This page contains OS-agnostic installation instructions for a few of the tools:
Install rustup by following the instructions at https://rustup.rs.
NOTE Make sure you have a compiler version equal to or newer than 1.31. rustc -V should return a date newer than the one shown below.
$ rustc -V
rustc 1.31.1 (b6c32da9b 2018-12-18)
For bandwidth and disk usage concerns the default installation only supports native compilation. To add cross compilation support for the ARM Cortex-M architectures choose one of the following compilation targets. For the STM32F3DISCOVERY board used for the examples in this book, use the thumbv7em-none-eabihf target.
Cortex-M0, M0+, and M1 (ARMv6-M architecture):
rustup target add thumbv6m-none-eabi
Cortex-M3 (ARMv7-M architecture):
rustup target add thumbv7m-none-eabi
Cortex-M4 and M7 without hardware floating point (ARMv7E-M architecture):
rustup target add thumbv7em-none-eabi
Cortex-M4F and M7F with hardware floating point (ARMv7E-M architecture):
rustup target add thumbv7em-none-eabihf
Cortex-M23 (ARMv8-M architecture):
rustup target add thumbv8m.base-none-eabi
Cortex-M33 and M35P (ARMv8-M architecture):
rustup target add thumbv8m.main-none-eabi
Cortex-M33F and M35PF with hardware floating point (ARMv8-M architecture):
rustup target add thumbv8m.main-none-eabihf
cargo-binutils
cargo install cargo-binutils
rustup component add llvm-tools-preview
cargo-generate
We'll use this later to generate a project from a template.
cargo install cargo-generate
Now follow the instructions specific to the OS you are using:
• Linux
• Windows
• macOS