ВАЖНЕЙШИЙ ЗАКОН МЕХАНИКИ

С инерцией мы встречаемся на каждом шагу. Резко ли остановится автобус, и мы падаем на впереди стоящих; едем ли на велосипеде, перестав крутить педали; бросаем ли мяч — во всех этих и подобных им случаях проявляется инерция, то есть свойство тел сохранять величину и направление своей скорости.

А задумались ли вы, почему краны у водопровода и различного рода задвижки на трубах, по которым с большой скоростью передвигаются жидкости, устроены так, что они закрываются очень плавно, постепенно?

Это сделано неспроста.

Если резко преградить путь жидкости, движущейся по трубе, последует резкий гидравлический удар, в результате которого может не только сломаться кран, но и лопнуть труба.

Первый закон динамики, сформулированный великим английским ученым Ньютоном, гласит: «Всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока приложенные силы не вызовут изменения этого состояния».

Проделаем опыты для иллюстрирования этого закона.

Известный в свое время жонглер М. Кара рассказывал, как ему приходилось не только на арене цирка, но и в жизни использовать умение выдергивать скатерть из-под посуды, находящейся на столе. В этом цирковом номере особенно эффектно используется первый закон Ньютона.

Подобный опыт легко проделать с монетой, лежащей на кусочке гладкого картона, положенного на стакан. Если щелкнуть пальцем по картону, он получит ускорение и слетит со стакана, а монета, еще не успевшая получить ускорение, упадет в стакан.


Когда мы выбиваем палкой пыль из ковра, мы придаем ускорение ковру, а пыль остается на месте. Получается так, что ковер выходит из пыли, а не пыль из ковра.

Палочка, положенная на две висящие бумажные петли, переломится от резкого удара посередине, а бумажные петли при этом не успеют разорваться, так как концы палочки не успели сдвинуться, остались на месте.


Подвесьте на нитке кружок от конфорки, а к нему привяжите снизу еще одну такую же нитку. Дерните ее резко и со всей силой. Оборвется нижняя нитка, а не верхняя, как следовало бы ожидать. Тяжелый чугунный кружок не успел сдвинуться с места. Если потянуть за нитку медленно, обрывается верхняя нитка.


Опустите в стакан с водой стеклянную трубку диаметром около сантиметра, заткнув пальцем верхний конец трубки. Сжатый воздух не позволит воде войти в трубку повыше. Резко отнимите палец — вода в трубке подскочит по инерции выше уровня в стакане, а затем опустится до того же уровня.


Инерция используется очень широко.

Мы разберем здесь несколько случаев ее применения.

Существует, например, прибор акселерометр. Он показывает, какая у самолета скорость, отмечает все его повороты. Когда самолет ускоряет свое движение или замедляет его, прибор отмечает и это. Действие его основано на инерции.

Акселерометр устроен довольно сложно, но мы с вами сделаем его упрощенную модель, чтобы понять принцип его работы. Наша модель будет показывать то ускорение, которое к ней может быть приложено.

Из четырех гладких дощечек сделайте небольшую рамку. Внутри ее на самодельных пружинках (их можно изготовить, навивая медную проволоку на какой-либо круглый стержень) подвесьте шарик или маленький цилиндр из дерева или металла. Наверху этого шарика или цилиндра укрепите стерженек против сделанной для него в рамке прорези. Вдоль прорези нанесите деления, например через 1 сантиметр.

Затем сделайте из полоски толстой бумаги два хомутика вокруг верхней стороны рамки, по обе стороны от торчащего стерженька. Хомутики должны легко передвигаться по дощечке.

Прибор готов.

Поставьте его на гладкий стол. Быстро двиньте рамку по столу вдоль оси пружин. Шарик с помощью укрепленного на нем стерженька сдвинет бумажный хомутик. Величина этого передвижения пропорциональна приложенному к прибору ускорению.


Настоящий акселерометр, как мы уже говорили, устроен значительно сложнее. Шарик в нем перемещается в разных плоскостях. При этом он воздействует на другие устройства, которые и дают пилоту нужные сведения.

Используется инерция и для подъема воды в водоподъемной установке «гидротаран». Принцип его работы ясен из такого опыта.

Возьмите длинную резиновую трубку в палец толщиной. Опустите один ее конец в ведро с водой, поставленное на возвышение, а на другом конце, отступя от края на 10–20 сантиметров, сделайте отверстие и вставьте в него короткую стеклянную трубочку (например, такую, какими пишут шрифты, или стеклянную трубочку от пипетки).

Засосите ртом воду, закрыв пальцем отверстие стеклянной трубки, чтобы вода потекла из ведра по принципу сифона. Быстро закрывайте и открывайте пальцем конец резиновой трубки. При этом из стеклянной трубочки вода будет бить фонтаном в несколько раз выше самой трубочки.

Вода, когда вы преграждаете ей путь, по инерции устремляется в отверстие в стеклянной трубке и вырывается наружу.

Загрузка...