаковую температуру. Зарытый потом в сухую теплую золу, он остывал в течение двадцати четырех часов.

Все эти тщательно рассчитанные температуры и скорости охлаждения и отпуска сделали свое дело: положенный боком на наковальню пятитонного молота, снаряд этот выдержал пятнадцать полных ударов совершенно без всяких повреждений, даже без вмятин в точках удара. Между тем снаряд Круппа разбился при повторном ударе этого пятитонного молота.

Русские снаряды превзошли снаряды Круппа.

Удивительнейшие когда-то были времена — один русский ученый вел поединок со всем миром. И ни разу не проиграл.

Потом возникла новая проблема, которую Чернов снова удачно решил. Каналы стальных орудий рано или поздно выгорали; это считали неизбежным — но когда профессору Михайловской артиллерийской академии А.В. Гальдони один из слушателей задал вопрос "Почему выгорают каналы в стальных орудиях?", он вдруг понял, что с научной точки зрения этим вопросом никто серьезно не занимался. Этот вопрос мало освещался и в зарубежной литературе. А.В. Гальдони обратился к преподававшему в той же академии Д.К. Чернову.

Судя по тому, что в том же году Чернов начал читать курс о выгорании каналов в стальных орудиях, ответ был найден очень скоро. По докладу, сделанному ученым много позже, можно восстановить методику его поиска. От частной задачи он перешел к общей — исследовать разрушение поверхности металлических предметов, когда поверхность оказывается в условиях резких и быстрых изменений температуры поверхности.

После этого он прибег к аналогу, найдя схожий технологический процесс — горячую штамповку. Раскаленная заготовка вкладывается в нижнюю половину штампа, потом накладывается верхняя половина штампа и делается сильный удар молотом. После этого снимают верхний штамп, выбрасывают отштампованную вещь, обливают штамп водой для охлаждения и без промедления штампуют следующую заготовку. После более-менее продолжительной работы на внутренней поверхности штампа появляется сеть трещин.

Но существует и другой технологический процесс — холодная штамповка. При ней сетка трещин не появляется.

Чернов сделал вывод — разница в температуре. Следует определить, при какой именно температуре пороховых газов она начинает влиять на металл. Ученый вычислил эту температуру — около тысячи градусов. Теперь дело оставалось за химиками.

Были у Чернова и другие разработки, но одни из них требовали для своей проверки больших затрат, на которые заводчики не решались, другие же опередили время.

В чем же была причина постоянных успехов Чернова в научной работе? Конечно, не последнее место в них занимает искусство проведения эксперимента. В, казалось, непрерывном процессе охлаждения стали он смог рассмотреть две критические точки, в которых сталь меняет свои свойства. Разделив процесс по этим точкам, он внимательно изучил характеристики стали на каждом этапе. Только после этого он смог сделать конкретные предложения — в общем, тогда еще не создав конкретной теории. Хорошо поставленный эксперимент позволил сделать выводы и без твердого теоретического объяснения.

Только в кристалле увидев физический принцип роста зерен металла, Чернов смог дать научное объяснение — опять же на основе наблюдений.

Определив, что при плавке бессемеровской стали процесс имеет четыре стадии — то есть воспользовавшись своим алгоритмом проведения эксперимента, — он видоизменил продолжительность и характер плавки и выбрал лучший вариант.

"Наблюдение — выявление критических точек — определение характеристик процесса, происходящего между точками — вывод — проверка на опыте — создание новых процессов" — вот его главный алгоритм.


Этап эксперимента иногда может включать в себя моделирование.

Перед строительством Днепрогэса в ЦАГИ был проведен эксперимент, призванный определить возможность судоходства по Днепру после возведения плотины. Макет позволил выявить, что скорость воды чересчур велика. По этой причине в проект были введены коррективы — создали ограждающую дамбу. Без сомнения, если бы эксперимента не было, исправление ошибки после ее обнаружения на натуре потребовало бы огромных средств.

Даже простая модель способна выявить принципиально важный новый эффект. На заре вертолетостроения сотрудник Юрьева — создателя "автомата перекоса" (заднего винта вертолета) Саблин смоделировал поведение воздуха при работе винта вертолета с помощью всего лишь дыма сигареты. Но это позволило выявить неожиданный эффект — сжимание струй за винтом, несмотря на действие центробежных сил. Этот эффект лёг в основу так называемой теории Саблина — Юрьева.

Однако при моделировании часто возникает вопрос о соответствии результатов испытаний на модели истинным. К примеру, при переходе от самолета к модели меньших размеров характер явлений искажается. Поэтому модель для продувки приходится изготовлять в натуральную величину.

Мало кто знает, что перед штурмом Берлина была построена его модель, по которой военачальники учились как лучше воевать в этом городе.

Следующим этапом анализа является количественная оценка. Результат работы изделия требуется выразить в численной форме. После этого определяется либо максимальное или минимальное значение, либо диапазон допустимых значений для выбора какого-то оптимального уровня, при котором должно работать устройство.

При этом сначала выбирается критерий. Часто критерий не определен; в этом случае требуется создать свой — к примеру, расстояние, на котором 90 процентов телезрителей не видят муара на телеэкране.

Следующим этапом анализа является изучение работы изделия на практике.

Результаты нововведений должны изучаться не только на испытательных полигонах, но и в реальной работе. Отзывы тех, кто непосредственно использует продукт конструкторской мысли, — самое главное в анализе. После этих отзывов следует доработка — а возможно, и отказ от устройства.

В нашей стране существует давняя традиция игнорирования обратных связей. С примерами читатель наверняка прекрасно знаком, и приводить их здесь смысла нет.

Вообще же для успешной деятельности обратную связь необходимо ввести. Лучше всего использовать для этой цели вопросник об основных спорных моментах. При этом следует помнить, что опрашиваемые склонны говорить то, что от них ждут (когда я был репортером, мне порой задавали вопрос: "И что мне говорить?"). Поэтому самые важные вопросы следует прятать среди малосущественных — чтобы ответы были спонтанными и естественными. Нужно также непременно задавать вопросы общего характера, чтобы опрашиваемый мог сообщить информацию, о которой задающий вопросы и не подозревает. Дж. Джонс приводит пример результатов подобного опроса:

"Так, машинисты тепловозов указали на то, что основную трудность в пути для них представляет не ориентирование в показаниях приборов и органах управления, а точное определение местонахождения поезда в данный момент. Они определяют его, сопоставляя элементы ландшафта за окнам кабины и звук работы двигателя с привычными ассоциациями для данной точки пути. Отсюда можно сделать выводы, что обзор из кабины и звук работающего двигателя (повышающийся или понижающийся в зависимости от уклона дороги) значительно важнее, чем шкалы и сигнальные лампы приборов, характеризующие работу двигателя. Как и другие операторы, работающие в кабинах транспортных средств, машинисты оказались весьма чувствительными к сквознякам, к которым они не в состоянии адаптироваться, но которых не могут и избежать, так как вынуждены находиться в фиксированной рабочей позе.

Опрос шоферов такси показал, что их больше волнует проблема разборчивости речи в шуме, чем комфортность сиденья. Они главным образом жаловались на то, что шум работы двигателя заглушал едва доходившие до водителя указания пассажиров, с трудом проникавшие через стеклянную перегородку, отделяющую салон от водителя в английском такси. Один из водителей выложил пол резиновым покрытием, чтобы заглушить шум двигателя в своей машине. Всегда полезно уделять внимание тем примитивным способам, которые потребители приспосабливают к оборудованию, причем важно выяснить, почему они так делают. Некоторые из опрошенных водителей изменили наклон подушек сиденья в обратную сторону, что облегчило им доступ к ножному управлению".

Загрузка...