Глава 2 Большие идеи для решения больших задач

Многие великие математические творения связаны с серьезными изменениями в развитии математики. Иногда очередное открытие или новая теорема помогали решить проблему, а иногда — противоречили общепринятой точке зрения. Некоторые величайшие математические творения стали настоящим вызовом разуму. То, что до определенного момента считалось иррациональным и бессмысленным, начинало использоваться для решения практических задач, чего раньше нельзя было и представить. Наиболее интересным примером, возможно, являются комплексные числа: как квадрат некоторого числа может быть отрицательным числом? И какой смысл имеют подобные числа?

Некоторые исследователи уверены, что математика развивается линейно. Однако эта точка зрения небесспорна. Линейное развитие математики, возможно, является лишь кажущимся, лишь следствием, подобно аксиомам и теоремам, которые представляют собой видимый итог длительных размышлений.


Счет

Счет состоит в определении числа элементов, образующих некоторую группу. Оценить число элементов в малых группах можно на глаз — чтобы увидеть, что группы из двух, трех или четырех элементов отличаются между собой, счета не требуется.

Однако различить группы, состоящие из более чем четырех или пяти элементов, уже не так просто. В этом случае счет необходим.

К первым разновидностям счета относятся попытки сопоставить числа с различными частями человеческого тела. Племена, обитающие на разных материках, использовали и до сих пор используют части тела для определения числа элементов множества (на языке математики это число называется мощностью множества).

Стадо или мешок рисовых зерен — это конечные множества. Натуральные числа также образуют множество, однако оно является бесконечным. Различить два конечных множества нетрудно: достаточно подсчитать число их элементов. Разница между множествами будет заключаться в том, что их мощность будет описываться разными числами. Далее вы увидите, что в случае с бесконечными множествами все обстоит совершенно иначе.

Подсчет имеет смысл, когда речь идет о конечных величинах. При этом мы избавляемся от отсылок к осязаемым предметам и сопоставляем каждой величине некий символ (устный или письменный). В отличие от счета на пальцах каждый символ сам по себе обозначает определенную величину. Такими символами являются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0, которыми мы обозначаем базовые величины.

Важным шагом стало определение основания системы счисления. Подсчет большого количества предметов, при котором для каждой отдельной величины используется свое обозначение, не просто трудоемок, но практически невозможен, так как рано или поздно все обозначения закончатся. Кроме того, наша память также имеет пределы. С изобретением позиционной системы счисления по некоторому основанию счет перестал быть чем-то экстраординарным. В позиционной системе счисления по основанию 10, которую используем мы, для представления любого числа, сколь бы велико оно ни было, применяется всего десять символов. Слова, которыми мы обозначаем числа, определяются этой системой счисления, и этих слов совсем немного. Отдельными словами обозначаются числа 0, 1, 2, 10, 20, 30, … а также 100, 1000, 1000000. Названия всех остальных чисел составляются из этих же слов.

* * *

СЧЕТ

Системы счета существовали во всех культурах. В большинстве из них определенным числам соответствуют части тела — это так называемый телесный счет. В 1992 году исследователь Глен Гин выделил свыше пятисот различных систем счета, которые бытовали на острове Новая Гвинея. На карте обозначены регионы, в которых используется телесный счет.



ТЕЛЕСНЫЙ СЧЕТ

Пример телесного счета аборигенов Торресова пролива, отделяющего Австралию от Новой Гвинеи, согласно Джорджу Ифра (1994). Обратите внимание на асимметричность счета относительно тела человека. При счете конечности и пальцы рук и ног обходятся по кругу.



* * *

При этом на практике обычно используются приемы и приспособления, упрощающие счет и позволяющие избежать ошибок. Риск ошибиться при счете тем больше, чем больше величина, поэтому мы обычно считаем парами, пятерками или десятками.

Почему нам удобнее считать парами, а не тройками или семерками? Для счета парами достаточно повторять последовательность 2, 4, 6, 8, 10, добавляя на каждом этапе единицу слева, то есть прибавляя десяток.



Нет смысла считать четверками или восьмерками, так как, хотя 4 и 8 кратны двум, полученная последовательность чисел будет менее упорядоченной. Кроме того, десяток будет последовательно добавляться через два или три числа:

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 32, 36….

8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104….

Подсчет по 3, 7 или 9 еще неудобнее. Полученные последовательности чисел повторяются реже и их сложнее удержать в памяти:

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42….

7, 14, 21, 28, 35, 42, 49, 56, 70, 77, 84, 91, 98….

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117….

Подсчет по 6 столь же непривычен, как и подсчет по 3, так как последовательность цифр в первом разряде запомнить неудобно:

6, 12,18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84….

Считать по 5 или по 10, напротив, очень удобно:

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55….

10, 20, 30, 40, 50, 60, 70, 80, 90,100….

Однако такой подсчет обычно производится после того, как элементы, которые требуется подсчитать, разделены на группы по пять или по десять. При счете пятерками единица в левый разряд добавляется в конце каждого цикла (состоящего из 0 и 5). Счет десятками эквивалентен обычному счету, с той лишь разницей, что в первом разряде дописывается ноль.

При подсчете больших величин лучше всего записывать их в форме прямоугольника. В результате мы сможем найти ответ с помощью умножения, не пересчитывая все элементы по отдельности.



Этот принцип лежит в основе системы умножения майя. Чтобы умножить 312 на 34, майя использовали отдельные группы параллельных прямых, которыми обозначались сотни, десятки и единицы каждого числа. Линии второго числа располагались так, что они пересекали все линии в записи первого числа, после чего подсчитывалось число пересечений. Это наглядный способ записи обычного умножения столбиком:



Однако такой способ неудобен для перемножения больших чисел, так как в этом случае пересечений будет слишком много.

Но как быть, если мы хотим подсчитать бесконечные величины? Все мы используем слово «бесконечность» в обычной жизни для обозначения чего-то огромного, неизмеримого, необъятного. В противоположность обычной точке зрения существует не одна бесконечность: в математике различают по меньшей мере два вида бесконечности. К первому типу относится бесконечное число натуральных чисел, которые мы используем при счете: 1, 2, 3, 4, … Ко второму типу относится неисчислимая бесконечность, описывающая число точек на отрезке.

Бесконечность таит немало парадоксов. Например, сложно поверить, что множество натуральных чисел обладает такой же мощностью (числом элементов), что и его часть — множество четных чисел. Как это возможно, ведь натуральных чисел в два раза больше, чем четных? Их действительно в два раза больше, однако нечто, что в два раза больше бесконечности, также равно бесконечности.

Мы избавимся от всех сомнений, если четко оговорим, что следует понимать под бесконечным множеством. Говорят, что множество является счетным, то есть его элементы можно сосчитать, если элементам этого множества можно поставить в соответствие натуральные числа. Становится очевидным, что четные числа можно сосчитать и что установленное соответствие между четными и натуральными числами определяет мощность множества четных чисел:



Возможно, еще более удивительным вам покажется то, что множество рациональных чисел обладает той же мощностью, что и множество натуральных чисел.

Чтобы подсчитать рациональные числа, нужно представить их в виде дробей, расположить их определенным образом и установить порядок подсчета:



Мощность множества натуральных чисел равна «элементарной» бесконечности и обозначается символом (алеф ноль). Символом обозначается мощность бесконечного множества чисел, которое, в отличие от предыдущего, не является счетным, то есть его элементы нельзя подсчитать с помощью множества целых чисел.

Иными словами, элементам этого множества нельзя поставить в соответствие натуральные числа. Бесконечность этого множества имеет иную природу.

Простейший пример множества чисел, которое не является счетным, — это множество вещественных чисел, заключенных между 0 и 1 (к нему относятся иррациональные числа, которые нельзя представить как частное двух целых, например √2). Удивительное доказательство этого принадлежит великому Георгу Кантору.

Итак, допустим, что мы подсчитали все вещественные числа, заключенные между 0 и 1. Тогда мы можем упорядочить их следующим образом:

1 0,037563856636663…

2 0,919688568847383…

3 0,155382300008691…

4 0,000000033433002…

5 0,999995885994382…

6 0,101001000100001…

7 0,774647746477464…

Мы можем записать вещественное число вида 0, … не представленное в этом списке. Составить его можно так: если первый знак первого числа в списке равен 1, мы запишем 0, в противном случае — 1. Согласно этому правилу и с учетом вышеприведенных чисел наше новое число будет начинаться с 0,1…

Применим это же правило ко второму знаку второго числа в списке. Если он равен 1, мы запишем 0, в противном случае — 1. В записи нашего числа уже два знака: 0,10…

Повторим эти же рассуждения для следующих знаков числа. Для вышеприведенного списка наше число будет записываться так:

Ψ = 0,1011101…

Это число будет отличаться от всех присутствующих в списке как минимум одним знаком. Следовательно, этого числа в списке нет. По сути, найти его нам поможет сам список. Следовательно, составить исчерпывающий список невозможно, и вещественные числа в интервале от 0 до 1 сосчитать нельзя.

Доказательство Кантора показывает, что бесконечное множество вещественных чисел имеет иную природу, чем бесконечное множество натуральных, и это приводит к нескольким парадоксам. Например, несмотря на то что длина вещественной прямой и длина окружности произвольного радиуса отличаются, они содержат одинаковое число точек. Это может показаться бессмысленным, однако составим простую схему: если мы проведем из центра окружности все возможные лучи, которые пересекут окружность, то установим взаимно однозначное соответствие между точками полуокружности (X, Y, Z, …) и точками вещественной прямой (X', Y', Z', …).



Степени с не очень «натуральным» показателем

Все мы рассматриваем новые идеи через призму своего культурного опыта, и чтобы усвоить что-то новое, требуется взглянуть на уже известное под другим углом. Обучаясь, человек может обнаружить, что его рассуждения и рассуждения, приводимые в учебнике, вступают в конфликт друг с другом. Так происходит при изучении степеней, показатели которых являются отрицательными числами, десятичными дробями или иррациональными числами — их сложно понять в рамках классического подхода, где рассматриваются, например, операции умножения или деления.

Возвести число в степень означает умножить его на само себя столько раз, сколько указывает показатель степени:

34 = 3·3·3·3

При перемножении степеней их показатели складываются, при делении — вычитаются:

23·25 = (2·2·2)·(2·2·2·2·2) = 28.


Однако если мы разделим друг на друга степени с одинаковым показателем, например, 23 на 23, то получим удивительный результат. С одной стороны, он будет равен 1, так как 8/8 = 1. Но в соответствии с правилом показатели степеней должны вычитаться:


Это означает, что приведенный выше результат возможен только в том случае, если 20 = 1. Но почему число, умноженное само на себя ноль раз, равно 1? И это не все. Если при делении степеней показатель в знаменателе больше, чем в числителе, то мы получим степень с отрицательным показателем:


Изначально возведение числа в степень означало умножение этого числа на само себя несколько раз. Затем в математике появились операции и выражения, противоречащие этой точке зрения. Возвести число в отрицательную степень означает разделить единицу на число, умноженное само на себя столько раз, сколько указывает показатель степени. Логично ли это? Имеет ли это смысл? Да, это логично, но смысл этой операции нужно изменить. Нужно изменить понятие показателя степени как числа, означающего число сомножителей в произведении. Кроме того, степень с отрицательным показателем — то же самое, что степень с положительным показателем в знаменателе дроби. Таким образом:


Подобным же образом описываются степени с дробными показателями. Если квадратный корень числа возвести в квадрат, то результатом будет исходное число:

(√a)2 = a

Какой показатель степени будет соответствовать квадратному корню из а?


Почему бы теперь нам не определить смысл следующих выражений:

2π, 2√2

Их смысл определяется тем, что всякое иррациональное число (то есть число, которое нельзя представить в виде частного двух целых) является пределом последовательности рациональных чисел, как, например, квадратный корень из 2 и число π:

1; 1,4; 1,41; 1,411; 1,4142; 1,41421, … √2

3; 3,1; 3,14; 3,141; 3,1415; 3,14159, … π.

Так как мы знаем, что означает возведение числа в рациональную степень, мы можем определить степень с иррациональным показателем:

2√2 = предел {21; 21,4; 21,41; 21,414; 2,14142; …}.

Обратите внимание, насколько далеко мы отошли от исходного определения степени! Перед нами — удивительные результаты математического творчества: на основе элементарных операций мы создали новые операции и наделили их значением. Их смысл противоречит нашим прошлым знаниям, однако подчиняется логике, и эти новые операции образуют часть согласованной системы. Изначально показатель степени мог быть только натуральным числом. Однако теперь степень с натуральным показателем рассматривается всего лишь как частный случай более широкого понятия: показатель степени может быть отрицательным, дробным и даже иррациональным.

Чтобы принять результат творчества, необходимо сменить угол зрения. Теперь уже не следует рассматривать степень как умножение числа само на себя столько раз, сколько указывает показатель степени, так как нет никакого смысла умножать число само на себя —0,12 раза или 71 раз. Исходная точка зрения послужила своеобразным трамплином к новому, более широкому и общему понятию, частным случаем которого она является. Творчество изменило нас.


От площади прямоугольника к площади произвольной фигуры

Отрезок и треугольник — две базовые фигуры математики и всего человеческого знания в целом. Отрезок имеет единственную характеристику — длину. По сути, так как не существует никакого осязаемого объекта, который представлял бы собой отрезок, можно сказать, что отрезок «состоит» из длины. А вот треугольник, кроме длины (периметра), имеет еще и площадь — меру пространства, ограниченную тремя его сторонами.

Вычисление площадей с древнейших времен было одной из важных задач. В наиболее популярной легенде о происхождении математики говорится, что она зародилась в долине Нила, и причиной ее возникновения стала необходимость измерять площадь земли, затапливаемой во время разливов реки.

Для данного прямоугольника со сторонами а и b площадь S поверхности, ограниченной его сторонами, определяется как произведение его длины на ширину: S = а·Ь. Так как всякий треугольник является половиной некоторого прямоугольника, его площадь равна половине площади этого прямоугольника. Как можно видеть на следующем рисунке, площадь треугольника АВС равна половине площади прямоугольника APQC, основанием которого является сторона АС треугольника, а ширина равна высоте A, опущенной на основание АС:



Следовательно, площадь треугольника равна половине произведения его основания на высоту:

S = (1/2)·A·C·h

Любую плоскую фигуру можно разбить на несколько треугольников. Вычисление площади фигуры равносильно вычислению суммы площадей составляющих ее треугольников. Но как быть в случае, если фигура ограничена не прямолинейными, а криволинейными отрезками?

Простейшей криволинейной фигурой является круг. Задача о вычислении площади круга очень древняя, а задача о построении квадрата, площадь которого равна площади данного круга, с помощью циркуля и линейки — одна из трех классических задач геометрии.

Каково соотношение между площадью круга и площадью квадрата? В первом приближении площадь круга радиуса r можно оценить площадями вписанного и описанного квадрата:



Площадь круга Sс заключена между площадью квадрата с диагональю 2r и площадью квадрата со стороной 2r. Среднее значение этих двух площадей и будет первым приближенным значением площади круга S:


Сегодня нам известно, что этот результат не соответствует действительности, так как площадь круга равняется не 3r2, а πr2. Тем не менее в Древнем Египте соотношение между длиной окружности и ее диаметром принималось равным 3, хотя нетрудно видеть, что если окружность радиуса r совершит полный поворот, пройденная ею длина будет больше, чем ее утроенный диаметр. Однако сейчас нас интересует не поиск точного значения π, а переход от площади прямоугольника или треугольника к площади круга.

Можно построить вписанный и описанный равносторонний треугольник для данного круга, однако в этом случае задача только усложнится, а полученный результат будет не точнее предыдущего. Продолжив аналогичные рассуждения, придем к выводу, что если мы построим для данного круга вписанные и описанные многоугольники с большим числом сторон, то сможем вычислить его площадь с большей точностью. Результат будет тем точнее, чем больше сторон будет у этих многоугольников.

В пределе (если такая ситуация вообще возможна) мы получим два многоугольника с бесконечным числом сторон, площади которых будут равны площади круга.

Следовательно, достаточно рассматривать либо вписанные, либо описанные многоугольники, так как в пределе они совпадут.

Именно так рассуждал Архимед. Вместо того чтобы рассмотреть многоугольник с п сторонами, он начал с правильного шестиугольника и последовательно удваивал число его сторон. Он дошел до многоугольника с 96 сторонами и вычислил приближенное значение числа π и площади круга с очень хорошей точностью:


Но заслуга Архимеда состоит не в том, что он провел такие трудоемкие расчеты. Во-первых, он показал, что большую часть вычислений можно опустить, если на данном этапе известны периметры и площади вписанного и описанного многоугольника — периметры и площади соответствующих многоугольников на следующем этапе можно вычислить как среднее гармоническое и среднее геометрическое.

Во-вторых, он разработал итеративный метод, на каждом шаге которого полученный результат был точнее, чем на предыдущем. Архимед открыл путь, ведущий к бесконечности. Пройти по этому пути до конца невозможно, но вполне возможно вычислить, что ждет нас в конце.

* * *

АРХИМЕД В XXI ВЕКЕ

С помощью тригонометрии и современных технологий можно повторить вычисления Архимеда, используя рекурсивный метод, в котором применяются правильные многоугольники с числом сторон, равным 2n. Площадь 2n-угольника, вписанного в окружность единичного радиуса, равна:


Тригонометрия помогает увидеть, что закон, которому подчиняются площади многоугольников, определяется синусами углов вида π/(2n). Этот закон позволяет найти площадь круга Sc:

Компьютер способен вычислить площадь многоугольника с 1024·210 сторонами по предыдущей формуле и показать, что результат близок к ожидаемому: S1024 = 3,1415923…

* * *

Круг — простейшая из криволинейных фигур. Как же вычислить площадь любой другой фигуры? Зная формулу, которая описывает часть кривой, ограничивающей фигуру, математики могут найти площадь этой фигуры с помощью метода, схожего с методом Архимеда. Допустим, что мы хотим найти площадь фигуры, ограниченной осью абсцисс и кривой у = х3 между началом координат (0,0) и точкой (1,0).

Эта фигура на иллюстрации выделена серым цветом:



Первым приближением искомой площади будет площадь прямоугольного треугольника с вершинами в точках (0,0), (1,0) и (1,1), равная 1/2. Однако это значение чрезвычайно далеко от истинного.

Метод, о котором мы расскажем далее, называется методом исчерпывания. Архимед использовал его более 2000 лет назад для вычисления площади, ограниченной участком параболы. Первым приближением площади искомой фигуры была площадь треугольника, по форме напоминающего эту фигуру. Теперь мы будем вычислять площадь прямоугольника.

Разделим интервал [0,1] на четыре равных интервала и построим на каждом из них по два прямоугольника — высота одного из них будет равна значению функции на левом конце интервала, высота другого — значению функции на правом конце интервала. Так как f(0) = 03 = 0, высота первого прямоугольника будет равна 0:



Искомая площадь S заключена между суммой площадей меньших прямоугольников S1 (выделены светло-серым) и больших прямоугольников Ss (выделены темно-серым). Точнее говоря, искомая площадь будет больше первого значения и меньше второго. Вычислим обе эти площади с учетом того, что основания всех прямоугольников одинаковы и равны 1/4, отличаются лишь их высоты:


Среднее значение этих площадей равно: S ~= (S1 + Ss)/2 = 0,265625. Найдем более точное значение площади, разбив исходный интервал на большее число частей:



Теперь основания всех прямоугольников равны 1/8. И вновь сумма площадей прямоугольников, выделенных темно-серым (Ss), будет больше искомой площади, которая превышает сумму площадей прямоугольников, выделенных светло-серым (S1).


Их среднее значение равно:

S ~= 0.5·(Ss + S1) = 0,2539…

Если мы продолжим этот процесс и будем последовательно делить интервал [0,1] на все более мелкие части, то в пределе мы разделим его на бесконечное число частей, получим бесконечное число прямоугольников, а сумма их площадей будет равна площади фигуры, заключенной между графиком кривой и осями координат.

Вопрос в том, как вычислить общую площадь бесконечного числа прямоугольников. Произведенные выше расчеты показывают, что искомое значение должно быть близко к 0,25, так как промежуточные результаты равны 0,2656… и 0,2539…

Чтобы получить окончательный ответ, рассмотрим, как мы вычислили два предыдущих значения. Вне зависимости от числа прямоугольников, будь их восемь, сто, тысяча или n, сумма их площадей будет рассчитываться одинаково. Значение площади Ss при разделении интервала [0, 1] на n равных частей будет равно:


Следовательно, задача сводится к тому, чтобы найти значение этого выражения, когда n стремится к бесконечности. Посмотрим, чему равен его числитель, представляющий собой сумму кубов натуральных чисел:

13 = 1

13 + 23 = 9

13 + 23 + 33 = 36

13 + 23 + 33 + 43 = 100

Числитель будет равен 1, 9, 36, 100, … — это квадраты чисел 1, 3, 6, 10, … Может показаться, что суммы кубов натуральных чисел равны квадратам некоторых других чисел. Но каких? Какой ряд образуют числа 1, 3, 6, 10, …? Заметим, что

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10.

Можно сформулировать теорему:

Сумма кубов первых n натуральных чисел равна квадрату их суммы.

Правильность этой теоремы можно подтвердить экспериментально для множества чисел — компьютер справится с этим за несколько мгновений. Однако экспериментальное подтверждение частных результатов и выведение из них какого-то общего принципа (именно так действуют физики и биологи) для математиков неприемлемо. В математике истинность увиденного нужно подтвердить для всех возможных случаев.

Как подтвердить истинность нашей теоремы для всех возможных случаев? Начнем с того, что вычислим сумму первых n натуральных чисел. Для этого применим метод, который использовал великий немецкий математик Карл Фридрих Гаусс, когда ему не было и десяти лет. Его биографы отмечают, что как-то раз преподаватель, чтобы занять учеников, дал им задание вычислить сумму натуральных чисел от 1 до 100.

Среди учеников был и Гаусс, который, к удивлению учителя, через несколько секунд протянул ему грифельную доску с правильным ответом. Юный Гаусс записал числа в два ряда, один над другим, и вычислил суммы в каждом столбце:


Сумма чисел в нижнем ряду равна 100·101 = 10100, что в два раза больше требуемой суммы. Следовательно, правильный ответ равен

1 + 2 + 3 + … + 99 + 100 = 10100/2 = 5050.

Применим этот же метод в нашем, более общем случае:


Можно заметить, что формула суммы первых n натуральных чисел такова:

1 + 2 + 3 +… + n = n(n + 1)/2 (*)

Вернемся к нашей теореме и используем эту формулу (**):


Теперь у нас есть две формулы, в которых фигурирует n первых натуральных чисел. Подтвердить правильность этих формул экспериментально на бесконечном множестве чисел невозможно. Нужно найти стратегию, которая позволила бы обойти эту проблему. Математик рассуждает так: «Отлично, дана формула, верная для n-го натурального числа. Так как все натуральные числа получаются прибавлением единицы к предыдущему, то если формула верна для n-го числа, я докажу ее истинность для следующего натурального числа. Если я докажу, что формула, верная для n, верна и для n + 1, то я автоматически докажу ее истинность для всех натуральных чисел».

Именно так мы и поступим. Сначала мы докажем, что если формула (*) верна для n, то она будет верна и для n + 1. Затем проведем аналогичное доказательство для формулы (**). Докажем, что:


Нам всего лишь нужно показать, что разность между двумя выражениями в левой части равенства, равная n + 1, равна разности двух выражений в правой части равенства:


Достаточно найти значение правой части равенства, чтобы убедиться, что это в самом деле так. Аналогично доказывается истинность выражения (**). Теперь мы можем закончить решение нашей задачи о площади:


Последнее преобразование верно потому, что с ростом n значения выражений 1/2n и 1/4n2 становятся все меньше и меньше. В пределе, когда значение n равно бесконечности, значение обоих выражений будет равно 0. Как следствие, площадь фигуры, ограниченной кривой у = х3, равна 1/4 = 0,25.

Наиболее выдающийся результат математического творчества, который мы применили в этом решении, таков: мы вписали в искомую фигуру, площадь которой мы хотим найти, ряд прямоугольников, площадь которых легко вычислить. Чем больше прямоугольников мы впишем в искомую фигуру, тем ближе сумма их площадей будет к площади искомой фигуры. Так как значения площадей прямоугольников в пределе приближаются к конкретному числу и мы можем это доказать, можно найти конкретное значение площади криволинейной фигуры. От геометрического параллелизма мы переходим к числовому и обратно. Мы решили более простую задачу, чем исходная, а затем использовали полученный результат для решения нужной задачи.

Использование пределов в решении задач — одно из величайших достижений математического творчества всех времен. В конце XVII века Ньютон и Лейбниц использовали это понятие в качестве основы при создании математического анализа. Полтора столетия спустя французский математик Коши и немецкий математик Вейерштрасс уточнили понятие предела для непрерывных функций, подобных той, что мы рассмотрели в предыдущем примере.


Количественная оценка изменений

Создание математического анализа сыграло огромную роль в развитии математики, физики и науки в целом. Как отмечают историки, Ньютон и Лейбниц создали математический анализ независимо друг от друга. По сути, их общим вкладом в науку был ответ на следующий вопрос: как можно количественно измерить мгновенное изменение величины?

Количественная оценка изменения величины между двумя моментами времени не представляет проблемы — достаточно найти разность соответствующих значений. Например, если некоторое явление описывается функцией f(t) = t2, где t обозначает время, выраженное в секундах, величина изменения, произошедшего между моментами времени t = 0 и t = 1,5, будет равна 2,25:

f(1,5) — f(0) = 1,52 — 02 = 2,25.

Однако такой способ оценки изменения не слишком удобен, так как на более коротком интервале, например между t = 4,77 и t = 5, изменение величины будет практически таким же:

f(5) — f(4,77) = 52 — 4,772 ~= 2,25.

Полученная разность не позволяет понять, что же происходит на самом деле.

Мы хотим, чтобы в величине, служащей оценкой изменения, учитывался интервал, на котором происходит изменение. Изменение, произошедшее за очень короткий промежуток времени, более существенно, чем изменение, произошедшее за длительное время. Следовательно, величина изменений должна учитывать время, за которое происходит изменение (это изменение называют «размахом вариации»):


Это уже лучше — размах вариации отражает то, что мы хотели увидеть, так как 9,77 намного больше, чем 1,5. Однако мы хотим определить, как оценить мгновенное изменение величины, а не изменение на интервале. Как дать количественную оценку изменению величины в данный момент времени, например при t = 1 секунде?

Математический подход к решению этой задачи таков: будем вычислять размах вариации для все более мелких интервалов, близких к моменту времени t = 1, и посмотрим, к какому значению будут приближаться результаты.


Очевидно, что полученные числа все больше приближаются к 2. Именно это значение характеризует изменение величины в момент времени t = 1, и его можно назвать мгновенным размахом вариации.

Графически размах вариации соответствует значению тангенса угла наклона касательной к кривой в данной точке, так как тангенс этого угла рассчитывается как отношение разности значений функции на концах интервала к длине этого интервала.

По мере того как значения х1, x2, х3, … приближаются к х, точки Р1, Р2, Р3 … приближаются к Р (см. рисунок ниже). Следовательно, мы поставим в соответствие точке Р тангенс угла наклона касательной, равный значению, к которому стремятся тангенсы этого угла в каждой из предшествующих точек.



Теорема, рождающая чудовищ

Пифагор, известнейший из математиков, создал самую знаменитую математическую теорему. Ее доказательства, предлагаемые в средней школе, совершенно не похожи на вариант, предложенный Евклидом. Он также основан на вычислении площадей, в нем, как и в формулировке самой теоремы, фигурируют площади квадратов, построенных на сторонах прямоугольного треугольника. Однако площади используются только для доказательства. Сама же теорема используется только для вычисления длины.

Как правило, обычно доказывается прямая теорема Пифагора:

если a, b, с — катеты и гипотенуза прямоугольного треугольника соответственно, то а2 + Ь2 = с2.

Обратное утверждение практически никогда не доказывается:

если а2 + Ь2 = с2, то а, Ь, с являются катетами и гипотенузой прямоугольного треугольника соответственно.

Это утверждение имеет огромное практическое значение, так как позволяет строить поверхности, которые будут располагаться друг к другу под прямым углом, например стены здания. Этот же метод использовали египтяне, которым было известно, что треугольник со сторонами 3, 4 и 5 м — прямоугольный. Это соотношение сторон прямоугольного треугольника было известно в самых разных частях света и в разные эпохи, однако используемые значения порой существенно отличались — например, применялись треугольники со сторонами 60 см, 80 см и 1 м.

Задолго до Пифагора, в Древнем Египте и Месопотамии, были известны тройки целых чисел (позднее их стали называть пифагоровыми), в которых квадрат одного числа равнялся сумме квадратов двух других.

Объяснить закономерность, описывающую эти числа, математики того времени не могли. Но можно обнаружить интересные соотношения между числами, например 52 + 122 = 132: если не знать, в чем их причина и каковы их следствия, то подобные соотношения будут всего лишь интересными фактами. Строгое доказательство теоремы Пифагора вызвало первый крупный кризис в математике.

Девизом пифагорейской школы было «все есть число». Пифагорейцы наделяли числа мистическими свойствами и считали, что любые соотношения между вещами описываются соотношениями натуральных чисел. Если применить теорему Пифагора к диагонали квадрата, получим удивительный результат:



Пифагорейцы считали, что длина D (квадратный корень из 2) должна быть соизмерима со стороной квадрата, то есть быть дробным числом. Если бы мы разделили сторону квадрата на достаточно большое число частей, например на миллион, то длина диагонали должна была равняться целому числу частей. Можно ли представить ее как 1414213? Нет, так как квадратный корень из двух нельзя представить в виде частного двух натуральных чисел, и это помешало найти меру, которой можно было бы вычислить и сторону квадрата, и его диагональ.

Теорема породила чудовище, невозможное с общепринятой точки зрения.

Оказалось, что не все соотношения можно свести к отношению двух целых. Нечто столь простое, как диагональ квадрата, оказалось несоизмеримым с его стороной.

Так появились несоизмеримые величины. В то время математики не обладали достаточными знаниями, чтобы доказать, что длина окружности также несоизмерима с ее диаметром, то есть что число π несоизмеримо с дробными числами.

Рассмотрим, почему квадратный корень из 2 нельзя представить как частное двух натуральных чисел. Всякое натуральное число n можно представить в виде произведения простых множителей. Пример:

12 = 22·3;

315 = 32·3·7.

Заметим, что при возведении числа в квадрат все простые множители в его разложении будут встречаться четное число раз:

122 = (22·3)2 = 24·32;

3152 = (З2·5 ·7)2 = З4·52·72.

Если частное двух натуральных чисел m и n равно квадратному корню из двух, то


Теперь разложение на простые множители для m2 и для m2 содержит четное число простых множителей. По этой причине, вне зависимости от того, присутствует ли 2 в разложении n2 на множители, 2 будет фигурировать в разложении 2n2 нечетное число раз. Если разложение n2 на множители не содержит 2, то разложение 2n2 будет содержать одну двойку; если же в разложении n2 содержится несколько двоек, их число будет четным, следовательно, в разложении 2n2 двойка встретится нечетное число раз. Поэтому m2 и n2 не могут быть равны, так как в разложении одного из этих чисел 2 встретится четное число раз, а в разложении другого — нечетное число раз. Следовательно, √2 не может быть частным двух натуральных чисел, и диагональ квадрата и его сторона несоизмеримы.

* * *

ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА

Многочлен — это выражение, в котором присутствует переменная, возведенная в различные степени с натуральным показателем. Числа, на которые умножается переменная в этих степенях, называются коэффициентами. Например, следующий многочлен

Р(х) = х5 — 4х3 + 3х2/2 -6

имеет рациональные коэффициенты, а именно 1, -4, 3/2 и -6. Число а называется корнем многочлена, если при этом значении переменной многочлен обращается в ноль: Р(а) = 0. Число а = 2 является корнем вышеприведенного многочлена. Число называется трансцендентным, если не существует многочлена с рациональными коэффициентами, корнем которого оно бы являлось. Иными словами, нельзя записать уравнение со степенями с натуральным показателем, решением которого будет трансцендентное число. Иррациональность числа √2 была доказана еще в Древней Греции. Об иррациональности числа я математики подозревали давно, однако доказательство этому было найдено лишь в 1761 году благодаря усилиям Иоганна Ламберта. В 1882 году Линдеман доказал, что я является трансцендентным числом. Как следствие, была окончательно доказана невозможность решения задачи о квадратуре круга. Число е (е = 2,71828182845904…) названо так по первой букве фамилии одного из величайших математиков всех времен — Леонарда Эйлера (1707–1783). Так же как и π, е является иррациональным и трансцендентным.

* * *

Натуральные числа столь близки нам, что многие считали их божественным творением. Можно сказать, что нечто столь совершенное не имеет изъянов и что любая теорема о натуральных числах в итоге обязательно должна быть либо доказана, либо опровергнута. Любое утверждение в системе натуральных чисел обязательно является либо истинным, либо ложным.

Однако математик Курт Гёдель (1906–1978) доказал, что это не так, что существуют недоказуемые теоремы о натуральных числах, то есть о них нельзя сказать, истинны они или ложны. Согласно так называемой теореме Геделя о неполноте натуральные числа также содержат парадоксы.

* * *

ПАРАДОКСЫ

Парадокс — это рассуждение, приводящее к взаимно исключающим заключениям. Рекурсия в языке порой становится причиной парадоксов, в частности, как в двух первых случаях из числа представленных ниже. Третий случай является удивительным примером математической задачи с тремя разными решениями.

1. Некий брадобрей бреет только тех, кто не бреется сам. Кто должен брить самого брадобрея?

2. Слово «гетерологичный» означает «неприменимый к самому себе». Является ли само слово «гетерологичный» гетерологичным словом?

3. Парадокс Бертрана. В окружности случайным образом проводится хорда. Какова вероятность того, что ее длина будет превышать длину стороны равностороннего треугольника, вписанного в эту же окружность? Эту вероятность можно рассчитать тремя разными способами и получить три разных результата: 1/2, 1/3 и 1/4.



* * *

Как породить и приручить чудовище

Найти смысл и значение основных математических понятий всегда было творческой задачей. Существует множество простых уравнений, о которых говорят, что они не имеют решения, так как число, которое было бы их решением, не имеет смысла в наиболее часто используемой системе чисел.

В поле натуральных чисел, которые используются при счете, не имеет решения следующее уравнение, так как единственно возможное его решение не является натуральным числом:

2х = 1.

Однако это уравнение имеет решение в области дробных, то есть рациональных чисел:


Аналогично, очень простое уравнение

х2 = 2

не имеет решения в поле рациональных чисел. Именно с этой проблемой столкнулись древние греки. Однако им пришлось принять этот «чудовищный» результат, поскольку он являлся решением одной из простейших геометрических задач — задачи о нахождении диагонали квадрата единичной стороны.

Решение этого уравнения и этой задачи расширяет поле чисел так называемыми вещественными числами:


Можно подумать, что некоторые уравнения не имеют решений просто потому, что не существует чисел, которые описывали бы их решения, и, следовательно, решение имеет всякое уравнение. Суть проблемы в том, принадлежит решение этого уравнения к известным на данный момент числам или нет. Приведем еще один пример: мы говорим, что уравнение

х2 = —1

не имеет решения. Однако оно не имеет решения потому, что мы считаем х вещественным числом — конечной или бесконечной дробью, периодической либо нет.

Однако существует значение х, которое является решением этого уравнения, и выглядит оно «чудовищно»:


В середине XVI века Джероламо Кардано нашел формулу решения кубических уравнений, но, применив ее к уравнению х3 — 15х — 4 = 0, он столкнулся с проблемой. Нетрудно показать, что решением этого уравнения является х = 4. Однако решение, найденное по формуле Кардано, выглядело совершенно иначе:


Перед нами — еще одно «чудовище». Какой смысл имеет квадратный корень из отрицательного числа? Как соотносится подобное число с известным нам решением х = 4? Если мы примем квадратные корни из отрицательных чисел как числа, то какое значение они будут иметь?

Лишь в начале XIX века корни из отрицательных чисел получили свое значение: они стали составной частью комплексных чисел и им были поставлены в соответствие точки в декартовых координатах. Множество комплексных чисел, обозначаемое символом С, расширяет поле вещественных чисел. Комплексное число — это число, состоящее из двух частей: вещественной и мнимой. Мнимая часть представляет собой произведение вещественного числа на i — корень из минус единицы, также называемый мнимой единицей. Рассмотрим два комплексных числа, а и Ь:

i = √-1

a = 2 + 3i

b = 1/2 — i√5.

Чтобы представить число а = 2 + 3i в декартовой системе координат, нужно отложить две единицы вдоль оси абсцисс и три единицы — вдоль оси ординат. Полученная точка будет иметь координаты (2, 3). Однако мы изобразили не просто точку на координатной плоскости — в отличие от точек и векторов на плоскости, с комплексными числами можно выполнять все известные алгебраические операции: сложение, вычитание, умножение, возведение в степень и т. д., и эти вычисления аналогичны вычислениям с вещественными числами. Наконец, система комплексных чисел является полной, так как любое уравнение на поле комплексных чисел имеет решение на этом же поле, что не выполняется для других множеств.

После того как было описано представление комплексных чисел на плоскости, они стали играть определяющую роль при решении задач, не имеющих решения в поле вещественных чисел.


Симбиоз алгебры и геометрии

Изложенное в предыдущем разделе стало возможным благодаря великому математическому творению — симбиозу алгебры и геометрии, которым стала аналитическая геометрия, разработанная Декартом и Ферма. Некоторые математики античности пытались создать систему геометрического представления формул. Однако лишь усилиями Декарта алгебра и геометрия объединились навсегда.

Предметом алгебры являются формулы и уравнения, предметом геометрии — фигуры и пространство. В аналитической геометрии эти два мира сливаются воедино: для каждой фигуры существует описывающая ее формула, для каждой формулы — множество точек плоскости, удовлетворяющих ей. Так уравнения обретают геометрический смысл, что облегчает их наглядное представление.

Такой подход позволяет нанести решения уравнений на «математическую карту» — систему координат. Но при поиске доказательств аналитическая геометрия не всегда полезна, так как иногда чисто геометрическое доказательство формулируется красивее, короче и четче, чем аналитическое.

Уравнение 3х — у + 1 = 0 — это элемент алгебры, смысл которого состоит в вычислении двух чисел, х и у, удовлетворяющих этому равенству. Этому уравнению удовлетворяют различные пары чисел: х = 0, у = 1; х = 1, у = 4; х = —1; у = —2.

Аналитическая геометрия придает этим числам новый смысл благодаря количественному измерению пространства. Если речь идет о двумерной плоскости, на ней проводятся две прямые, соответствующие двум измерениям на плоскости, на которых откладываются вещественные числа. Из соображений удобства эти линии обычно перпендикулярны друг другу, хотя это необязательно. Далее значениям переменной х сопоставляются числа на одной оси, значениям переменной у — числа на другой оси. Обозначим на плоскости точки А, В и С, соответствующие трем парам вышеуказанных решений уравнения:



Добавим к ним другие пары решений, удовлетворяющих уравнению:



Достаточно зафиксировать значение одной переменной, чтобы увидеть, что для каждого ее значения существует значение второй переменной, которое будет удовлетворять уравнению. Бесконечное число возможных значений одной переменной подразумевает бесконечное число значений второй переменной. В итоге алгебраическому уравнению Зх — у + 1 = 0 будет соответствовать прямая на плоскости:



Как следствие, решение системы из двух уравнений с двумя неизвестными становится геометрической задачей на нахождение точки пересечения двух прямых:



Новые технологии и новые кривые

На математическое творчество в огромной степени повлияли технологии, появившиеся в последние несколько десятилетий. Компьютер легко справляется с задачами, на решение которых человеку понадобилась бы не одна сотня лет, а непрерывно растущие возможности программ в области визуализации информации превращают компьютер в испытательный стенд и математический микроскоп.

Благодаря новым технологиям мы познакомились с фрактальными кривыми, которые едва ли можно было представить еще 50 лет назад. Фракталы были известны уже тогда, однако интерес к ним, возможности их наглядного представления и использования росли с развитием технологий. Первым фракталом была кривая Коха, или снежинка Коха. Если классические кривые строятся как множество значений некой функции, то построение кривой Коха — рекурсивный процесс по определенному алгоритму. Исходной фигурой является квадрат, треугольник или любая другая фигура, стороны которой затем заменяются ломаной линией. Далее процесс повторяется, и этой же кривой заменяется каждое звено ломаной, построенной на предыдущем этапе, в итоге кривая принимает все более неправильную форму:



Первое подробное исследование фракталов было выполнено в 1980-е годы французским математиком польского происхождения Бенуа Мандельбротом. Одно из ключевых понятий, используемых при построении фракталов, — это орбита точки. Для любой функции, например f(х) = х2, можно рассмотреть орбиту данной точки или последовательность результатов, получаемых при последовательной замене аргумента функции следующим образом:

х = 0,5

f(0,5) = 0,52 = 0,25

f(0,25) = 0,252 = 0,0625

f(0,0625) = 0,06252 = 0,0039

=> Орбита точки 0,5 = {0,5; 0,25; 0,0625; 0,0039; …} —> 0.

Орбита точки х = 0,5 образована убывающей ограниченной последовательностью чисел, которая стремится к 0. Существуют фиксированные орбиты, в частности для х = 0 и x = 1. Орбиты некоторых точек уходят в бесконечность, например, это справедливо для точки x = 2:

х = 2

f(2) = 22 = 4

f(4) = 42 = 16

f(16) = 162 = 256

=> Орбита точки 2 = {2, 4, 16, 256…} —>

Компьютер позволил увидеть, что произойдет с похожей функцией на поле комплексных чисел:


Результат оказался неожиданным и с математической, и с эстетической точки зрения, так как множества точек, не уходившие в бесконечность, принимали при различных значениях с разнообразные и удивительные формы. Эти точки образуют так называемое множество Жюлиа. Комплексные значения с, для которых множество Жюлиа является связным, то есть не разбито на несколько частей или фрагментов, образуют множество Мандельброта, которое выглядит следующим образом:



Математики смогли увидеть множество Мандельброта лишь в 1980 году, и до этого им не приходилось сталкиваться со столь же сложным объектом. Помимо фрактальной природы, ввиду которой части этого множества подобны целому, это множество обладает безграничным разнообразием. Если мы рассмотрим увеличенное изображение любой его части, то увидим, что одни и те же фигуры повторяются в нем снова и снова:



Множество М обладает самоподобием и одновременно изменчивостью бесконечной спирали. Оно являет собой прекрасный пример математического творчества.

С точки зрения топологии фрактальная кривая отличается от традиционных. Принципиальное отличие фрактальных кривых состоит как раз в их бесконечном самоподобии: если увеличить часть традиционной кривой в окрестности любой точки, она будет представлять собой отрезок, в то время как любой увеличенный фрагмент фрактальной кривой, напротив, будет иметь ту же форму, что и исходная кривая. В результате размерность фрактальных объектов не выражается целым числом от 1 до 3, в отличие от традиционных кривых. Размерность кривой Коха, например, равна 1,26186… По сути, несмотря на то что компьютер позволяет наглядно представить различные этапы построения фрактальных объектов, мы никогда не сможем увидеть результат этого процесса, так как он бесконечен. Увидеть окончательные очертания фрактальных кривых нельзя. Когда мы пытаемся поближе рассмотреть их, то видим, что они меняются и выглядят не так, как нам казалось раньше.

* * *

СЪЕДОБНЫЙ ФРАКТАЛ

Фракталы столь часто встречаются в реальном мире, что можно свободно говорить о фрактальной геометрии природы. Однако в природе фракталы обычно обладают не более чем четырьмя уровнями самоподобия, как, например, ветви растений, нервные окончания или подземные водоносные слои. Фрактальная размерность — это характеристика, позволяющая обнаруживать костные патологии и описывать электроэнцефалограммы.

Цветная капуста, изображенная на иллюстрации, в действительности является гибридом, который впервые был обнаружен в Италии в XVI веке. Ее структура представляет собой удивительный пример фрактальной геометрии в природе. Кочан капусты (первый уровень) состоит из уменьшенных копий самого себя (второй уровень), расположенных в форме спирали. Каждая из них, в свою очередь, также состоит из уменьшенных копий самой себя, которые вновь располагаются по спирали (третий уровень). Это же подобие наблюдается и на следующем, четвертом уровне.



Загрузка...