From as far back as I can remember, I always hated to be hugged. I wanted to experience the good feeling of being hugged, but it was just too overwhelming. It was like a great, all-engulfing tidal wave of stimulation, and I reacted like a wild animal. Being touched triggered flight; it flipped my circuit breaker. I was overloaded and would have to escape, often by jerking away suddenly.
Many autistic children crave pressure stimulation even though they cannot tolerate being touched. It is much easier for a person with autism to tolerate touch if he or she initiates it. When touched unexpectedly, we usually withdraw, because our nervous system does not have time to process the sensation. One autistic woman told me that she enjoys touch, but she needs to initiate it in order to have time to feel it. Parents used to report that their autistic children loved to crawl under mattresses and wrap up in blankets or wedge themselves in tight places, long before anyone made sense of this strange behavior.
I was one of these pressure seekers. When I was six, I would wrap myself up in blankets and get under sofa cushions, because the pressure was relaxing. I used to daydream for hours in elementary school about constructing a device that would apply pressure to my body. I visualized a box with an inflatable liner that I could lie in. It would be like being totally encased in inflatable splints.
After visiting my aunt's ranch in Arizona, I got the idea of building such a device, patterned after the cattle squeeze chute I first saw there. When I watched cattle being put in the squeeze chute for their vaccinations, I noticed that some of them relaxed when they were pressed between the side panels. I guess I had made my first connection between those cows and myself, because a few days later, after I had a big panic attack, I just got inside the squeeze chute at the ranch. Since puberty I had experienced constant fear and anxiety coupled with severe panic attacks, which occurred at intervals of anywhere from a few weeks to several months. My life was based on avoiding situations that might trigger an attack.
I asked Aunt Ann to press the squeeze sides against me and to close the head restraint bars around my neck. I hoped it would calm my anxiety. At first there were a few moments of sheer panic as I stiffened up and tried to pull away from the pressure, but I couldn't get away because my head was locked in. Five seconds later I felt a wave of relaxation, and about thirty minutes later I asked Aunt Ann to release me. For about an hour afterward I felt very calm and serene. My constant anxiety had diminished. This was the first time I ever felt really comfortable in my own skin. Ann went along with my odd request to get in the cattle chute. She recognized that my mind worked in visual symbols, and she figured that the squeeze chute was an important part of my journey in the visual symbol world. I don't think she realized at the time that it was the pressure from the chute that relaxed me.
I copied the design and built the first human squeeze machine out of plywood panels when I returned to school. Entering the machine on hands and knees, I applied pressure to both sides of my body. The headmaster of my school and the school psychologist thought my machine was very weird and wanted to take it away. Professionals in those days had no understanding of autistic sensory problems; they still believed that autism was caused by psychological factors. Since they wanted to get rid of my machine, they alerted my mother, who became very concerned. Like the professionals, she had no idea that my attraction to pressure was biological.
Over the years I improved on the design of my machine. The most advanced version has two soft foam-padded panels that apply pressure along each side of my body and a padded opening that closes around my neck. I control the amount of pressure by pushing an air valve lever that pulls the two panels tight against my body. I can precisely control how much pressure my body receives. Slowly increasing and decreasing it is the most relaxing. Using the squeeze machine on a daily basis calms my anxiety and helps me to unwind.
When I was young I wanted very intense pressure, almost to the point of pain. This machine provided great relief. The earliest version of the squeeze machine, with its hard wood sides, applied greater amounts of pressure than later versions with soft padded sides. As I learned to tolerate the pressure, I modified the machine to make it softer and gentler. Now that medication has reduced the hyperarousal of my nervous system, I prefer much less pressure.
Since many people were trying to convince me to give up the machine, I had many ambivalent feelings about using it. I was torn between two opposing forces: I wanted to please my mother and the school authorities by giving the machine up, but my biology craved its calming effect. To make matters worse, I had no idea at that time that my sensory experiences were different from those of other people. Since then I've learned that other people with autism also crave pressure and have devised methods to apply it to their bodies. Tom McKean wrote in his book Soon Will Come the Light that he feels a low-intensity pain throughout his body which is relieved by pressure. He finds that very tight pressure works best. The amount of pressure a person desires may be related to his or her nervous arousal level.
Tom's overall sensory processing problems are more severe than mine. It is possible that for people with such problems, pressure to the point of pain functions as an attempt to reduce sensory discomfort. Tom wears very tight wristwatch straps on both wrists. He makes the bands as tight as he can without cutting off blood circulation. He also made a pressure suit consisting of a wet suit with an inflatable life jacket under it. He can adjust the pressure by blowing air into the valve on the jacket. Other adults with autism have also sought relief through the application of pressure. One man wore very tight belts and shoes, and a woman reported that pressure applied to certain parts of her body helped her senses to work better.
Even though the sense of touch is often compromised by excessive sensitivity, it can sometimes provide the most reliable information about the environment for people with autism. Therese Joliffe, an autistic woman from England, preferred using touch to learn about her environment because it was easier to understand things through her fingers. Her vision and hearing were distorted and provided unreliable information, but touching something gave her a relatively accurate representation of the world. She learned to do things like setting a table by feel. She did not learn to put her shoes on the correct feet until somebody held her hands and had her run her fingers down her legs and along the sides of her feet and along her shoes. Doing this enabled her to learn what the right and left shoe looked like. She had to feel them before she could see them. Her method of learning was similar to that of a blind man whose vision was restored when he was an adult. In his essay «To See and Not to See,» Dr. Oliver Sacks described how this man had to touch things in order to see them with his eyes. For objects like houses, which were too big to be touched all over, he touched a model, which enabled him to see the real thing.
Touching can also be used to teach words. Therese Joliffe reported that she learned reading by feeling letters. Margaret Eastham describes in her book Silent Words how she taught her nonverbal son to read by having him feel sandpaper letters. Many totally nonverbal children with autism touch and smell things. Some constantly tap everything. They may be doing this to figure out where the boundaries are in their environment, like a blind person tapping with a cane. Their eyes and ears function, but they are not able to process incoming visual and auditory information.
I was always able to determine where my body ended and where the outside world began, but some people with autism have severe body boundary problems. If they cannot see their legs, then they do not know where they are. Jim Sinclair, a young man with autism, reports not being able to find his body. Donna Williams describes a fractured perception of her body in which she could perceive only one part at a time. Similar fracturing occurred when she looked at things around her. She could only look at one small part of an object at a time. Donna tapped rhythmically and sometimes slapped herself to determine where her body boundaries were. When her senses became overloaded with painful stimuli, she bit herself, not realizing that she was biting her own body.
Overly sensitive skin can also be a big problem. Washing my hair and dressing to go to church were two things I hated as a child. A lot of kids hate Sunday clothes and taking baths. But shampooing actually hurt my scalp. It was as if the fingers rubbing my head had sewing thimbles on them. Scratchy petticoats were like sandpaper scraping away at raw nerve endings. In fact, I couldn't tolerate changes in clothing altogether. When I got accustomed to pants, I could not bear the feeling of bare legs when I wore a skirt. After I became accustomed to wearing shorts in the summer, I couldn't tolerate long pants. Most people adapt in several minutes, but it still takes me at least two weeks to adapt. New underwear is a scratchy horror. I wear my bras until they are falling apart, and new ones require no fewer than ten washings to make them comfortable. Even today I prefer to wear them inside out, because the stitching often feels like pins pricking my skin. Parents can avoid many problems with sensory-induced tantrums simply by dressing kids in soft clothes that cover most of their body
When I was little, loud noises were also a problem, often feeling like a dentist's drill hitting a nerve. They actually caused pain. I was scared to death of balloons popping, because the sound was like an explosion in my ear. Minor noises that most people can tune out drove me to distraction. When I was in college, my roommate's hair dryer sounded like a jet plane taking off. Some of the sounds that are most disturbing to autistic children are the high-pitched, shrill noises made by electrical drills, blenders, saws, and vacuum cleaners. Echoes in school gymnasiums and bathrooms are difficult for people with autism to tolerate. The kinds of sounds that are disturbing vary from person to person. A sound that caused me pain may be pleasurable to another child. One autistic child may love the vacuum cleaner, and another will fear it. Some are attracted to the sound of flowing, splashing water and will spend hours flushing the toilet, while others may wet their pants in panic because the flushing sounds like the roar of Niagara Falls.
Children with autism often appear to be deaf. They respond to some sounds and not to others. Jane Taylor McDonnell reported in her book News from the Border that her autistic son was suspected of being deaf to particular pitches and frequencies. When certain musical instruments were played, he responded, while other instruments produced no effect. I still have problems with losing my train of thought when distracting noises occur. If a pager goes off while I am giving a lecture, it fully captures my attention and I completely forget what I was talking about. Intermittent high-pitched noises are the most distracting. It takes me several seconds to shift my attention back. Several research studies have shown that rapid shifting of attention between two different stimuli is very difficult for people with autism. Eric Courchesne and his colleagues at the San Diego School of Medicine found that people with autism could not rapidly shift their attention between a visual and an auditory task. Further research by Ann Wainwright Sharp and Susan Bryson, in Canada, suggests that there is a fundamental impairment in the brain's ability to process incoming information rapidly.
When two people are talking at once, it is difficult for me to screen out one voice and listen to the other. My ears are like microphones picking up all sounds with equal intensity. Most people's ears are like highly directional microphones, which only pick up sounds from the person they are pointed at. In a noisy place I can't understand speech, because I cannot screen out the background noise. When I was a child, large noisy gatherings of relatives were overwhelming, and I would just lose control and throw temper tantrums. Birthday parties were torture when all the noisemakers went off. My mother recognized that I had difficulty with noisy gatherings of people, but she did not know why. Fortunately, I attended an elementary school that had quiet classrooms where all the students worked on the same task. I would have drowned in a cacophony of confusion if I had been in an open classroom with thirty students doing ten different projects.
Recently I was given a highly sophisticated hearing test that was developed by Joan Burleigh, in the Electrical Engineering Department at Colorado State University. The combination of her expertise in speech pathology and the electronics skills of the engineers there created a test that is able to determine the degree of autism-related hearing problems people have. People with autism usually seem to have normal hearing when tested with the standard test, which measures the ability to hear faint pure tones. My hearing tested normal on that test. The problem arises in processing complex sounds such as spoken words.
I did very badly on two segments of Joan Burleigh's test, both of which measure the ability to hear two conversations going on at once. In the first test, a man spoke a sentence in one ear and a woman spoke another sentence in the other ear. I was instructed to ignore one sentence and repeat the other. This task was hard and I got only 50 percent of the sentence correct. A normal person gets almost 100 percent correct. On the next test, two different voices said different sentences simultaneously in the same ear. I was instructed to ignore one voice and tell what the other one said. My left ear was very bad compared to my right ear. Performance in my left ear was only 25 percent of normal, whereas my right ear was 66 percent of normal. These tests showed very clearly that my ability to process and attend to one voice against the background of another voice is severely impaired. On some of the sentences I could distinguish only one or two words, usually from the middle of the sentence.
Here I am as a toddler. At that time, my retreat from touch was the only obvious sign of autism.
At two and a half, I had no speech and no interest in people. I appeared to be deaf, and often threw tantrums out of frustration at not being able to talk. Like many autistic children, I looked normal.
In high school, my life revolved around 4-H and showing horses. A deep connection with animals has been a constant in my life.
One of my mentors, Aunt Brecheen, helped me channel my fixations. This picture was taken in front of her ranch house in Arizona, where I first observed the cattle chute and made the connection between its calming pressure and my own hyperaroused nervous system.
Here is an example of the kind of cattle chute used for holding animals during veterinary procedures. Two panels apply pressure to the animal's body, and its head is restrained by a stanchion closed around its neck.
I constructed my first makeshift version of the squeeze machine out of used plywood. Here I am in the current version of the machine, which I also constructed. By manipulating the lever, I can precisely control the amount of pressure applied to my body. (Photograph copyright © by Rosalie Winard)
This is a commercially available squeeze machine manufactured by the Therafin Corporation, based on my design and used in the treatment of people with autism. (Photograph copyright © by Rosalie Winard)
One of my first designs for a curved lane leads into the dip vat at John Wayne's Red River feed yard. I figured out that cattle would move more easily through a curved lane because it makes use of their natural circling behavior.
I later applied the curved-lane design to systems for meatpacking plants. When I designed this chute, I was able to visualize the whole system in my imagination.
Here is one of my blueprints for a curved-chute system. As I draw, I visualize how each part will operate from every angle in my imagination. Many autistics share these intense visualization skills.
Even though I had little experience with drawing in perspective, I was able to come up with this blueprint in one try. Drawing skills often appear in young autistic children, perhaps as a compensation for their lack of verbal skills.
I call this my ground sculpture. In fact it is a truck loading and sorting facility in Nevada.
I love nothing more than surveying a plant I've designed where the animals are calm and quiet. One third of the cattle in the United States are moved through handling facilities that I have designed. (Photograph copyright © by Rosalie Winard)
This is an aerial view of my most intricate design, a buffalo-handling facility at the Wichita Mountains Wildlife Refuge. It took 26 drawings to complete this facility, which is operated by the U.S. Fish and Wildlife Service.
I have designed humane restraint systems for both sheep and cattle. As a result of my autism, I have heightened sensory perceptions that help me work out how an animal will feel moving through the system.
In my work on cattle behavior at Colorado State University, I sometimes like to get a cow's eye view of the situation. (Photograph copyright © by Rosalie Winard)
I met Dr. Oliver Sacks when he first wrote about me in An Anthropologist on Mars. His groundbreaking descriptions of people with various neurological disabilities have improved our understanding of the often enigmatic workings of the human mind. (Photograph copyright © by Rosalie Winard)
In 1994 I testified at a congressional hearing on the humane handling of crippled animals. (Photograph copyright © by Rosalie Winard)
I regularly lecture all over the United States on livestock handling and autism. Here I am addressing the annual meeting of the Autism Society of America. (Photograph copyright © Rosalie Winard)
A third test given by Joan Burleigh, called the binaural fusion test, showed that I have a distinct deficiency in timing sound input between my two ears. In this test a word is electronically split so that the high-frequency sounds go to one ear and the low-frequency sounds go to the other. When the low-frequency part of the word went to my right ear, I was able to hear 50 percent of the words correctly. When the low frequency was sent to my left ear, I became functionally deaf and only got 5 percent of the words correct. «Woodchuck» became «workshop,» «doormat» became «floor lamp,» «padlock» became «catnap,» «therefore» became «air force,» and «lifeboat» became «lightbulb.» While taking the test I knew that «catnap» and «floor lamp» were wrong, but I thought that «workshop» and «lightbulb» were correct. I often figure out words by the context. If I am at work on an equipment design project, I know that an engineer probably will be talking about a workshop instead of a woodchuck.
Dr. Burleigh has tested other people with autism, and they show the same pattern of hearing deficiencies. She has been able to improve the hearing abilities of some people with auditory processing problems by placing a plug that filters certain frequencies in the most impaired ear. She explained to me that the kinds of problems I have in processing speech indicate defects in my brain stem and possibly the corpus callosum, the bundle of neurons that allows the two halves of the brain to communicate. The brain stem is one of the relay stations that send input from the ears to the thinking parts of the brain.
The techniques used during some of these tests have been available for more than twenty years, but nobody used them on people with autism, mostly owing to a lot of old-fashioned thinking. Working with the electrical engineers helped Dr. Burleigh to look at sensory processing in a new light. Professionals in the field of educating autistic children have largely ignored sensory problems and favored behavioral theory. Edward Ornitz and Peter Tanguay at UCLA documented abnormalities in the brain stem of autistic children more than ten years ago. Dr. Ornitz wrote a major review of the scientific literature on sensory processing problems in autism in the Journal of the American Academy of Child Psychiatry in 1985. He stated that people with autism either overreact or underreact to different stimuli, and suggested that some of their deficits could be caused by distorted sensory input. But his important paper was overlooked by educators, who had completely embraced behavior modification methods at the time and ignored the impact of sensory problems.
My auditory problems are very mild compared with those of individuals who are more severely afflicted with autism. Some people have lost all or almost all ability to understand speech. Others have such acute hearing that everyday noises are completely intolerable. One person said that rain sounded like gunfire; others claim they hear blood whooshing through their veins or every sound in an entire school building. Their world is a confusing mass of noise. One woman said she could not tolerate the sound of a baby crying even when she was wearing a combination of earplugs and industrial sound-protector earmuffs. These symptoms are similar to those of people who have had brain stem injuries in an accident, some of whom cannot abide the smallest amount of noise or bright light. Certain types of head injuries create symptoms that partially mimic autistic auditory problems. A girl who was hit on the head during a riot told me that she had auditory problems similar to mine and could no longer ignore distracting background noise. I sometimes have small auditory tune-outs when my ears shut off and I start to daydream. If I work hard to pay attention, I can prevent these lapses, but when I get tired I have a greater tendency to tune out. Now I have control over this, but a person with greater auditory processing difficulties may not be able to gain such control.
Darren White, a young man with autism, wrote that his hearing faded in and out. Sometimes it was loud and sometimes it was soft. He described the sensation in the journal Medical Hypothesis: «Another trick my ears played was to change the volume of sounds around me. Sometimes when other kids spoke to me I would scarcely hear, then sometimes they sounded like bullets.» Other hearing problems can include a buzzing sound in the ears. I sometimes hear my heartbeat in my ears, or I hear a kind of electronic noise like the sound that accompanies a TV test pattern.
Some autistic children do not pay attention to spoken language. Jane Taylor McDonnell wrote that her two-year-old son could not respond to simple spoken commands. He had to figure out what people wanted by looking at their gestures and the things in the room. Autistic children with echolalia help themselves understand what has been said by repeating it; Donna Williams stated that if she didn't repeat the words, she only understood 5 to 10 percent of what was said. Children with echolalia appear to have severe speech perception problems. In Somebody Somewhere, Donna writes, «As a child I had been echolalic and had difficulty learning the purpose and significance of language.» She had problems with perceiving both the words and the intonation or tone of speech as a seamless whole. When she was young, she thought that the intonation of a voice was the words. If she listened to the intonation, she could not hear the words.
Therese Joliffe also used echolalia to help her learn language. In the December 1992 issue of Communication, published by the National Autistic Society in England, she explained how she usually loses the first few words when someone speaks to her, because it takes her a while to realize that somebody has spoken. It was a long time before she figured out the purpose of speech. When she was young, speech had no more significance than other sounds. To learn that speech had meaning, she had to see words written on paper. After seeing the words, she began to recognize them in speech.
Jim Sinclair also had to learn that spoken words had meaning. He described the difficulties he experienced in High-Functioning Individuals with Autism, explaining that «speech therapy was just a lot of meaningless drills in repeating meaningless sounds for incomprehensible reasons. I had no idea that this could be a way to exchange meaning with other minds.»
It is likely that some of the people who are nonverbal fail to develop language because not enough speech gets through their dysfunctional auditory system. Both Joan Burleigh's auditory test and recent research by Japanese scientists at the University of Tokushima School of Medicine indicate that abnormal brain stem functioning is the cause of at least some of the problems with understanding speech. Dr. Hashimoto and his colleagues found that nonverbal people with autism have smaller brain stems than normal, and D. G. McClelland and his colleagues at Queen's University in Belfast, Ireland, found that so-called low-functioning individuals who are unable to speak show abnormalities in brain stem function when measured by a test that determines the brain stem's ability to transmit nerve impulses.
Therapists have learned from experience that sometimes nonverbal children can be taught to sing before they can speak. In some people the brain circuits used for singing may be more normal than the circuits used for speech. Possibly the song rhythm helps to stabilize auditory processing and block out intruding sounds. This may explain why some autistic children use commercial jingles as an attempt to communicate. The pairing of a visual cue and a sung slogan makes a rhythmic and visual impression. Therese Joliffe's parents told her that when she was a child,she would speak when certain music was played. I used to hum to myself to block out bothersome noise.
Some people have very severe visual processing problems, and sight may be their most unreliable sense. Some nonverbal people with autism act as though they are blind when they are in a strange place, and others have problems with visual tuneouts and whiteouts, where vision completely shuts down. During a white-out they see snow, as if they were tuned to a vacant television channel. Several autistic people with normal vision have told me that they have depth perception problems and have difficulty going down stairs. The eyes and the retina usually function normally, and the person can pass an eye examination. The problem arises in processing visual information in the brain.
As a child I was attracted to bright colors and moving objects that were visually stimulating, such as kites and flying model airplanes. I loved striped shirts and Day-Glo paint, and I loved to watch supermarket sliding doors go back and forth. When I watched the edge of the door move across my visual field, I 'd get a little pleasurable chill up my back. Minor sensory processing deficits heightened my attraction to certain stimulation, whereas a greater sensory processing defect might cause another child to fear and avoid that same stimulus. Some of the problems autistics have with making eye contact may be nothing more than an intolerance for the movement of the other person's eyes. One autistic person reported that looking at other people's eyes was difficult because the eyes did not stay still. Face recognition also presents certain problems for many people with autism.
I often get into embarrassing situations because I do not remember faces unless I have seen the people many times or they have a very distinct facial feature, such as a big beard, thick glasses, or a strange hairstyle. Barbara Jones, a woman with autism, told me that to remember a face, she has to see the person fifteen times. Barbara works in a laboratory identifying cancer cells under a microscope. Her ability to recognize patterns has made her one of the best technicians in the lab. Her visual abilities enable her to spot abnormal cells instantly, because they just jump out at her. But there is some evidence that facial recognition involves different neural systems from those used for imagery of objects such as buildings. Antonio Damasio, at the University of Iowa College of Medicine, reports that patients with damage to the ventral occipital and temporal association cortices may fail to identify a person's face, but they can identify his voice. These patients can also identify a person accurately by using other visual information, such as a gait or posture, even though they fail to recognize his face. Fortunately, people who have difficulty recognizing a particular face have no difficulty discriminating between a person's face and a dog's face.
Fluorescent lighting causes severe problems for many autistic people, because they can see a sixty-cycle flicker. Household electricity turns on and off sixty times each second, and some autistic people see this. Problems with flickering can range from excessive eyestrain to seeing a room pulsate on and off. Fluorescent lighting in the classroom was a big problem for Donna Williams. Reflections bounced off everything, and the room looked like an animated cartoon. Fluorescent lighting in a kitchen with yellow walls blinded her. There were also situations in which things disappeared and lost their meaning. Donna described moving quickly through a hall: «Perceptually the hall did not exist. I saw shapes and colors as it whooshed by.» When her visual system became completely overloaded with stimuli, all meaning in visual sensation was lost.
Distorted visual images may possibly explain why some children with autism favor peripheral vision. They may receive more reliable information when they look out of the corners of their eyes. One autistic person reported that he saw better from the side and that he didn't see things if he looked straight at them.
Many autistic children like to smell things, and smell may provide more reliable information about their surroundings than either vision or hearing. A survey of sensory problems in thirty adults and children was conducted by Neil Walker and Margaret Whelan from the Geneva Center in Toronto. Eighty to eighty-seven percent of the people reported oversensitivity to touch or sound. Eighty-six percent had problems with vision. However, only 30 percent reported taste or smell oversensitivities.
Many children with autism are finicky and will eat only certain foods. Their eating problems usually have a sensory basis. They are unable to tolerate the texture, smell, taste, or sound of the food in their mouth. I hated anything that was slimy, like Jell-O or undercooked egg whites. Many autistic children hate crunchy foods because they sound too loud when chewed. Sean Barron writes in There's a Boy in Here that he was supersensitive to food texture. He would only eat bland foods — Cream of Wheat was one of his favorites, because it was «perfectly bland.» For some people, foods with strong odors or tastes can overpower an overly sensitive nervous system. Neil Walker reported that one person refused to walk on a lawn because he could not bear the smell of grass. Several autistic people have told me that they remember people by smell, and one reported that he liked safe smells such as the smell of pots and pans, which he associated with his home.
In people with severe sensory processing deficits, vision, hearing, and other senses mix together, especially when they are tired or upset. Laura Cesaroni and Malcolm Garber, at the Ontario Institute for Studies in Education in Canada, interviewed a twenty-seven-year-old male graduate student with autism. He described difficulty hearing and seeing at the same time as his sensory channels got mixed up. Sound came through as color, while touching his face produced a soundlike sensation. Donna Williams describes herself as mono channel; in other words, she cannot see and hear at the same time. When she is listening to somebody speak, visual input loses its meaning. She is unable to perceive a cat jumping on her lap while she is listening to a friend talk. She often handles telephone conversations more easily than face-to-face meetings, because distracting visual input is eliminated. Other people with autism have also reported that the phone is a preferred method of socializing.
People with severe sensory problems have a horrible time trying to figure out what reality is. Therese Joliffe succinctly summarizes the chaos caused by autistic sensory problems:
Reality to an autistic person is a confusing interacting mass of events, people, places, sounds and sights. There seem to be no clear boundaries, order or meaning to anything. A large part of my life is spent just trying to work out the pattern behind everything. Set routines, times, particular routes and rituals all help to get order into an unbearably chaotic life.
Jim Sinclair has also reported sensory mixing problems. Vision is his weakest sense, and sometimes when the phone rings he has to stop and remember what it is. Jim explains his problem in the language of computer technology: «I have an interface problem, not a core processing problem.»
Donna Williams found the world incomprehensible, and she had to fight constantly to get meaning from her senses. When she gave up trying to get meaning, she would let her attention wander into fractured patterns, which were entertaining, hypnotic, and secure. In Somebody Somewhere she writes, «This was the beautiful side of autism. This was the sanctuary of the prison.» People with severe sensory processing problems can also go into total shutdown when they become overstimulated.
Many therapists and doctors confuse autistic perceptual problems with the hallucinations and delusions of schizophrenics, but true schizophrenic delusions and hallucinations follow a different pattern. Autistic fantasies can be confused with hallucinations, but the autistic person knows they are fantasies, whereas the schizophrenic believes they are reality People with autism do not report such classic delusions associated with schizophrenia as believing that the FBI has planted a radio transmission in their head or thinking they'se King Henry the VIII. The problem for most autistic people is that they do not realize that their sensory processing is different. I thought other people were better and stronger than I when I couldn't tolerate scratchy clothes or loud noise. My sensory sensitivities became much less bothersome after I started taking the antidepressant Tofranil. My senses are still easily overstimulated, but the medication calms down my reactions to stimuli.
In the book Sound of a Miracle, Georgie Stehli describes how her life changed when a procedure called Berard auditory training greatly reduced her incredible sound sensitivity. It was a relief for her no longer to be terrified of sounds such as that made by surf on a beach. The auditory training consists of listening to music that is electronically distorted at random intervals for two thirty-minute periods for ten days. The machine also contains filters to block the frequencies where hearing is supersensitive. For about half the people who try it, it has helped reduce sound sensitivity, and for some people it has reduced buzzing and other noises in the ears. It is not a cure for autism, but it can have beneficial effects.
Donna Williams has been greatly helped by Irlen tinted glasses, which filter out irritating color frequencies and enable her defective visual system to handle sharp contrast. The glasses stopped fractured visual perception. She is now able to see an entire garden instead of bits and pieces of flowers. Tom McKean has less severe visual processing problems, but he finds that wearing rust-colored glasses with a purplish tint has stopped areas of high contrast from vibrating. Another woman with mild visual problems has also been greatly helped by rose-colored glasses; her depth perception improved, and now she can drive at night. Regular brown sunglasses are helpful for some people.
It is likely that there is a continuum of visual and auditory processing problems for most people with autism, which goes from fractured, disjointed images at one end to a slight abnormality at the other. A slight visual processing abnormality may cause a child to be attracted to bright objects with contrasting colors, but a greater abnormality will cause the child to avoid them. Colored glasses and Berard auditory training are not going to help everybody. These sensory methods can be of value, but neither one is a cure.
It came as a kind of revelation, as well as a blessed relief, when I learned that my sensory problems weren't the result of my weakness or lack of character. When I was a teenager, I was aware that I did not fit in socially, but I was not aware that my method of visual thinking and my overly sensitive senses were the cause of my difficulties in relating to and interacting with other people. Many autistic people know that there is something about them that is different, but they don't know what it is. I only learned the full extent of my differences after reading many books and carefully questioning many people about their thinking and sensory processes. I hope that as more educators and doctors understand these differences, more children with autism will be helped from their terrible isolation at younger ages.
Jean Ayres, an occupational therapist in California, has developed a treatment called sensory integration which has been very helpful for most autistic children. It aids both fully verbal children and those with little or no meaningful speech. It is especially useful for reducing touch sensitivity and calming the nervous system. Two of the main components of this treatment are application of deep pressure and slow vestibular stimulation done on a swing that moves ten to twelve times per minute. Swinging must always be fun and done as a game, and the therapist should actively encourage speech and social interaction while the child is swinging. It must never be forced. Gentle swinging helps to stabilize abnormal sensory processing.
It is easy to apply comforting deep pressure over large areas of the body to little children by placing them under large pillows or rolling them up in heavy gym mats. These procedures are most effective if they are done twice a day for fifteen minutes. They need to be done every day, but they do not have to be done for hours and hours. Depending on the children's anxiety level, some will need access to deep pressure or swinging throughout the day, using it to calm themselves down when they become overstimu-lated. Another useful aid for calming hyperactive children is a padded weighted vest. To help autistic children sleep at night, a snug mummy-type sleeping bag provides comfort and pressure.
When I built my squeeze machine and Tom McKean made his pressure suit, we did not realize that we were inventing a therapy method that has now helped many children. Many of the behaviors of people with autism seem strange, but they are reactions to distorted or overly intense sensory input. Observation of the behaviors can provide clues to the underlying sensory problems. A child who flicks his fingers in front of his eyes may have a visual processing problem, and a child who puts his hands over his ears probably has hypersensitive hearing.
Touch sensitivity in autistic children can also be reduced by massaging the body and stroking with soft surgical scrub brushes. It is important to use relatively firm pressure, which is calming and comforting. A light tickle must be avoided, because it triggers fear in the child's immature nervous system. A good therapist is gently insistent, gradually desensitizing the nervous system to touch. Touching is never forced, but the therapist has to be somewhat insistent; otherwise no progress will be made.
It is likely that sensory integration programs will have the greatest effect on very young children, while the brain is still developing. Touching and stroking babies when they first stiffen and pull away may be helpful as well. But even though these exercises work best on young children, they are also helpful for adults. Tom McKean reports that firmly brushing his skin with soft brushes temporarily made his body pain go away. Donna Williams told me that she hated brushing her body, but it helped integrate her senses and enabled her to see and hear at the same time. Somehow, the brushing helped her to integrate information from different senses. When pressure or rubbing stimulation is first applied, a child may resist, but gradually the nervous system will become less sensitive and the person will enjoy touching that he initially rejected.
As I developed my squeeze machine, I designed it to enhance the feeling of being embraced. Now, if I suddenly resist, I cannot pull my head out of the softly padded neck opening. In order to open the latch, I have to relax and lean forward. I am never locked in the machine, but I am prevented from suddenly pulling away from the soothing pressure. At all times I am in control of the amount of pressure applied to my body. The new design has enabled me to give in completely to the gentle feeling of being held.
Margaret Creedon from the Easter Seals Therapeutic Day School in Chicago has been successfully using the squeeze machine on young children. Over a period of months, each child gradually learns to tolerate the pressure until he or she can enjoy it for five minutes or more. Most children prefer to lie prone in the machine. They are never forced to use it, and they themselves always control the amount of pressure. Researchers found that children who were using the squeeze machine for more than five minutes a day were calmer and had a greater ability to inhibit a motor response than children who did not use the machine. They also performed better on a test of mechanical problem-solving. Helping autistic children fulfill that most basic human need, the comfort of touch, is like taming an animal. At first they pull away, but then they learn that touching feels good.
During the last ten years, I have had additional tests of auditory processing and was shocked at how badly I failed one of them. In one test I was asked to discriminate the difference in pitch between two short sounds that were separated by a half-second gap. I was not able to do the task because I heard the sounds as one continuous sound. Nathalie Boddaert and her colleagues in France used a PET scanner to determine that people with autism have abnormalities in the part of the brain that processes complex sounds. One reason why some children with autism fail to learn to speak is due to a poor ability to hear auditory detail. Even though a child is able to pass the simple pure tone hearing test, he/she may not be hearing the consonants in the words. My speech teacher helped me to hear words by enunciating the consonants of words such as cup. She said ccc u pp. Auditory detail and auditory threshold (ability to perceive faint sounds) are two different processes. Some nonverbal individuals may be hearing only vowel sounds.
Another problem that individuals with both autism and dyslexia have is slow shifting of attention. It takes much longer to shift back and forth between two different things that attract their attention. For example, if a mobile phone rings it distracts a normal person for a fraction of a second, but it takes much longer for the person with autism to shift away from the distraction. Distractions in the classroom may prevent a person with autism from hearing the first few words of a sentence.
Children who have difficulty hearing auditory detail will often repeat back TV commercials and videos. This is called echolalia.Parents and teachers should be happy if a child can recite a perfect commercial because the brain is programmed for speech. The reason why TV commercials are learned first is due to the fact that every time the words are said with exactly the same tone and pronunciation.
Adults who were echolalic as children reported that when they recited a commercial, they had no idea that the words had meaning. They thought that the tone of voice was the communication. They had to be taught that the words had meaning. One method that may be effective is to make hundreds of flash cards with nouns on them. The picture of an object such as a cup and the word cup must be on the same side of the card. Each card is held up and the child can hear the teacher say the word and look at the picture and the printed word all at the same time. If the child says a word such as juice, give him the juice. If he says spoon and you know he really was trying to ask for juice, do not correct him and give him a spoon. He/she has to learn the association between a word and certain objects.
There is much controversy about the use of auditory training to reduce sound sensitivity and improve the ability to hear auditory detail. There are many variations of these programs, but in all of the programs, the person listens to electronically modified music. The music sounds like an old-fashioned record player that is speeding up and slowing down.
Some studies have shown that auditory training is effective and others have not. This is probably due to the huge variation in the wiring problems in different autistic brains. Fortunately a large review of the literature by Dr. Sinha at the Royal Children's Institute in Australia showed that auditory training is safe. However, the music must not be played too loudly. Reports from parents and individuals with autism indicate that auditory training may be helpful for some individuals. Another method that may be useful for reducing sound sensitivity is recording the fire alarm or other sounds that hurt the child's ears. The child is then allowed to play the sound back at a greatly reduced volume. It is essential that the child controls the volume and turns on the sound. Sounds a child initiates are better tolerated. Gradually the volume could be raised.
Many individuals on the spectrum have difficulty tolerating fluorescent lights. To them the room will flicker like a disco. Placing a lamp with an old-fashioned incandescent lightbulb next to the individual's desk will reduce the flicker effect. Individuals with autism, dyslexia, and other learning problems often prefer to use a flat panel computer screen because it flickers less than a TV-type monitor. The best flat panels are either laptops or a really thin desk unit. Avoid desktop flat panels that have fluorescent lights inside them.
Children with visual processing problems will often look out the corners of their eyes. They do this so they can see more clearly. They are often afraid of escalators because they have difficulty judging how to step on and off of them. If visual processing problems are suspected, the child should see a developmental optometrist. This is a special eye doctor who can do therapy and exercises to help the processing problems that are inside the brain. In many of these children, the eye itself is normal but faulty wiring in the brain is causing the problem.
British researchers have done extensive studies in the use of colored overlays and colored glasses to improve reading in individuals who have visual processing problems. They have found that they are often helpful. It is important for the person to pick the exact colors they prefer. A U.S. study indicated that colored lenses had no significant effect. The poor result was probably due to everybody being given the same color.
I had a dyslexic student who had severe visual processing problems. When she tried to read, the print appeared to wriggle on the page. Colored glasses and printing her work on tan paper to reduce contrast improved both her reading and the organization of her writing. In my livestock equipment design class 1 to 2 percent of normal college students have visual processing problems. These students absolutely cannot draw. They are unable to figure out how to draw a half circle freehand and locate the center in the correct place. When I question them they say they see waves. I always tell them about colored glasses and some of them have reported back to me that colored glasses were helpful. Some students went to a sunglass store and tried reading a book with many different pale colored glasses until they found a color that made the print stop jiggling. Prescription reading glasses can be custom tinted with the preferred color. Irlen centers can help people find the precise shade that works the best. Refer to the directory in the back of the book.
When I met Tito Mukhopadhyay he looked like a typical nonverbal low-functioning teenager with autism. When he came into the room he grabbed a magazine and smelled it. His mother taught him to type on a keyboard by constant prompting to make him pay attention. His typing is truly independent and he was not touched by a person while he was typing a sentence. He had to be prompted after he typed each short sentence to keep him on task and to prevent him from running across the room. To make sure that he was not using prerehearsed phrases, I asked Tito to tell me about a picture he had never seen before. The picture was from an advertisement and it showed an astronaut on a horse. Tito immediately typed «Apollo 11 on a horse.» This convinced me that Tito was not being cued by his mother. Tito's description of how he thinks and feels indicates that the different subsystems in his brain are not working together. He has written about a thinking self and an acting self. When I questioned him about visual perception he typed that he saw fragments of color, shapes, and motions. He is not able to hear and see at the same time.
In the normal visual system, the brain has circuits for color, shape, and motion. These circuits must work together to create stable images. Tito's description of how he sees things may be an indicator that these systems are working independently. His descriptions may also indicate that he has localized brain systems that are working but the connections among the different brain areas are highly abnormal. I asked Tito what it was like before he could type. He typed out one word: emptiness. Tito's writings have more emotion that the writings of many fully verbal people on the autism/Asperger spectrum. I have observed that sometimes emotions are more normal in individuals who have either fragmented sensory processing or poor verbal skills. Tito's achievements indicate that some individuals who appear to be low-functioning have good brains hidden inside. It is likely that many nonverbal individuals will not have Tito's abilities. It depends on which brain circuits get connected.
Therapists have found that providing deep pressure by rolling a child in mats or putting him under pillows can calm the nervous system. Discrete trial training (Applied Behavioral Analysis) and speech therapy are sometimes more effective if done while the child is experiencing deep pressure. The calming effect may help the miswired nervous system to perceive speech better. Many of these children's brains are like poor mobile phone signals. The speech may fade in and out.
Pressure applied by a padded, weighted vest can help a hyperactive child sit still. For best results, the vest should be worn for twenty minutes and then taken off for twenty minutes. Sleeping can often be helped by using a weighted blanket to apply soothing pressure. Steve Edelson and his colleague at the Autism Research Institute in San Diego found that the squeeze machine had a calming effect.
An amazing experiment done with Great Danes who bit out of fear showed that deep pressure is calming. Nancy Williams and Peter Borchelt placed aggressive Great Danes in a box filled with grain to apply pressure all over their bodies. The dog's head protruded through a padded opening. While the dogs were in the box, other dogs and strangers were brought up to them. The calming pressure reduced aggressive snarling or attempts to bite. The dog's behavior was improved for several months after treatment. The pressure reduced the dog's anxiety. This experiment shows the calming effects of pressure. When pressure is used on individuals with autism, it should be done as a fun activity and never forced onto the child or adult.
I am frustrated by the fact that some teachers and therapists still do not recognize the importance of sensory over sensibility. It must be difficult for them to imagine a totally different way of perceiving the world where sounds and lights are super intense. A question people ask is if a child is so sensitive to sounds why don't his own screams bother him? The reason is because sound sensitivity occurs only at specific sound pitches that vary from child to child. Fortunately there are more books available now on sensory over sensitivity problems. Research by S. J. Rogers and others at the Department of Psychiatry, University of California at Davis clearly shows that autistic children have abnormal sensory reactivity. They were also more likely to have abnormal responses to taste and smell compared to children with other developmental abnormalities. Individuals who scream and tantrum every time they go into a large supermarket have the most severe problems with sensory oversensitivity They probably feel like they are inside the speaker and the light show at a rock concert. Problems with sensory overload get worse when a person is tired. These individuals will need a quiet environment that is free of fluorescent lights and distractions in order to learn.
There is a need for research on the differences in brain function in children and adults with autism. If the area of the brain that is miswired could be identified, then therapy could be targeted at it. It is likely that abnormalities in brain wiring will vary greatly between individuals. One individual may have a visual processing problem and another one may not.