Хавьер Фресан «Мир математики» № 22 «Сон разума Математическая логика и ее парадоксы»

Посвящается Хосе Антонио Паскуалю и Розе Наварро Дюран

Предисловие

Супруги спорят между собой: «Ты всегда мне перечишь», — говорит жена. «Это не так», — возражает муж. «Видишь? Ты сам же это подтверждаешь», — снова критикует его жена. «Милая, ты права, я всего лишь тебе перечу», — признает муж в попытках положить конец спору. «Вот! Ты сам в этом признался!» — кричит жена и хлопает дверью. От подобных сцен не застрахован ни один, даже самый счастливый брак. Если бы философ и математик Бертран Рассел никогда не переживал подобные моменты, он бы не женился четыре раза. И все же его семейные ссоры, должно быть, завершались совершенно не так, как у других людей: после фразы «Ты сам же это подтверждаешь» Рассел, должно быть, помолчал несколько секунд и, сказав: «Да, дорогая, это очень интересно», закрылся в своем кабинете.

Зачем? Чтобы подумать об утверждениях, которые описывают сами себя, об истинном и ложном и осознать парадокс, который ставил под сомнение то, что математика последних двух тысяч лет является завершенным воплощением «сна разума».

Парадокс Рассела — один из главных действующих лиц этой книги, однако сначала мы расскажем о том, как открытие неевклидовой геометрии радикально изменило аксиоматический метод, и о том, что противоречие, положившее конец «счастливым и спокойным будням» Рассела, берет начало в традиции, восходящей, по меньшей мере, к Эпимениду Критскому. Парадокс Рассела был бы обычной математической диковинкой, если бы он не породил множество новых вопросов. Сначала мы поговорим о решении этого парадокса, которое предложил Давид Гильберт — один из умнейших людей своего времени. В течение 30 лет он сохранял уверенность, что в один прекрасный день математика навсегда освободится от парадоксов. Это же хотел доказать и юный Курт Гедель, однако он обнаружил, что в арифметике существуют истинные высказывания, которые невозможно доказать.

С того момента как Гёдель объявил о своем открытии на конференции в Кёнигсберге в сентябре 1930 года, его теоремы о неполноте продолжают удивлять специалистов в точных и гуманитарных науках. Некоторые сочли теоремы Гёделя знаком поражения разума, хотя преимущество в этой битве изначально было на его стороне, другие видели в них неоспоримое доказательство превосходства человека над машинами. Однако лишь те, кто в полной мере понял суть статей Гёделя, смогли вывести логику на новый уровень. Гениальный Алан Тьюринг — человек, взломавший дьявольские шифры нацистов, смог создать первые компьютеры, дав теоремам о неполноте новое толкование. Обо всем этом и о многом другом пойдет речь в этой книге.

Мы решили не ограничиваться нулями и единицами машин Тьюринга, а попытались сделать еще один шаг вперед и описать множество оттенков одного из последних «снов разума» — нечеткой логики.

Я хочу поблагодарить редакцию издательской компании RBA за предложение написать такую книгу. Именно слова «изложить популярным языком», упомянутые в одном из писем редактора, побудили меня начать каждую главу с небольшой художественной зарисовки. Без историй моей подруги Лауры Касильес, этой Шахерезады XXI века, я никогда не смог бы связать нечеткую логику и десерт в японском ресторане. Эпиграф к пятой главе родился благодаря Патрисии Фернандес де Лис, очарованной личностью Алана Тьюринга. Подробные комментарии Хесуса Фресана, Давида Гарсеса, Мигеля Эрнаиса, Виктории Лей Вега де Сеоане, Хавьера Мартинеса и Лус Рельо помогли мне существенно улучшить книгу.

Также я благодарен Марии Агирре Рокеро, Луису Аскарате, Ноэлю Гарридо, Хено Галарса, Марии Анхелес Леаль, Карлосу Мадриду, Хосе Марии Матеос, Гильермо Рей, Роберто Рубио, Марии Хосе Солер, Лукасу Санчесу и Микелю Тамайо за ценный вклад, который они внесли в создание этой книги.

Загрузка...