IMAGINE THAT YOU are sitting quietly in your room, perhaps reading a book or watching television or playing a computer game. Suddenly there is a terrifying rumbling sound, and the whole room starts to shake. The light swings wildly from the ceiling, ornaments clatter off the shelves, furniture is hurled across the floor, you are tipped out of your chair. After two minutes or so everything settles down again and there is a blessed silence, broken only by the crying of a frightened child and the barking of a dog. You pick yourself up and think how lucky you are that the whole house didn’t collapse. In a very severe earthquake, it might well have done.
While I was beginning to write this book, the Caribbean island of Haiti was hit by a devastating earthquake and the capital city, Port au Prince, was largely destroyed. Two hundred and thirty thousand people are believed to have been killed, and many others, including poor orphaned children, long wandered the streets, homeless, or living in temporary camps.
Later, as I was revising the book, another earthquake, even stronger, occurred under the sea off the north-eastern coast of Japan. It caused a gigantic wave – a ‘tsunami’ – that wrought unimaginable destruction when it swept ashore, carrying whole towns with it, killing thousands of people and leaving millions homeless, and setting off dangerous explosions in a nuclear power plant already damaged by the earthquake.
Earthquakes, and the tsunamis they cause, are common in Japan (the very word ‘tsunami’ was originally Japanese), but the country had experienced nothing like this in living memory. The prime minister described it as the country’s worst experience since the Second World War, when atomic bombs destroyed the Japanese cities of Hiroshima and Nagasaki. Indeed, earthquakes are common all the way around the rim of the Pacific Ocean – the New Zealand city of Christchurch suffered severe damage and loss of life in a quake just one month before that which struck Japan. This so-called ‘ring of fire’ includes much of California and the western United States, where there was a famous earthquake in the city of San Francisco in 1906. The larger city of Los Angeles is also vulnerable, lying as it does on the notorious San Andreas Fault.
In an earthquake, the whole landscape behaves like a sort of liquid. It looks like the sea, with waves passing through it. Solid, dry land, with waves sweeping through it as they do on the sea! That’s an earthquake. If you are down on the ground, you don’t see the waves because you’re too close to them, and too small compared with them. You just feel the ground moving and shaking beneath your feet.
In a moment I’m going to explain what an earthquake really is, and what a ‘fault line’ is – like the San Andreas Fault, and similar ones in other parts of the world. But first, let’s look at some myths.
We’ll begin with a pair of myths that may have grown up around particular earthquakes, earthquakes that actually happened at certain moments in history.
A Jewish legend tells how two cities, Sodom and Gomorrah, were destroyed by the Hebrew god because the people who lived there were so wicked. The only good person in either city was a man called Lot. The god sent two angels to warn Lot to get out of Sodom while he still could. Lot and his family headed for the hills, just before the god started to rain fire and brimstone down on Sodom. They had been given strict orders not to look back, but unfortunately Lot’s wife disobeyed the god. She turned around and took a peek. So the god promptly turned her into a pillar of salt – which, some people say, you can see to this day.
Some archaeologists claim to have found evidence that a large earthquake shattered the region where Sodom and Gomorrah are believed to have stood about 4,000 years ago. If this is true, the legend of their destruction might belong in our list of earthquake myths.
Another biblical myth which might have started with a particular earthquake is the story of how Jericho was brought down. Jericho, which lies a little north of the Dead Sea in Israel, is one of the oldest cities in the world. It has suffered from earthquakes right up to recent times: in 1927 it was close to the centre of a severe one which shook the whole region and killed hundreds of people in Jerusalem, some 25 kilometres (15 miles) away.
The old Hebrew story tells of a legendary hero called Joshua, who wanted to conquer the people who lived in Jericho thousands of years ago. Jericho had thick city walls, and the people locked themselves inside so they couldn’t be attacked. Joshua’s men couldn’t break through the walls, so he ordered his priests to blow rams’ horns and all the people to shout at the tops of their voices.
The noise was so great that the walls shook and fell down flat. Joshua’s soldiers then rushed in and slaughtered everybody in the city, including the women and children, and even all the cows, sheep and donkeys. They also burned everything – except the silver and the gold, which they gave to their god, as he instructed them to do. The way the myth is told, this was a good thing: the god of Joshua’s people wanted it to happen so that his people could take over all the land that had previously belonged to the people of Jericho.
Since Jericho is such an earthquake-prone place, people nowadays have suggested that the legend of Joshua and Jericho may have begun with an ancient earthquake, which shook the city so violently that the walls fell down. You can easily imagine how a distant folk memory of a disastrous earthquake could be exaggerated and distorted as it was passed by word of mouth down through generations of people who couldn’t read or write, until eventually it grew into the legend of the great tribal hero Joshua, and all that noisy shouting and horn-blowing.
The two myths just described may have begun with particular earthquakes in history. There are also lots of other myths, from all around the world, that have come into being as people have tried to understand what earthquakes are in general.
Since Japan experiences so many earthquakes, it’s not surprising that Japan has some pretty colourful earthquake myths. According to one of these, the land floated on the back of a gigantic catfish called Namazu. Whenever Namazu flipped his tail, the Earth would shake.
Many thousands of miles south, the Maoris of New Zealand, who arrived by canoe and settled there a few centuries before European sailors arrived, believed that Mother Earth was pregnant with her child, the god Ru. Whenever baby Ru kicked or stretched inside his mother’s womb, there was an earthquake.
Back in the north, some Siberian tribes believed that the Earth sat on a sledge, pulled by dogs and driven by a god called Tull. The poor dogs had fleas, and when they scratched there an earthquake.
In one West African legend, the Earth is a disc, held up on one side by a great mountain and on the other side by a monstrous giant, whose wife holds up the sky. Every so often the giant and his wife hug each other, and then, as you can well imagine, the Earth moves.
Other West African tribes believed that they lived on top of a giant’s head. The forest was his hair, and the people and animals were like fleas wandering around on his head. Earthquakes were what happened when the giant sneezed. At least, that is what they were supposed to believe, though I rather doubt they really did.
Nowadays we know what earthquakes really are, and it is time to put away the myths and look at the truth.
First, we need to hear the remarkable story of plate tectonics.
Everybody knows what a map of the world looks like. We know the shape of Africa and the shape of South America, and we know that the wide Atlantic Ocean separates them. We can all recognize Australia, and we know that New Zealand lies to the south-east of Australia. We know that Italy looks like a boot, about to kick the ‘football’ of Sicily, and some people think New Guinea looks like a bird. We can easily recognize the outline of Europe, even though the borders within it change all the time. Empires come and go; the frontiers between countries are shifted again and again through history. But the outlines of the continents themselves stay fixed. Don’t they? Well, no, they don’t, and that is the big point. They move, although admittedly very slowly, and so do the positions of the mountain ranges: the Alps, the Himalayas, the Andes, the Rockies. To be sure, these great geographical features are fixed on the timescale of human history. But the Earth itself – if it could think – would think that no time at all. Written history goes back only about 5,000 years. Go back a million years (that’s 200 times as far back as written history stretches) and the continents all have pretty much the same shapes they do today, as far as our eyes would notice. But go back 100 million years and what do we see?
The South Atlantic Ocean was a narrow channel by comparison with today, and it looks as though you could almost have swum from Africa to South America. Northern Europe was nearly touching Greenland, which was nearly touching Canada. And India was not part of Asia at all, but right down by Madagascar, and tilted on its side. Africa lurched over the same way, too, compared with the more upright stance we see today.
Come to think of it, did you ever notice, when looking at a modern map, that the eastern side of South America looks suspiciously like the western side of Africa, as though they ‘wanted’ to fit together, like pieces in a jigsaw puzzle? It turns out that, if we go back a bit further in time (well, about 50 million years further back, but even that is just ‘a bit’ on the vast, slow geological timescale), we find that they actually did fit together.
One hundred and fifty million years ago, Africa and South America were completely joined up, not just to each other but to Madagascar, India and Antarctica too – and to Australia and New Zealand, round the other side of Antarctica. They were all one big land mass called Gondwana, which later split up into pieces, creating one daughter continent after another.
It sounds like a pretty tall story, doesn’t it? I mean, it sounds pretty ridiculous that anything as massive as a continent could move thousands of miles – but we now know that it happened, and what is more, we understand how.
We also know that the continents don’t only move away from each other. Sometimes they bump into each other, and when that happens huge mountain ranges get pushed up towards the sky. That’s how the Himalayas were formed: when India collided with Asia. Actually, it isn’t quite true that India collided with Asia. As we shall see soon, what collided with Asia was a much bigger thing, called a ‘plate’, much of it under water, with India sitting on top of it. All continents sit on these ‘plates’. We’ll come to them soon, but first let’s think a bit more about these ‘collisions’, and about the continents moving apart.
When you hear a word like ‘collided’ you might think of a sudden crash, as when a truck collides with a car. That isn’t the way it was – and is. The movement of the continents happens agonizingly slowly. Somebody once said it happens about as fast as fingernails grow. If you sit and stare at your fingernails, you don’t see them growing. But if you wait a few weeks, you can see that they have grown, and you need to cut them. In the same way, you can’t see South America in the act of moving away from Africa. But if you wait 50 million years, you notice that the two continents have moved a long way apart.
‘The speed with which fingernails grow’ is the average speed at which the continents move. But fingernails grow at a pretty constant speed, whereas the continents move in jerks: there’s a jerk, then a pause of a hundred years or so while the pressure to move again builds up, then another jerk, and so on.
Perhaps now you are beginning to guess what earthquakes really are? That’s right: an earthquake is what we feel when one of those jerks happens.
I’m telling you this as a known fact, but how do we know it? And when did we first discover it? That’s a fascinating story, which I now need to tell.
Various people in the past have noticed the jigsawy kind of fit between South America and Africa, but they didn’t know what to make of it. About 100 years ago, a German scientist called Alfred Wegener made a bold suggestion. It was so bold that most people thought he was a bit mad. Wegener suggested that the continents drifted about like gigantic ships. Africa and South America and the other great southern land masses had, in Wegener’s view, once been joined together. Then they tore apart from each other and cruised off through the sea in their separate directions. That was what Wegener thought, and people laughed at him for it. But it now turns out that he was right – well, almost right, and certainly much more right than the people who laughed at him.
The modern theory of plate tectonics, which is supported by a huge amount of evidence, isn’t quite the same as Wegener’s idea. Wegener was definitely right that Africa and South America, India, Madagascar, Antarctica and Australia had once all been joined up and later split apart. But the way it happened, according to the theory of plate tectonics, is a bit different from the way Wegener saw it. He thought of the continents as ploughing through the sea, floating, not on water but on the soft, molten or semi-molten layers of the Earth’s crust. The modern theory of plate tectonics sees the whole crust of the Earth, including the bottom of the sea, as a complete set of interlocking plates. (That’s ‘plates’ as in ‘armour plates’, not the kind of plates you eat off.) So it isn’t just the continents that move: it’s the plates that they sit on, and there is no bit of the Earth’s surface that isn’t part of a plate.
Most of the area of most of the plates lies under the sea. The land masses we know as the continents are the high ground of the plates, sticking up above the water. Africa is just the top of the much larger African plate, which stretches halfway across the South Atlantic. South America is the top of the South American plate, which stretches across the other half of the South Atlantic. Other plates are the Indian and Australian plates; the Eurasian plate, which consists of Europe and all of Asia except India; the Arabian plate, which is rather small and slots in between the Eurasian plate and the African plate; and the North American plate, which includes Greenland as well as North America and reaches halfway across the bottom of the North Atlantic ocean. And there are some plates that have hardly any dry land on them at all, for example the vast Pacific plate.
The divide between the South American plate and the African plate runs right down the middle of the South Atlantic, miles from either continent. Remember that the plates include the bottom of the sea, and that means hard rock. So how could South America and Africa have nestled together 150 million years ago? Wegener would have had no problem here, because he thought the continents themselves drifted about. But if South America and Africa once snuggled together, how does plate tectonics explain all the undersea hard rock that nowadays separates them? Have the undersea parts of the rocky plates somehow managed to grow?
Yes. The answer lies in something called ‘sea-floor spreading’. You know those moving walkways that you see at large airports to help people with luggage cover the long distances between, say, the entrance to the terminal and the departure lounge? Instead of having to walk all the way, they step on a moving belt and are carried along to some point where they have to start walking again. The moving walkway at an airport is only just wide enough for two people to stand side by side. But now imagine a moving walkway that is thousands of miles wide, stretching most of the way from the Arctic to the Antarctic. And imagine that, instead of moving at walking pace, it moves at the speed with which fingernails grow. Yes, you’ve guessed it. South America, and the whole South American plate, is being carried away from Africa and the African plate, on something like a moving walkway that lies deep under the sea bed and stretches from the far north to the far south of the Atlantic Ocean, moving very slowly.
What about Africa? Why isn’t the African plate moving in the same direction, and why doesn’t it keep up with the South American plate?
The answer is that Africa is on a different moving walkway, one that is travelling in the opposite direction. The African moving walkway goes from west to east, while the South American moving walkway goes from east to west. So what is going on in the middle? Next time you are at a big airport, stop just before you step on the moving walkway and watch it. It wells up out of a slit in the floor, and moves away from you. It is a belt, going round and round, travelling forwards above the floor and coming back towards you under the floor. Now imagine another belt, welling out of the same slit but going in exactly the opposite direction. If you put one foot on one belt and the other foot on the other belt you’d be forced to do the splits.
The equivalent of the slit in the floor at the bottom of the Atlantic Ocean runs all along the deep sea floor from the far south to the far north. It is called the mid-Atlantic ridge. The two ‘belts’ well up through the mid-Atlantic ridge and head off in opposite directions, one carrying South America steadily westwards, the other carrying Africa away to the east. And, like the belts at the airport, the great belts that move the tectonic plates roll around and come back deep within the Earth.
Next time you are at an airport, get on the moving walkway and let it carry you, while you imagine you are Africa (or South America if you prefer). When you get to the other end of the walkway and step off, watch the belt dive underground, ready to make its way back to where you’ve just come from.
The moving belts at an airport are driven by electric motors. What drives the moving belts that carry the great plates of the Earth with their cargo of continents? Deep beneath the Earth’s surface there are what are called convection currents. What’s a convection current? Maybe you have an electric convector heater in your house. Here’s how it works to heat a room. It heats air. Hot air rises because it is less dense than cold air (that’s how hot-air balloons work). The hot air rises until it hits the ceiling, where it can’t rise any more and is forced sideways by the fresh hot air pushing up from beneath. As it travels sideways, the air cools down, whereupon it sinks. When it hits the floor, it again moves sideways, creeping along the floor until it gets caught up in the heater and rises again. That explanation is a bit too simple, but the basic idea is all that matters here: under ideal conditions a convector heater can get the air moving round and round – circulating. This kind of circulation is called a ‘convection current’.
The same thing happens in water. In fact, it can happen in any liquid or any gas. But how can there be convection currents under the Earth’s surface? It isn’t liquid down there, is it? Well, yes, it is – sort of. Not liquid like water, but sort of half liquid like thick honey or treacle. That’s because it is so hot that everything is melting. The heat comes from deep down. The centre of the Earth is very hot indeed, and it goes on being hot until much closer to the surface. Occasionally the heat bursts out through the surface at a place we call a volcano.
The plates are made of hard rock, and, as we’ve seen, most of them is under the sea. Each plate is several miles thick. This thick layer of armour plating is called the lithosphere, which literally means ‘sphere of rock’. Under the sphere of rock is an even thicker layer, if you can believe it, which isn’t actually called the sphere of treacle but probably should be (it’s actually the upper mantle). The hard rocky plates of the sphere of rock could be said to ‘float’ on the sphere of treacle. Deep heat beneath and within the sphere of treacle causes agonizingly slow, grinding convection currents in the treacle, and it is those convection currents that carry the great rocky plates floating above.
Convection currents follow pretty complicated paths. Just think about all the different ocean currents, and even the winds, which are sort of high-speed convection currents. So it’s no wonder that the various plates on the Earth’s surface are carried in all sorts of directions, rather than round and round as if they were all on a simple merry-go-round. No wonder the plates bump into each other or tear rendingly away from each other, dive one under the other or grate sideways against each other. And no wonder we feel these titanic forces – grinding, wrenching, roaring, scraping forces – as earthquakes. Terrible as earthquakes can be, the wonder is that they aren’t even more terrible.
Sometimes a moving plate slides underneath a neighbouring plate. This is called ‘subduction’. Part of the African plate, for example, is being subducted under the Eurasian plate. This is one reason why there are earthquakes in Italy, and it is one reason why Mount Vesuvius erupted in ancient Roman times and destroyed the towns of Pompeii and Herculaneum (because volcanoes tend to sprout along the edges of the plates). The Himalayan mountains, including Mount Everest, were forced up to their great height as the Indian plate was steadily subducted under the Eurasian plate.
We began with the San Andreas Fault, so let’s end there. The San Andreas Fault is a long, rather straight ‘slippage’ line between the Pacific plate and the North American plate. Both plates are moving north-west, but the Pacific plate is moving faster. The city of Los Angeles lies on the Pacific plate, not the North American plate, and is steadily creeping up on San Francisco, most of which is on the North American plate. Earthquakes are constantly to be expected in this whole region, and experts are predicting that there will be a big one within the next ten years or so. Fortunately, California, unlike Haiti, is well equipped to deal with the terrible plight of earthquake victims.
One day, parts of Los Angeles might end up in San Francisco. But that is a long way off, and none of us will be around to see it.