9. Глобальная электрическая цепь

9.1 Искусственные плазменные образования в атмосфере

В магнитосфере Земли, за пределами ионосферы, расположены плазмосфера и радиационные пояса. Магнитосфера Земли – область околоземного пространства, занятая геомагнитным полем [94]. Плазмосферой называется внутренняя область магнитосферы, по форме напоминающая тор, содержащая холодную плазму, с энергий менее 1–2 эВ и плотностью частиц 100–1000 см–3 [95]. Когда число частиц одного сорта в плазме велико, ее называют газовой и рассматривают в термодинамическом отношении как идеальный газ. Действие полей Земли и искусственных электромагнитных излучений на плазму, расположенную в разреженной атмосфере, трудно обнаружить. Ученые Мюнхенского Института космической физики и астрофизики им. Макса Планка провели серию экспериментов с образованием искусственных облаков плазмы в космическом пространстве [11]. В магнитосфере Земли создавалось видимое плазменное облако и изучалось его поведение. Исследователи исходили из того, что поведение заряженных частиц в электрическом и магнитном поле соответствует теории физики. Если положительно заряженный ион или отрицательно заряженный электрон попадают в магнитное поле и компонента скорости перпендикулярна к этому полю, то частицы начинают двигаться по окружностям вокруг силовых линий. Компонента скорости параллельная вектору напряженности магнитного поля (В) не меняется магнитным полем, и движение по этому направлению остается неизменным. В однородном магнитном поле, в случае произвольного направления вектора скорости, заряженная частица движется по спиральной линии, ось которой параллельна В [13. С. 365].

Облако искусственной плазмы позволяет непосредственно увидеть движение заряженных частиц вдоль силовых линий поля. В первых экспериментах, проведенных в 1963 г. ракеты поднимались на высоту от 90 до 120 миль. На каждой из запущенных ракет помещалось несколько килограммов стронция. Испарение стронция производилось путем химической реакции. Затем стронций выбрасывался в атмосферу. Следов ионизованного стронция не было обнаружено. Поэтому стали испытывать новые методы испарения более тяжелого щелочного металла – бария. В ноябре 1964 г. проведена серия экспериментов с использованием бария. Десять минут спустя после выпускания парообразного бария, образовавшееся облако плазмы делается видимым с Земли даже невооруженным глазом. Ионизованная часть бариевого облака, в отличие от сферического не ионизованного облака, изменяется и приобретает сигаровидную форму. В экспериментах с бариевыми облаками были обнаружены слоистости. Ширина слоев изменялась от половины мили до 6 миль. Наличие слоев напоминает пучок волокон. Эти волокна не сохраняют своего положения в пространстве, а изменяют его в течение нескольких минут.

В апреле 1966 г. в пустыне Сахара провели эксперименты на высоте 1200 миль. С ракет были выпущены два ионизованных облака, каждое из которых состояло из 50 г ионов бария. Они обозначили силовые линии земного магнитного поля от центра Африки до центра Европы [11]. Пуски, очевидно, производились с космодрома Алжира Хаммагир (φ = 31,6° с. ш., λ = 2,2° з. д., d = – 6,470°), а под центром Европы, надо полагать, подразумевался Лондонский меридиан. Пять месяцев спустя ионное облако было создано на высоте около 570 миль (917 км) над Восточным побережьем США. По мере выпадения частиц в нижнюю часть атмосферы, наблюдалось удлинение ионного облака вдоль силовых линий магнитного поля вплоть до Северной Дакоты. Географические координаты места опыта в [11] не указаны, но можно предположить, что запуск ракет производен с восточного испытательного полигона на мысе Канаверал Флорида (φ = 28,483° с. ш., λ = 80,567° з. д.). Магнитное склонение – угол между географическим и магнитным меридианами в точке земной поверхности. Магнитное склонение в данном пункте практически совпадало с направлением на географический север (d = – 0,680°). Если проложить курс от полигона на юго-западную оконечность штата Северная Дакота, азимут составит А ≈ 315°. Плазменное образование смещались к северо-западу. Когда говорят о направленности облака по силовым линиям поля, нас вводят в заблуждение. Над населенным пунктом Кируной на севере Швеции в апреле 1967 г. пять дней подряд, поздним вечером или ранним утром, на высоте около 140 миль выпускалось ионное облако. Ионные облака демонстрировали дрейфовые движения, направленные иногда к востоку, а иногда к западу. Имелась также компонента скорости и в направлении на юг. В зоне полярных сияний несколько искусственных облаков приобретали удлиненную форму в виде полосы в направлении перпендикулярном географическому меридиану. Протяженность такого облака достигала более 120 миль.

В работе [11] не дают научной оценки причине дрейфа облаков искусственной плазмы поперек силовых линий магнитного поля. К заряженным частицам должны быть приложены силы, чтобы заставить плазменное облако дрейфовать перпендикулярно силовым линиям поля Земли. Это предполагает наличие внешнего источника, или устройства, способного воздействовать на заряды, создавать компоненту поперечную к силовым линиям поля и изменять положение силовой линии на локальном участке. Таким образом, ионы отклоняются от первоначальной траектории.

Предложение темы исследования Мюнхенскому институту имеет некоторый конспирологический подтекст. Для запуска метеорологических ракет, требовались космодромы, комплексы с системой обслуживания. Всего этого у ФРГ не было. Американцы, имеющие большой опыт работы с плазмой, зачем-то допустили немецких ученых к проведению экспериментов на территории Алжира (Сахара), Швеции (Кируна), Северной Дакоты (США)? Вероятно, целью Пентагона было стремление скрыть свою заинтересованность в научной работе. Немецких ученых использовали "втемную". Они, добросовестно выполняли проектное задание и могли не знать, почему происходит смещение плазмы по силовой линии, на восток или на запад от нее. Предполагаем, что настоящей целью экспериментов была проверка влияния технических средств на плазменные образования, на возможность продвигать заряды по силовой линии и отклонять их от естественной траектории.

9.2. Концепция глобальной электрической цепи

Между ионосферой и поверхностью Земли все время течет электрический ток. Действием сил в атмосфере обусловлены электрические токи и перенос электрических зарядов, содержащихся в воздухе. В нижних слоях атмосферы (тропосфере) выделяют пять форм этих токов:

1) токи проводимости, создаваемые движением ионов под действием сил электрического поля;

2) токи вызванные переносом объемных зарядов;

3) токи смещения, возникающие при достаточно заметных по величине быстрых изменениях электрического поля;

4) токи осадков, представляющие собой поток электричества при падении заряженных капель дождя, снега, града и т. п.;

5) токи грозовых разрядов и тихих разрядов с острых предметов.

Считается, что каждый ион в атмосфере обладает одним элементарным зарядом. Количество ионов в воздухе зависит от действия ионизаторов. Ионизаторами являются космические лучи и радиоактивные излучения земных пород, ультрафиолетовое, рентгеновское и другие излучения Солнца. Однополярные ионы существуют в обычных условиях в нижних слоях атмосферы очень короткое время, к ним присоединяются несколько нейтральных молекул газа, образуя достаточно устойчивые комплексы молекул. По всему земному шару отмечаются синхронные для всех пунктов суточные и годовые вариации напряженности поля (E). Ученые считают, что возникновение электрических зарядов в атмосфере может быть обязано одному из трех источников, или их сочетаниям. К ним относятся: галактические космические лучи (ГКЛ), солнечные космические лучи (СКЛ) и естественные радиоактивные источники почвы. Большинство исследователей сходятся во мнении, что атмосферное электричество взаимосвязано с разделением электрических зарядов в грозовом облаке. Это объяснение унитарной вариации АЭП остается признанным до сих пор.

В результате ионизации молекул и атомов воздуха космическими лучами, образуются ионы. По направлению к поверхности Земли, вследствие разности потенциалов, из атмосферы текут ионные токи. Плотность тока, текущего к планете – 10–6 мкА/м2, Суммарный ток составляет ~ 1800 А. В таком случае заряд Земли должен был нейтрализоваться менее чем за полчаса [13. С. 83], но этого не происходит. Теории, позволяющей удовлетворительно объяснить отрицательный потенциал планеты, пока не существует.

По всему земному шару отмечаются синхронные для всех пунктов суточные и годовые вариации напряженности поля (E). Большинство ученых считает, что молнии обеспечивают Землю отрицательными зарядами, перенося их из атмосферного слоя. Максимум молний по всему земному шару приходится на 19 часов лондонского времени. По мнению ученых, молнии обеспечивают Землю отрицательными зарядами, перенося их из атмосферного слоя. Американские ученые считают молнии батареями, которые накачивают электричество в верхние слои атмосферы и сохраняют разность потенциалов [85. C. 180]. Эта модель объяснения унитарной вариации АЭП остается признанной до сих пор. Ряд ученых считает, что молнии переносят отрицательные заряды из атмосферного слоя на Землю и создают электрическое поле. Существование космических лучей было установлено в результате длительных исследований. Основная часть космических частиц идет к Земле в вертикальных потоках. Уменьшение интенсивности излучения не наблюдается ни ночью, ни во время солнечного затмения. Астрофизики сходятся во мнении, что возникновение электрических зарядов в атмосфере может быть обязано одному из трех источников (или их сочетаниям): галактические космические лучи (ГКЛ), солнечные космические лучи (СКЛ) и естественные радиоактивные источники почвы. Из окружающего пространства на Землю приходит «излучение», получившее название космических лучей.

Первая Всероссийская конференция «Глобальная электрическая цепь», организованная Геофизической обсерваторией «Борок», проходила с 28 октября по 1 ноября 2013 г. в поселке Борок Ярославской области. В конференции приняли участие ученые, работающие в области глобальной электрической цепи, атмосферного электричества, геомагнетизма, физики атмосферы и смежных областях. Программа конференции включала 8 секций, в том числе:

a) глобальная электрическая цепь – геофизический объект и математическая модель;

b) грозовое электричество и молниевые разряды – вклад в формирование глобальной электрической цепи;

c) глобальная электрическая цепь, метеорология и климат, экологические аспекты глобальной электрической цепи;

d) волновые процессы в глобальной электрической цепи, структура поля геомагнитных пульсаций.

Глобальная электрическая цепь представляет собой распределенный токовый контур, образованный проводящими слоями нижней ионосферы, верхнего слоя океана и земной коры, которые «замкнуты» электрически проводящей атмосферой [96]. ГЭЦ в статье представляет совокупность твердых и газовых плазменных оболочек, объединенных непрерывным электрическим током, с грозовыми генераторами в качестве основных источников электродвижущих сил и невозмущенными областями свободной атмосферы в качестве зон возвратных токов. Проводимость атмосферы формируется процессами ионизации нейтральной атмосферы галактическими космическими лучами, а также радиоактивными эманациями земной поверхности. Проблема существования стационарного состояния ГЭЦ сводится к задаче обеспечения баланса между стоками и возвратными токами нагрузочных областей источников. В теоретических моделях глобальной электрической цепи основным генератором, поддерживающим электрическое поле атмосферы, являются грозовые облака экваториальной зоны земного шара [97]. Синхронное изменение потенциала ионосферы с грозами – основной аргумент экспериментального доказательства существования ГЭЦ и токовой цепи. Число молний, переносящих отрицательный заряд, в 2,1 ± 0,5 раза превышает число молний, переносящих на Землю положительный заряд; полный ток отрицательных зарядов превышает полный ток положительных зарядов в 3,2 ± 1,2 раза [98]. Унитарная вариация атмосферного электрического поля и тока, обнаруженная при наблюдениях электрического поля над океанами в двадцатых годах прошлого столетия, рассматривается как элемент доказательства существования глобального генератора атмосферного электрического поля. В гипотезе Вильсона тропосферные грозовые генераторы обеспечивают зарядку сферического конденсатора Земля-ионосфера и определяют стационарное электрическое состояние невозмущенных атмосферных областей. Он считал, что космические лучи вызывают разрядку.

Постулат современных гипотез: заряд Земли – отрицательный. К утверждению не прилагают каких-либо доказательств. Если верно предположение, почему многие годы заряд планеты остается постоянным? Экспериментальные исследования атмосферных токов показало, что протоны составляют основную массу космического излучения [99, 100]. Научная концепция, что молнии отрицательными зарядами заряжают Землю – не однозначная. К поверхности Земли сквозь атмосферу, со всех сторон космоса движутся положительно заряженные частицы, которые должны были нейтрализовать заряд планеты. Насколько не оправданно, настолько и тенденциозно утверждать гипотезу о наличии циркуляции токов в атмосфере по схеме ГЭЦ, генерируемой разрядами молний. В предложенной идее присутствуют противоречия философского и физического характера. Признание предложенной модели равносильно признанию вечного двигателя, который в малой области пространства порождает бесконечную циркуляцию положительных и отрицательных зарядов. Учеными не отрицается факт потока космических частиц к Земле. Выглядит, как минимум, нелепо, когда отрицательный планетарный заряд (6⋅105

Загрузка...