CHAPTER 3 Horses Do Not Fly

DESPITE THE immense ideological power that it wields, the American scientific establishment has never trusted in its victory over organized religion (or anything else, for that matter). And for obvious reasons. On crucial matters of faith and morals, their margin of victory often seems paper-thin. Members of the National Academy of Sciences are by a large majority persuaded that there is no God, men and women in their millions that there is. Thou, O king, sawest, and beheld a great image. This great image, whose brightness was excellent, stood before thee; and the form thereof was terrible. This image’s head was of fine gold, his breast and his arms of silver, his belly and his thighs of brass, His legs of iron, his feet part of iron and part of clay. Those who are religious contemplate this great image and see its head of gold; those who are not see its feet of clay. No division cuts deeper in the United States—or the world—or provokes a greater sense of mutual unease.

Looking thus toward those feet of clay, Sam Harris and Christopher Hitchens observe that many religious claims do not by the light of contemporary science appear to be true. Did Muhammad fly to Jerusalem on a horse named Borak? What an idea, Hitchens writes, observing alertly that “horses cannot and do not fly.”

Addressing an audience of his Christian readers, Sam Harris asks them to consider the Moslem faith. He is quite certain that if they can find no reason to accept another man’s beliefs, they will be moved at once to reject their own:

“Can you prove that Allah is not the one true God?”

“Can you prove that the Archangel Gabriel did not visit Muhammad in his cave?”

Richard Dawkins is less concerned to reject biblical miracles than to condemn the Deity for his hurtful insensitivity. “The God of the Old Testament,” he writes, “is arguably the most unpleasant character in all of fiction: jealous and proud of it; a petty, unjust, unforgiving control-freak; a vindictive, blood thirsty ethnic cleanser; a misogynistic, homophobic, racist, infanticidal, genocidal, filicidal, pestilential, megalomaniacal, sadomasochistic, capriciously malevolent bully.”

These are, to my way of thinking, striking points in God’s favor, but opinions, I suppose, will vary.

It hardly matters. What is at issue is not so much the character of the Deity but his existence.

And the question I am asking is not whether he exists but whether science has shown that he does not.

THE EVIDENCE OF THINGS NOT SEEN

Faith, it is said in Hebrews 11.1, “is the substance of things hoped for, the evidence of things not seen.” This is an interesting assertion, chaining as it does the concepts of faith, hope, evidence, and appearance. But in a sense, Hebrews 11.1 ratifies a triviality. We can make no sense either of daily life or the physical sciences in terms of things that are seen. The past has gone to the place where the past goes; the future has not arrived. We remember the one; we count on the other. If this is not faith, what, then, is it?

If religious belief places the human heart in the service of an unseen world, the serious sciences have since the great revolution of the seventeenth century done precisely the same thing. Mathematical physics has the narrative shape of a quest; physicists have placed their faith in the idea that deep down the universe is coordinated by a great plan, a rational system of organization, a hidden but accessible scheme, one that when finally seen in all its limpid but austere elegance, will flood the soul with gratitude. “All we [physicists] wish to do,” Gerard ’t Hooft has remarked, “is marvel at Nature’s beauty and simplicity. We have seen and tasted the beauty, simplicity and universality of our latest theories…. We are now trying to uncover more of that. It is our belief that there is more.” Our belief—meaning our faith.

Every scientist since Newton has placed his allegiance in the world beyond the world. In his remarkable treatise The Road to Reality, Roger Penrose quotes a letter from the mathematician Richard Thomas of the Imperial College in London. What is one to make, Penrose asks, of the remarkable, strange, and baffling mathematical results that have appeared in theoretical physics over the past twenty years or so? Thomas’s reply is instructive and it is quite moving. “To a mathematician,” he writes, “these things cannot be coincidence, they must come from a higher reason. And that reason is the assumption that this big mathematical theory describes nature” (italics added).

Western science is above all the substance of things hoped for, the evidence of things not seen.

Curiously enough, while Western science is saturated in faith, Western scientists remain incapable of seeing that faith itself, whether religious or scientific, is inherently vulnerable to doubt. Writing on his blog, the physicist Clifford Johnson observed that “failure is a possibility in any worth-while endeavor.” True enough. It is. He went on to conclude that “this is an important distinction between scientific truth-searching and religious truth-searching where failure is not an option.”

What a universe of careless contempt is expressed by these words. Failure not an option? And in the search for God? The world of sin and suffering is filled with those who have lost their religious faith, or given it up, or found the search impossible to sustain, or seen in pleasure a substitute for prayer, or as the hands of the clock crawled through the dark hours of the night, thought with a certain despair that it would be better not to search, and so not to doubt, and so not to be?

When Kierkegaard wrote about the sickness unto death, he was not remarking on a bronchial infection.

EVIDENCE

It is wrong, the nineteenth-century British mathematician W. K. Clifford affirmed, “always, everywhere, and for anyone, to believe anything upon insufficient evidence.” I am guessing that Clifford believed what he wrote, but what evidence he had for his belief, he did not say.

Something like Clifford’s injunction functions as the premise in a popular argument for the inexistence of God. If God exists, then his existence is a scientific claim, no different in kind from the claim that there is tungsten to be found in Bermuda. We cannot have one set of standards for tungsten and another for the Deity. If after scouring Bermuda for tungsten, we cannot find any of the stuff, then we give up on the claim. By parity of reasoning, if it is wrong to believe anything upon insufficient evidence, and if there is insufficient evidence for the existence of God, then it must be wrong to believe in his existence.

There remains the obvious question: By what standards might we determine that faith in science is reasonable, but that faith in God is not? It may well be that “religious faith,” as the philosopher Robert Todd Carroll has written, “is contrary to the sum of evidence,” but if religious faith is found wanting, it is reasonable to ask for a restatement of the rules by which “the sum of evidence” is computed. Like the Ten Commandments, they are difficult to obey but easy to forget. I have forgotten them already.

Perhaps this is because there are no such rules. The concept of sufficient evidence is infinitely elastic. It depends on context. Taste plays a role, and so does intuition, intellectual sensibility, a kind of feel for the shape of the subject, a desire to be provocative, a sense of responsibility, caution, experience, and much besides. Evidence in the court of public opinion is not evidence in a court of law. A community of Cistercian monks padding peacefully from their garden plots to their chapel would count as evidence matters that no physicist should care to judge. What a physicist counts as evidence is not what a mathematician generally accepts. Evidence in engineering has little to do with evidence in art, and while everyone can agree that it is wrong to go off half-baked, half-cocked, or half-right, what counts as being baked, cocked, or right is simply too variable to suggest a plausible general principle.

When a general principle is advanced, it collapses quickly into absurdity. Thus Sam Harris argues that “to believe that God exists is to believe that I stand in some relation to his existence such that his existence is itself the reason for my belief” (italics added). This sounds very much as if belief in God could only be justified if God were to call attention conspicuously to Himself, say by a dramatic waggling of the divine fingers.

If this is so, then by parity of reasoning again, one might argue that to believe that neutrinos have mass is to believe that I stand in some relationship to their mass such that their mass is itself the reason for my belief.

Just how are those neutrinos waggling their fingers?

A neutrino by itself cannot function as a reason for my belief. It is a subatomic particle, for heaven’s sake. What I believe is a proposition, and so an abstract entity—that neutrinos have mass. How could a subatomic particle enter into a relationship with the object of my belief? But neither can a neutrino be the cause of my belief. I have, after all, never seen a neutrino: not one of them has never gotten me to believe in it. The neutrino, together with almost everything else, lies at the end of an immense inferential trail, a complicated set of judgments.

Believing as I do that neutrinos have mass—it is one of my oldest and most deeply held convictions—I believe what I do on the basis of the fundamental laws of physics and a congeries of computational schemes, algorithms, specialized programming languages, techniques for numerical integration, huge canned programs, computer graphics, interpolation methods, nifty shortcuts, and the best efforts by mathematicians and physicists to convert the data of various experiments into coherent patterns, artfully revealing symmetries and continuous narratives. The neutrino has nothing to do with it.

Within mathematical physics, there is no concept of the evidence that is divorced from the theories that it is evidence for, because it is the theory that determines what counts as the evidence. What sense could one make of the claim that top quarks exist in the absence of the Standard Model of particle physics? A thirteenth-century cleric unaccountably persuaded of their existence and babbling rapturously of quark confinement would have faced then the question that all religious believers now face: Show me the evidence. Lacking access to the very considerable apparatus needed to test theories in particle physics, it is a demand he could not have met.

In the face of experience, W. K. Clifford’s asseveration must be seen for what it is: a moral principle covering only the most artificial of cases.

The existence of God is not one of them.

NATURALISM

Neither the premises nor the conclusions of any scientific theory mention the existence of God. I have checked this carefully. The theories are by themselves unrevealing. If science is to champion atheism, the requisite demonstration must appeal to something in the sciences that is not quite a matter of what they say, what they imply, or what they reveal.

In many respects the word naturalism comes closest to conveying what scientists regard as the spirit of science, the source of its superiority to religious thought. It is commended as an attitude, a general metaphysical position, a universal doctrine—and often all three. Rather like old-fashioned Swedish sunshine-and-seascape nudist documentaries, naturalism is a term that conveys an agreeable suggestion of healthful inevitability. What, after all, could be more natural than being natural? Carl Sagan’s buoyant affirmation that “the universe is everything that is, or was, or will be” is widely understood to have captured the spirit of naturalism, but since the denial of this sentence is a contradiction, the merits of the concept so defined are not immediately obvious. Just who is arguing from the pulpit that everything is not everything?

A triviality having been affirmed, what follows frequently topples over into the badlands in which, like cut asparagus, assertions remain unsupported by argumentative stalks. “Everything,” the philosopher Alexander Byrne has remarked, “is a natural phenomenon.” Quite so. But each of those natural phenomena is, Byrne believes, simply “an aspect of the universe revealed by the natural sciences.” If what is natural has been defined in terms of what the natural sciences reveal, no progress in thought has been recorded. If not, what reason is there to conclude that everything is an “aspect of the universe revealed by the natural sciences”?

There is no reason at all.

If naturalism is a term largely empty of meaning, there is always methodological naturalism. Although naturalism is natural, methodological naturalism is even more natural and is, for that reason, a concept of superior grandeur. Hector Avalos is a professor of religious studies at Iowa State University, and an avowed atheist. He is a member in good standing of the worldwide fraternity of academics who are professionally occupied in sniffing the underwear of their colleagues for signs of ideological deviance. Much occupied in denouncing theories of intelligent design, he has enjoyed zestfully persecuting its advocates. “Methodological naturalism,” the odious Avalos has written, “the view that natural phenomena can be explained without reference to supernatural beings or events, is the foundation of the natural sciences.”

Now a view said to be foundational can hardly be said to be methodological, and if naturalism is the foundation of the natural sciences, then it must be counted a remarkable oddity of thought that neither the word nor the idea that it expresses can be found in any of the great physical theories. Quite the contrary. Isaac Newton in writing the Principia Mathematica seemed curiously concerned to place rational mechanics on a foundation that has nothing to do with methodological naturalism. “The most beautiful system of the sun, planet and comets,” he wrote, “could only proceed from the counsel and domination of an intelligent and powerful Being.”

There is finally the claim that the universe is a closed causal system, the triplet of its three vaguely technical terms suggesting something more substantial by way of a definition. But to say that the universe is a causal system is hardly an improvement on the thesis that effects have causes, and if the universe is everything that there is, then to say that it is closed is only to observe that there is nothing beyond everything.

This is not a thesis calculated to set the blood racing.

MATTER

There is nothing in nature, ancient Greek atomists said, but atoms and the void, and while this claim has over the centuries been refined, it remains deep down the same. The end of the matter is matter. Materialists have always hoped that by going downward, they would at last reach the ultimate level of analysis and so the place where Nature reveals her ontological essentials by means of a finite number of elementary particles. This is a matter of faith. It is entirely possible that there may be as many elementary particles as there is funding available to investigate them.

The advantage of materialism as a doctrine is that it sanctions an easy argument for atheism. Either the Deity is a material object or he is not. If he is, then he is just one of those things, and if he is not, then materialism could not be true. But if God is just one of those things, what is his interest? And if materialism is false, why are we arguing?

Whatever the merits of this argument, the world of matter revealed by the physical sciences does not serve to endow materialism with a familiar face. The universe in its largest aspect is the expression of curved space and time. Four fundamental forces hold sway. There are black holes and various infernal singularities. Popping out of quantum fields, the elementary particles appear as bosons or fermions. The fermions are divided into quarks and leptons. Quarks come in six varieties, but they are never seen, confined as they are within hadrons by a force that perversely grows weaker at short distances and stronger at distances that are long. There are six leptons in four varieties. Depending on just how things are counted, matter has as its fundamental constituents twenty-four elementary particles, together with a great many fields, symmetries, strange geometrical spaces, and forces that are disconnected at one level of energy and fused at another, together with at least a dozen different forms of energy, all of them active.

This is not an ontology that puts one in mind of a longshoreman’s view of the material world. It is remarkably baroque. And it is promiscuously catholic. For the atheist persuaded that materialism offers him a no-nonsense doctrinal affiliation, materialism in this sense comes to the declaration of a barroom drinker that he will have whatever he’s having, no matter who he is or what he is having. What he is having is what he always takes, and that is any concept, mathematical structure, or vagrant idea needed to get on with it. If tomorrow, physicists determine that particle physics requires access to the ubiquity of the body of Christ, that doctrine would at once be declared a physical principle and treated accordingly.

THE SCIENTIFIC METHOD

The scientific method has acquired a certain hold on the popular imagination. Every adult remembers something about the scientific method from high school classes; it figures prominently in textbooks with such titles as Reasoning Together, and it is a polemical bruiser in its weight class, useful under circumstances when members of the scientific community are persuaded they are under attack. It is then that the determination is made that members of the public have failed to understand the scientific method or properly to revere it. No effort need be made actually to exhibit the method or tie it to an argument.

All of this provides a richly satisfying spectacle.

Here is one account, an Internet staple. To apply the scientific method

1. Observe some aspect of the universe.

2. Form a hypothesis that potentially explains what you have observed.

3. Make testable predictions from that hypothesis.

4. Make observations or experiments that can test those predictions.

5. Modify your hypothesis until it is in accord with all observations and predictions.

Not a single one of these five sentences makes the slightest sense, but rather than go through the list, let me observe only that it is portable in its power, and applies pretty much to any human undertaking.

“Through extensive observation, I found a Common Denominator among all Golfers, and once I finally realized what that Common Denominator was, I just couldn’t believe how ‘obvious’ and simple it all was. As in any puzzle or ‘discovery,’ the idea was right in front of my eyes all the time!

“The Common Denominator I discovered was that all golfers who break 80 regularly are good, or at least fairly good at a certain Element in the golf swing, and all golfers who don’t break 80 are bad at that same thing. From this simple observation came the obvious conclusion that this Element was the first and most important thing that needed to ‘be in’ and to be learned in order to shoot in the 70s!

“This method is based upon this observable fact (Common Denominator). So the next thing to do was to test this idea to see if this method really worked. And the answer? Yes, it did, and in Spades! I saw changes in minutes and hours, and huge big smiles on people’s faces. Handicaps were being cut in half within weeks!”

I will draw down the current of charity over this scene. Golf has no method beyond the trivial.

Neither does science.

NOTHING BUT THE TRUTH

What remains of the ideology of the sciences? It is the thesis that the sciences are true—who would doubt it?—and that only the sciences are true. The philosopher Michael Devitt thus argues that “there is only one way of knowing, the empirical way that is the basis of science.” An argument against religious belief follows at once on the assumptions that theology is not science and belief is not knowledge. If by means of this argument it also follows that neither mathematics, the law, nor the greater part of ordinary human discourse have a claim on our epistemological allegiance, they must be accepted as casualties of war.

Declarations of this sort have been common in the history of philosophy since the eighteenth century. In An Enquiry Concerning Human Understanding, David Hume argued that “if we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask, Does it contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental reasoning concerning matter of fact and existence? No. Commit it then to the flames: For it can contain nothing but sophistry and illusion!” Analytical philosophers have been eager to commit books to the flames ever since, rather an odd vocational choice, all things considered. Whatever the vigor with which Hume advanced his views, arguments such as his when self-applied self-destruct. Hume’s remarks, after all, contain neither “abstract reasoning concerning quantity or number” nor “experimental reasoning concerning matters of fact and existence.” They are what they seem, and that is at once arrogant and uninteresting.

The attempt to find an argument powerful enough to paralyze distasteful doctrines, while remaining insusceptible to its own effects, has continued into our time. In his well-known essay “Two Dogmas of Empiricism,” W. V. O. Quine argued that the distinction between science and philosophy was an illusion. Philosophers were pleased since Quine appeared to offer the access to a form of prestige that previously they had been denied. If there is no distinction between science and philosophy, they reasoned, then we must be scientists. That they might by the same logic be nothing was an alternative that did not receive wide favor. Physicists, on the other hand, seemed remarkably unenthusiastic about welcoming philosophers as fellow scientists. “The philosphers,” Richard Feynman observed, “are always on the outside making stupid remarks.” Critics observed—correctly—that Quine’s argument seemed to affirm what it was most concerned to deny. In arguing that there was no distinction between science and philosophy, Quine was arguing as a philosopher, and he was making a philosophical argument. If this is science, anything is. And if it is not, so much the worse for the philosophers, who once again would appear to be “on the outside making stupid remarks.”

An ideological system whose proponents are persuaded that access to the truth is in their hands requires an equally general defense against criticism. As one might expect, it lies close at hand. The sciences, many scientists argue, require no criticism because the sciences comprise a uniquely self-critical institution, with questionable theories passing constantly before stern appellate review. Judgment is unrelenting. And impartial. Individual scientists may make mistakes, but like the Communist Party under Lenin, science is infallible because its judgments are collective. Critics are unneeded, and since they are unneeded, they are not welcome.

A system so conceived always works to the satisfaction of those who have conceived it. In Six Impossible Things Before Breakfast, the biologist Lewis Wolpert, who is resolutely prepared to dismiss religious thought as superstition, writes that “scientific beliefs are special, and different from any other kind of thinking,” inasmuch as scientific beliefs “are not programmed into our brains.” To say that scientific beliefs are special is to suggest, of course, that only specialists may assess them. To say that religious beliefs are programmed into our brains is to say that like the gag reflex, they cannot be controlled. But if scientific beliefs are not programmed into our brains, why assume that religious beliefs are? And if they are not, why assume that “scientific beliefs are special”?

These questions are rhetorical. No one is disposed to ask them within the scientific community, and the scientific community is not disposed to acknowledge answers to questions it is not disposed to ask.

The idea that we must turn to the sciences in order to assess our religious beliefs owes much to the popular conviction that so long as we are turning, where else are we to turn to? The proper response is a question in turn. Why turn at all? And if we must turn, why turn in the wrong direction? To ask of the physical sciences that they assess the Incarnation, or any other principle of religious belief, is rather like asking of a powerful Grand Prix racing car that it prove itself satisfactory in doing service as a New York taxicab.

The claim that the existence of God should be treated as a scientific question stands on a destructive dilemma: If by science one means the great theories of mathematical physics, then the demand is unreasonable. We cannot treat any claim in this way. There is no other intellectual activity in which theory and evidence have reached this stage of development.

If, on the other hand, the demand means merely that one should treat the existence of God as the existence of anything would be treated, then we must accept the fact that in life as it is lived beyond mathematical physics, the evidence is fragmentary, lost, partial, and inconclusive. We do what we can. We grope. We see glimmers.

At times, the light. “The very instant I heard my father’s cry calling unto me, my heart bounded in recognition.”

At times, the darkness. “A blank was there instead of it.…Life had become curiously dead and indifferent.”

And as is always the case, someone may be found honest enough to blurt out the truth.

Is there a God who has among other things created the universe? “It is not by its conclusions,” C. F. von Weizsäcker has written in The Relevance of Science,but by its methodological starting point that modern science excludes direct creation. Our methodology would not be honest if this fact were denied…such is the faith in the science of our time, and which we all share” (italics added).

In science, as in so many other areas of life, faith is its own reward.

Загрузка...