3. Понятие идеальности

Кудрявцев А. В.

На предыдущем занятии был рассмотрен ряд законов, которым подчиняется процесс развития технических систем. Был выявлен общий план развития технических систем, даны закономерности, не привязанные конкретно к какой-либо машине или технологическому процессу.

Такой взгляд на технику дает возможность освободиться от непринципиальных моментов. Мы продолжим знакомиться с общими принципами, позволяющими прогнозировать направления развития технических систем, заниматься их совершенствованием осознанно, планируя его и здраво оценивая уже выполненные действия.

Нашей задачей будет выявление инструмента достаточно общего, применимого к любой технической системе, и в то же время конкретно помогающего в решении изобретательских задач. Новый инструмент должен помочь нам прогнозировать развитие технических систем, определять вектор оптимального направления их совершенствования. Для того чтобы подойти к пониманию возможности существования такого прогностического инструмента, рассмотрим некоторые исходные положения.

Общим качеством, присущим всем системам техники, является то, что они имеют потребительную стоимость, то есть полезность для общества или отдельного индивидуума. Полезность оценивается через выполняемое системой действие, через результат.

Однако эта полезность не дается человеку в чистом виде. Само существование искусственно созданных объектов, то есть преобразованных тел природы, предполагает, что технические объекты имеют и стоимость. Для получения желаемого результата необходимо создать саму систему и с ее помощью преобразовать некие ресурсы. То есть технический объект реализует в себе единство затрат и выигрыша. Их отношение лежит в основе практически всех систем оценки эффективности. Самый известный из применяемых — коэффициент полезного действия

Схематично можем представить любую техническую систему в следующем виде:


Вход (затраты)

Преобразователь

Выход (польза)

Рис. 3.1. Представление технической системы


Соотношение Выход/Вход = коэффициент эффективности.

Количественно все варианты такого рода коэффициентов могут находиться в диапазоне от 0 до 1.

Проанализируем характер изменения величин, составляющих данное отношение, то есть отношение Полезного выхода к Входу, к понесенным затратам. Анализ показывает, что это отношение исторически все более увеличивается. Уже многие поколения изобретателей направляют свои усилия на то, чтобы получать больше продукции на единицу понесенных затрат.

В приведенной выше схеме техническая система представляет собой преобразователь некоего потока. В качестве такого потока может выступать в простейшем случае какое-то вещество, или энергия, или информация. В реальности вход обычно представляет собой совокупность потоков, иными словами совокупность затрат. Обычно эффективность системы оценивается как соотношение выхода и входа. Затраты на саму систему при этом в затратах могут и не учитываться. Несколько изменим это соотношение и объединим в понятии «затраты» как ресурсы, поступающие на «вход», так и преобразователь. Это позволит нам рассматривать предельный случай отношения затрат, понесенных на создание и функционирование системы, и полученного полезного выхода.

Полезный выход можно определить как то, ради чего создана система, и при известных условиях отождествить его с главной полезной функцией.

Рассмотрим, что может быть пределом нашего стремления в совершенствовании технической системы применительно к конкретной полезной цели. Если не брать в расчет физические ограничения, то естественным было бы стремление вообще не иметь затрат и преобразователя, продолжая получать желаемый результат.

(Вход (затраты) + Преобразователь) = 0

Нулевые затраты Выход (польза)

Пределом развития технической системы является получение полезного выхода в чистом виде без всяких затрат. Именно это можно рассматривать как конечную цель развития системы, обеспечивающей получение конкретного полезного результата. Это может восприниматься как ориентир, позволяющий разработчику понимать, в каком направлении проводить работу.

Итак, система с нулевыми затратами на ее создание и на выполнение работы, имеет эффективность, равную бесконечности.

Понимание предельно возможной или предельно желательной ситуации может позволить нам увидеть верное направление развития технической системы. Инструмент, позволяющий описывать предельное состояние системы, становится инструментом постановки цели.

Постановка цели является важнейшим этапом решения проблемы, так как именно цель определяет направление работы, привлечение тех или иных средств, а также служит критерием качества полученных решений. В то же время процедуру определения цели можно считать одной из наиболее сложных в силу недостаточной формализации процедуры.

Необходимость при решении задачи предсказывать, предвидеть результат, была осознана уже давно. Д. Пойа приводит в своей книге «Математическое открытие» широко распространенную в средние века фразу «Смотри в конец», а также пояснение Гоббса по этому поводу: «… во всех ваших действиях часто имейте перед глазами то, чего вы хотите достигнуть, как ту вещь, которая направляет все ваши мысли на пути к ее достижению». Известна также фраза Гаусса: «Мои результаты я имею уже давно, я только не знаю, как я их получу».

Д. Пойа в книге «Математическое открытие» писал: «… Вы должны не просто думать о своей задаче — думать некоторым, так сказать, неопределенным образом, — вы должны быть постоянно обращены к своей задаче, предельно ясно видеть ее перед собой и, прежде всего, задавать себе основной вопрос: Что требуется?

В процессе решения задачи найдется много удобных случаев для постановки этого вопроса. Когда вы забрались чересчур глубоко в один из боковых ходов, который может, в конце концов оказаться тупиком или увести вас далеко от цели, когда ваши мысли начали блуждать, бывает очень важно снова спросить себя: Что требуется? — и снова тем самым поставить цель в центр вашего внимания».

Естественно, что и разработчики различных методов поддержки изобретателей включали советы такого рода в свои разработки. Однако, эти советы как правило, носили внешний характер, не указывая, как именно надо определить «конечную цель» или «идеальное решение» или «то, чего вы хотите достигнуть».

Поэтому практическую значимость представляет анализ механизмов, обеспечивающих определенное представление о результате решения, формируемое заранее, до получения самого решения. Известно, что чем раньше в процессе проектирования совершена ошибка, тем больше будут затраты на ее устранение. Следовательно, нет ничего более важного, чем правильно поставленная цель. Однако это до настоящего времени не нашло достаточного отражения в подготовке и практической деятельности инженеров, иных специалистов.

Основные усилия следует концентрировать на том, чтобы определить, есть ли вообще необходимость в постановке того или иного вопроса, а также на том, чтобы правильно сформулировать сам вопрос. Именно этот этап является корнем решения. Традиционный подход предполагает недвусмысленную, однозначную трактовку: принять решение, — значит дать ответ на вопрос. Но ответ на вопрос по существу является следствием, он вторичен, а главное — это выяснение сути проблемы. Всестороннее, детальное рассмотрение и обсуждение вопроса еще на начальном этапе следует проводить для того, чтобы четко определить причины беспокойства, выявить, существует ли необходимость принимать решение и что в нем главное. Таким образом, следует вначале выделить и тщательно проанализировать проблему, поставить цель, и лишь потом выработать пути ее достижения. И это представляется весьма существенным, ведь гораздо важнее (и, отметим, труднее) правильно сформулировать проблему и выбрать цели, чем найти пути их достижения. Получение исчерпывающего ответа на неправильный вопрос будет, по всей вероятности, намного менее полезным (а чаще — просто вредным), чем не до конца точный ответ на правильный вопрос.

Здесь находит подтверждение крылатая фраза Бэкона Веруламского «Путник, бредущий по прямой дороге, опередит всадника, который сбился с пути».

Итак, важнейший элемент творчества — это представление конечного результата до решения задачи, «знание о незнании».

Идеализация как метод моделирования в науке состоит в том, что выявив некоторое важное для нас свойство, тенденцию, мы предполагаем, что это свойство, тенденция достигает своего предела. При этом в модели могут быть отброшены остальные, неважные для конкретного рассмотрения свойства, характеристики объекта или процесса. Процедура идеализации дает возможность сформировать логический предел развития реального объекта — идеальный объект.

Идеал в общественных науках, в искусстве определяется энциклопедическим словарем как «идея, понятие, высшее совершенство, высшая конечная цель деятельности, стремлений, помыслов, совершенный образ, предел каких-либо мечтаний».

Два различных понятия идеального сливаются вместе в ситуации, когда мы строим идеальную функциональную модель технической системы. Она соответствует научной идеализации, так как формирует образ системы, через описание только ее полезной функции. И этот же образ может быть представлен как высшая конечная цель деятельности по совершенствованию технической системы.

Идеальные объекты создают определенный образ будущей конструкции. Существование этого образа связано с наличием у разработчика творческого воображения, фантазии. Обычно разработчики находятся в тисках реально возможного, постоянно учитывают существующие ограничения. При работе с идеальным объектом эти ограничения могут быть существенно ослаблены или сняты вообще.

Функциональная идеализация применяется при решении широкого круга задач. Рассмотрим, на какой базе она основана. В рамках функциональных моделей система описывается только через свою функцию. Для подобного описания не представляется важным, из чего «сложена» система. Предположим, что в борьбе за повышение эффективности она изготавливается из все более «невесомых» элементов. Свое логическое завершение такой процесс находит в «идеальной технической системе». Под идеальной системой понимается такая система, затраты на получение полезного эффекта в которой равны нулю. При этом под затратами понимается самый широкий круг понятий — энергия, материалы, занимаемое пространство… Понятие идеальной технической системы было выдвинуто Г. С. Альтшуллером. Образ идеальной системы позволяет сконцентрировать внимание разработчика только на ожидаемом полезном эффекте, лучше осознать, что требуется потребителю. Оценим, насколько эффективным может быть использование такого подхода к определению цели в практической деятельности.

Для этого рассмотрим эксперимент, проводившийся с использованием сюжета из сказки А. С. Пушкина о золотой рыбке. Итак, у старухи поломалось корыто, а дед в это время поймал золотую рыбку, которая взялась выполнить любое желание. Что же попросила старуха? Она попросила новое корыто. В процессе разворачивания сюжета мы видим как меняются представления о возможном и требования. Но они все время остаются конечными, хотя выполненное желание приводит к расширению понимания возможностей и росту неудовлетворенности. И только в своем последнем желании старуха, наконец-то приближается к истинной идеализации, к преодолению предела обыденных возможностей, к истинному всемогуществу. Она просит неограниченные права по управлению миром. (И, конечно не получает их, так как просьба эта очень запоздала, на ее выполнение не осталось ресурсов).

Здесь интересен постепенный переход от конкретных требований к предельным. Эксперимент, упомянутый выше, многократно проводился с группами инженеров, изучавших ТРИЗ. Им предлагалось, оказавшись в ситуации, описанной в сказке (надо стирать, а корыто прохудилось), что-то попросить у золотой рыбки. Значительная часть испытуемых просила стиральную машину. И только меньшая часть формулировала свой запрос по иному.

Эффективный подход связан с пожеланием иметь результат без технической системы, которая сейчас обеспечивает его достижение. Это может быть пожелание иметь чистую, самоочищающуюся, не пачкающуюся одежду, одноразовую одежду… Как можно видеть, существует два принципиально разных подхода к постановке цели, формированию ожидаемого результата — через выбор уже существующего технического средства и через определение истинных ценностей, истинных потребностей.

Как же практически может использоваться понятие идеальной технической системы? Это важный и эффективно действующий инструмент, широко применяющийся как самостоятельно, так и в составе комплекса иных средств. О его использовании в составе алгоритма решения изобретательских задач мы поговорим позднее. Сейчас же рассмотрим возможности его автономного применения. Но перед этим еще раз зафиксируем, что важнейшей (системной) закономерностью, присущей всем объектам техники в их историческом развитии, является закономерность уменьшения затрат на получаемую продукцию, за выполняемую функцию.

Доведенная до своего логического завершения, эта закономерность позволяет построить новую модель технического объекта — идеальную техническую систему. Рассмотрим эту тенденцию на примерах.

Пример 3.1. Наиболее ярким, наглядным примером повышения идеальности технических систем является развитие компьютерной техники. Всего за несколько десятков лет компьютеры прошли путь от огромных сооружений со сроком бесперебойной работы в несколько часов, до микроминиатюрных конструкций, занимающих кубические сантиметры и не требующих обслуживания в течение всего срока своего функционирования… При этом невообразимо выросли скорость счета, память, скорость обмена информацией. Журнал «Эксперт» в мае 2000 года привел данные, показывающие уменьшение количества атомов, которые необходимо организовать для хранения одного бита информации. Если в пятидесятых годах их для этого требовалось 1012, то в 1975 году уже 108, а в настоящее время — 104 атомов. В ближайшее время возможен переход к квантовым компьютерам, в которых один атом будет хранить один бит информации.

Внешне тенденция к миниатюризации электронных приборов, казалось бы, противоположна тенденции развития транспортных и обрабатывающих средств. Аппараты, машины, устройства этого направления все увеличиваются в размерах. Но что происходит на самом деле? Обратимся к примерам.

Абсолютно идеальное транспортное средство — когда средства нет, а груз транспортируется (другими словами, когда груз сам движется в нужном направлении с необходимой скоростью). Стремление к этому идеалу проявляется в повышении отношения «вес полезного груза к полному весу транспортного средства».

Пример 3.2. Журнал «Компьютерра» от 7 декабря 1999 года сообщил о статье в немецком журнале «Lastauto — Omnibus» («Грузовик — Автобус»). Этот журнал долгие годы … проводит эксплуатационные испытания тяжелых автопоездов по кольцевой трассе длиной 745 километров. Так вот, за тридцать лет, с 1966 года по 1996 год, удельная мощность этих сорокатонных чудовищ выросла с 5,53 до 10,60 лошадиной силы на тонну, средняя скорость возросла с 49,4 до 71,6 километра в час, расход же топлива снизился с 48,8 до 33, 4 литра на сотню километров. То есть комплексный показатель транспортной эффективности, отнесенной к единице топлива, а проще говоря, к литру солярки, возрос в 2,2 раза! И это при невиданном улучшении экологических показателей данного вида транспорта.

Как видно из примеров, в обоих случаях реализуется одна и та же тенденция — все более экономная реализация требуемой функции.

Итак, под идеальной технической системой понимается получение полезного результата без каких бы то ни было затрат, то есть реализация функции в чистом виде. Предмет нашей обработки сам преобразуется в нужное нам изделие. Модель объекта, с которой работают при функциональной идеализации, очень эвристична. Предполагается, что требуемую функцию мы получаем без каких-либо затрат, следовательно и без технической системы. Модель идеального объекта состоит в том, что самого объекта нет. Выполнение его функции теперь поручается тому изделию, обработку которого было необходимо проводить. При этом предполагается, что объект обработки имеет определенные внутренние резервы, которые и могут быть использованы.

Если объект уже как-то обрабатывается другой системой, то можно возложить выполнение требуемых функций на существующую систему. Сама постановка вопроса акцентирует поиск этих резервов, что в большом числе случаев приводит к возможности существенно уменьшить требования к инструменту, средствам обработки, т. е. произвести переформулирование проблемы. Концентрируя внимание на объекте обработки, мы рассматриваем его не отвлечённо, а в реальных условиях, в динамике.

Пример 3.3. Для крепления крышек различных химических аппаратов (теплообменников, реакторов и т. п.), применяют шпильки — металлические стержни с резьбой по обоим концам. На аппарат, работающий под большим давлением, может потребоваться до 200 шпилек. Каждая шпилька выполнена из стали, имеет диаметр в 50–70 мм, длину до 400 мм.

Все они должны иметь клеймо — на клейме указывается номер аппарата. Клеймо наносится ударом молотка по остро заточенной форме, приложенной к торцу шпильки. Работа трудоемкая, делать ее надо сразу после изготовления шпильки. Необходимо дать предложения по совершенствованию процесса клеймения.

В исходной постановке задачи было необходимо «механизировать процесс клеймения шпилек». Сформулировав требование: «шпилька сама клеймится», мы задаем рамки системы, в которой будет происходить данная операция. Эта формулировка является эвристической подсказкой, позволяющей локализовать область, в которой мы будем искать средства выполнения нужной нам операции. Поэтому методически верно будет уточнить ее. Необходимо раскрыть смысл термина «клеймится». Клеймение в рамках данной нам технологии осуществляют ударом молотка с клеймом на бойке. Т. е. клейму придают определенную кинетическую энергию, которая при соударении со шпилькой превращается в деформацию металла. Следовательно, задача рабочего или механического пресса — придать энергию, обеспечить соударение.

Теперь требование может звучать так: «шпилька сама накапливает энергию (разгоняется) и ударяет по клейму». Можем ли мы представить себе эту картину? Конечно, это сделать намного проще, чем в первоначальном варианте. Шпилька может сама разогнаться, если ее бросить вниз. Упасть точно на клеймо — задача более трудная. Необходимо организовать процесс падения, он должен происходить в каких-то направляющих. А как поднять шпильку на высоту, с которой она будет падать? Это делать не надо, так как шпилька после обработки на станке уже находится на определенной высоте.

Итак, все или почти все может происходить «само собой». В данной ситуации шпилька — это металлический стержень, намного более массивный, чем молоток, с помощью которого производится клеймение. Но для того, чтобы заставить именно шпильку самостоятельно выполнять требуемую работу, пришлось использовать понятие идеальности. Все должно происходить само собой, без затрат энергии и материалов. Обслуживающей, обрабатывающей системы быть не должно, а результат должен получаться.

Пример 3.4. Знаменитое Месояхское месторождение природного газа, многие годы питавшее энергией Норильск с его мощным горнометаллургическим комбинатом, со временем потеряло силу: упало давление в подземных пластах. Скважины пришлось законсервировать, хотя по подсчетам специалистов в недрах осталось еще не меньше половины запасов газа. Оставлять в недрах такое богатство — дорого, и откачивать газ специальными насосами невыгодно — тоже дорого.

Модель системы будет иметь вид: «газ сам выходит из недр». Еще более точно «газ сам откачивает себя из недр». Здесь может быть предложено откачивать газ, вращая насосы двигателями, работающими на том же газе. Но это, как мы уже выяснили, дорого. Задача была решена разработчиками, сумевшими использовать для откачки газа энергию газовых потоков другого месторождения. Газоносные пласты Месояха подсоединили через эжекторную станцию к трубопроводу, по которому с большой скоростью идёт газ Соленинского месторождения. Этот скоростной поток и служит откачивающей средой. Таким образом, удается извлекать ежегодно сотни миллионов кубометров газа.

Пример 3.5. Известному создателю куполов Р. В. Фуллеру принадлежит высказывание: «Если вы хотите установить степень совершенства здания, взвесьте его». Действительно, при прочих равных показателях более легкое здание предпочтительно — на него пошло меньше материала. Стены, элементы перекрытий и т. п. нужны нам не сами по себе, а как носители определенных функций. И чем меньше затрат необходимо на реализацию этих функций, тем лучше. История архитектуры, градостроительства, показывает нам, как неуклонно повышается степень «невесомости» зданий. Рассмотрим в качество примера элемент конструкций, во все времена являвшимся образцом наивысшего уровня архитектурного искусства и инженерных знаний — сферический купол.

Один из наиболее древних дошедших до нас значительных куполов перекрывает Римский Пантеон, созданный еще во времена античности. Пролет купола 43,3 метра, толщина в верхней части 1,6 м, в районе опор 2,5 м, средний вес одного квадратного метра порядка 8000 кг. Общий вес купола составляет 10 000 тонн. Рекордные показатели Пантеона по диаметру перекрываемой без промежуточных опор площади продержались 18 столетий. Снизить удельный вес купола и увеличить его пролет позволил только переход к новым материалам. Вот краткая летопись борьбы за «невесомость куполов». Рекорд Римского Пантеона был перекрыт только в начале двадцатого века. Зал «Столетия» в Польше имел диаметр 47 метров. Вес купола при этом снизился в полтора раза. В 1930 году в Лейпциге был построен купол над рынком. Он покрывал основание диаметром 76 метров. Использование металла высокого качества позволило снизить вес купола до двух тысяч тонн. Вес одного квадратного метра составил 476 килограмм. В 1956 году в одном из университетов США была построена аудитория с куполом, имеющим диаметр проекции в 91,5 метра. Здесь уже использовался алюминий, и это дало возможность вновь резко снизить вес конструкции — до 93 тонн. Один квадратный метр теперь весит 22,6 кг. Наконец, в 1984 году в СССР был построен стенд для испытания опор и линий электропередач. Диаметр перекрываемой площади составлял 220 метров, а весил купол всего 152 тонны!

В 400 раз снизился удельный вес одного метра поверхности. И это при том, что площадь, покрываемая куполом, выросла в тридцать раз.

В основном прогресс в строительстве куполов зависел от появления новых материалов. Материалы становились более «идеальными», они выполняли требуемые функции все более компактными средствами и позволяли создавать все более легкие конструкции.

Принцип повышения идеальности широко используется и в бизнесе. Многие предприятия обеспечивают снижение себестоимости продукции с помощью принципа «Потребитель сам…». Интересные примеры этого приводит Эдвин Тоффлер в книге «Третья волна».

Пример 3.6. «В 1956 году Американская телефонная и телеграфная компания, исследуя запросы в области коммуникации, начала вводить новую электронную технологию, которая позволила абонентам самостоятельно звонить на дальние расстояния. Сегодня стало возможным осуществлять прямой набор во многие заокеанские страны. Набирая соответствующий номер, потребитель выполняет задачу, прежде возлагавшуюся на оператора.

В 1973–1974 годах из-за арабского эмбарго на нефть цены на бензин поднялись. Крупнейшие нефтяные компании получили огромную прибыль, но местные бензозаправочные станции вынуждены были отчаянно бороться за экономическое выживание. Желая снизить цену, многие владельцы бензоколонок ввели самообслуживание. Поначалу это казалось странным. Газеты печатали забавные истории о водителях, которые пытались вставить шланг в радиатор. Однако вскоре потребитель, лично заправлявший свою машину, уже никого не удивлял…

В тот же период появились электронные банкоматы, которые не только упразднили понятие „часов работы“ банка, но также значительно сократили число кассиров, предоставив клиенту осуществлять операции самому, прежде выполнявшиеся банковскими служащими.

То, что клиент самостоятельно выполняет часть работы, не так уж ново — экономисты называют это „экстернализацией стоимости труда“. На этом принципе построены все супермаркеты. Улыбающегося продавца, знавшего ассортимент и приносившего вам товар, заменила тележка для покупок, которую вы сами катите перед собой…

Благодаря совершенствованию техники стоимость междугородних телефонных переговоров снизилась и это создает условия для развития в будущем системы ремонта, при котором владелец бытовой техники сможет, глядя на экран своего телевизора и слушая советы мастера, сам починить свою технику.

Еще 10 лет назад в Соединенных Штатах непрофессионалам продавалось только 30 % электроинструментов, остальные 70 % покупали плотники и другие ремесленники. Менее чем за 10 лет эти цифры поменялись местами: сегодня только 30 % инструментов покупают профессионалы, а 70 % — потребители, которые все чаще следуют призыву „сделай сам“.

Еще один вид реализации принципа идеальности — включение все большего числа потребителей в процесс проектирования изделий. Роберт Андерсон, руководитель отдела информационных услуг компании Рэнд Корпорейшен», предполагает: «Через 20 лет самой творческой вещью будет необычайно творческое потребление… Например, вы дома придумываете для себя фасон одежды или вносите изменения в стандартную модель, а компьютер выкроит ее для вас с помощью лазера и сошьет на машинке с цифровым управлением…»

Модель идеальной технической системы «заряжает» человека для решения или для оценки решения и в этом ее необходимость. Понятие идеальности задает внутреннюю планку для полета, прыжка, оно является топливом или стимулирует появление этого топлива, формирует внутренние критерии для процесса отбраковки приходящих при решении вариантов.

На базе модели идеальной технической системы Г. С. Альтшуллером был построен оператор ИКР (идеальный конечный результат). Суть его состоит в том, что задачу по реализации какой-либо функции возлагают на выбранный элемент (объект обработки, либо элемент технической системы, уже выполняющий какую-то полезную функцию).

Структура оператора ИКР:

Элемент

сам

выполняет требуемое действие (вместо иного элемента)

продолжая выполнять функцию, ради которой он был первоначально создан.

Так в уже приведенных примерах усовершенствования конкретных технических систем были реализованы следующие ИКР:

Шпилька САМА набирала энергию для деформации своего торца, сохраняя способность выдерживать силовую нагрузку в процессе работы.

Газ Соленинского месторождения САМ создает разряжение, достаточное для выкачивания дополнительного газа из недр, продолжая транспортироваться к потребителю.

В обоих рассмотренных примерах реализована общая схема — вместо специализированной системы обработку объекта поручают самому объекту (или объекту, сопутствующему). Этот подход можно назвать наиболее эффективным. Техническая система отсутствует, а функция ее выполняется. В этом случае мы имеем пару: «Обрабатываемый объект — отсутствующая техническая система».

ИКР: Объект сам обрабатывает себя, не ухудшая своих потребительских свойств.

Если же осуществить такой подход не удается, то возможны иные варианты построения ИКР.

Пара элементов теперь выглядит так: Инструмент (рабочий орган технической системы) — отсутствующие вспомогательные элементы системы.

ИКР: Инструмент сам обрабатывает объект, без вспомогательных элементов технической системы.

И, наконец, если не удается сократить систему, с помощью которой мы проводим обработку, то следует повышать эффективность, сокращая иные системы, действующие совместно. Следовательно, пара примет вид: «Система А — отсутствующая система Б.»

ИКР: Техническая система «А» сама обрабатывает объект как техническая система «Б», продолжая обрабатывать его и как «А».

Рассмотрим эти варианты несколько подробнее. Во всех этих формулировках присутствует некоторый элемент, которому поручается выполнение не только своей функции, но и вдобавок, функции иных элементов. Вот как это может выглядеть на реальном примере: В качестве системы А рассмотрим токарный станок, в качестве системы Б связанный со станком магазин заготовок. Тогда для обрабатываемой детали вариант 1 может быть сформулирован в следующем виде:

«Деталь сама придает себе требуемую форму, продолжая быть полезной для потребителя».

Второй вариант построения модели идеальной системы нам придется формулировать уже для инструмента, имеющегося в станке — для резца. Он может иметь следующую форму:

«Инструмент сам обрабатывает деталь без поддержки вспомогательных элементов (станины, суппорта и прочего)».

И, наконец, третий вариант формулировки может выглядеть так:

«Станок сам хранит заготовки деталей, не прекращая их обрабатывать».

Еще один пример: построение вариантов ИКР для транспортного средства.

А. Полезный груз сам себя транспортирует, не теряя потребительских качеств.

Б. Кузов транспортного средства сам перемещает полезный груз, без двигателя, движителя и системы управления.

В. Транспортное средство само обрабатывает транспортируемый груз (например, изготавливает бетон из компонентов), продолжая транспортировать его.

На практике реализуется большое количество разнообразных инструментов, помогающих изобретателю повышать идеальность существующих систем. Все они, оставаясь однотипными по существу, внешне принимают различные формы. Рассмотрим один из таких инструментов — оператор РВС, предложенный Г. С. Альтшуллером как инструмент для снятия психологической инерции.

Оператор РВС (размер, время, стоимость)

В ТРИЗ существует некоторое количество операторов, инструментов, предназначенных для снятия психологической инерции. Одним из них является оператор РВС. РВС расшифровывается как «Размер, Время, Стоимость». Суть оператора состоит в том, что предлагается последовательно исследовать возможности изменения совершенствуемого объекта в рамках заданных мысленных экспериментов. Изменив одну из заданных характеристик объекта на порядок (увеличив или уменьшив), следует представить себе такой объект, возможность реализации выполняемой им функции, возможные ограничения и пути их преодоления. Применение оператора РВС дает подчас неожиданные и интересные результаты. Уже много лет этот инструмент используется при решении практических задач. Этот оператор использует понятие идеальности для снятия психологической инерции у решающего задачу.

Мысленные эксперименты по увеличению размеров исследуемой системы до бесконечности или уменьшения их до нуля дают пищу воображению, приводят к пониманию каких — то новых возможностей или ограничений. Аналогичные путешествия к сверхбольшому и сверхмалому проводятся и относительно времени осуществления рабочего процесса или его стоимости.

Так, проводя исследование, например, бытового пылесоса и постепенно меняя при этом его размеры в сторону их уменьшения, можно прийти к выводу о том, что накопитель пыли не может находиться внутри такого пылесоса. Это должен быть уже не пылесос, а пылесборник. При этом возникает потребность представить себе, как может выглядеть подобный пылесборник. Пыль может накапливаться на поверхности аппарата, а может быть, как-то обрабатываться им, преобразовываться в вид, удобный для последующей сборки, например, коагулироваться, скатываться в достаточно большие объемы.

Процесс мысленного увеличения пылесоса приводит к тому, что он начинает постепенно захватывать все пространство комнаты или квартиры, а затем и дома. Возникает картина жизни в пылесосе, и становится ясно, что функцию пылесоса должен взять на себя, например, пол. Аналогичные процедуры можно проделать и с оставшимися осями. Рассмотрим ситуацию, когда время сбора пыли стремится к нулю. На этом пути придется не только повышать мощность устройства, но и позаботиться о том, чтобы оно было размещено везде, где может быть загрязнение. И опять возникает идея дома — пылесоса, поверхностей, самостоятельно борющихся с загрязнениями.

Тот же результат получается при последовательном увеличении времени работы. Стоит последовательно увеличить время очистки поверхности от сегодняшних минут и часов на несколько порядков, как становится понятной принципиальная невозможность ручной работы. Пылесос должен работать сам, работать медленно, постепенно и незаметно убирая пыль. Это приводит и к пониманию невозможности использовать существующий сегодня принцип засасывания пыли струей воздуха, ведь витание частиц возможно только при определенной скорости, а она у нас по условиям все должно делаться очень медленно…

Снижение стоимости процесса заставляет искать возможность выполнить очистку поверхности, избавиться от пыли за счет уже существующих систем иного назначения. В дело могут пойти различные электризующиеся поверхности (представьте себе, например специальную «пылесборную» пластинку, которую ставят на проигрыватель, когда надо собрать пыль в воздухе.

Как ни странно для обычного мышления, наименьшее количество эффективных решений находят при использовании варианта «стоимость стремится к бесконечности». Но это становится понятным исходя из понятия идеальности — использование дополнительных затрат для реализации функции прямо противоречит выявленной нами общей закономерности развития технических систем!

Загрузка...