«Тепло и сила» – так назывались двигатели, выпускаемые в России в начале прошлого века. Чудо, а не двигатели. Их можно было топить дровами, соломой, углем, торфом – чем угодно. При этом они не были паровыми и были гораздо экономичнее. Ими можно было приводить в движение любую сельхозтехнику (веялки, мельницы, насосы) и даже обогревать помещение. Сейчас таких, к сожалению, не выпускают. Но осталось название, которое как нельзя более подходит к нашей новой главе, в которой речь пойдет о теплоте и ее использовании, в частности, для выработки энергии.
Но прежде всего хотелось задать вам, дорогие читатели, несколько вопросов, чтобы определить, что вам известно о теплоте. По крайней мере, вы сами узнаете, сколько парадоксов таит в себе это понятие. Конечно же, на каждый вопрос будет тут же дан ответ, но вы не спешите в него заглядывать, а сначала попытайтесь ответить сами.
Вопрос первый (из трех составляющих). Говорят, что межпланетная среда, в которой находится наша Земля, имеет температуру около 1 500 000 °C. Может ли такое быть – ведь именно в этой среде летают космические корабли, выходят «погулять» космонавты и, как известно, не сгорают? Как с этим согласуется утверждение о космическом холоде, о том, что в тени там царят стоградусные морозы? И еще: если в межпланетном пространстве действительно такая высокая температура, то как ее измерить? Ведь от 1 000 000 °C не то что расплавится, а мгновенно испарится любой термометр.
Ответ. Действительно, температура солнечной короны, которая простирается на расстояние в несколько десятков радиусов Солнца и в которую попадает наша Земля, 1 000 000 – 2 000 000 °C (тут уж безразлично, по какой шкале – Цельсия или Кельвина, разница в 273 °C здесь несущественна, хотя правильнее измерять термодинамическую температуру в кельвинах). Эта корона состоит из высокоионизированной плазмы – «солнечного ветра», частиц, несущихся (на уровне орбиты Земли) со скоростью 400 км/с – в сотни раз быстрее, чем у молекул при комнатной температуре. При этом число этих частиц всего несколько десятков в 1 см3. Исходя из этих данных легко узнать температуру, которая определяется из молекулярно-кинетической теории, изложенной, например, в учебнике физики для 10 класса. Согласно этой теории температура прямо пропорциональна средней кинетической энергии частиц. При скоростях в сотни км/с температура достигает миллионов градусов; с учетом множества факторов эта температура и составляет 1 000 000 – 2 000 000 К.
Из-за чрезвычайно малой концентрации частиц нагреть, а тем более расплавить или испарить космические корабли солнечная корона не может; не в состоянии она по той же причине и сколько-нибудь существенно поднять температуру тел в Космосе. Луна, например, имеет на теневой стороне температуру всего 120 К, или около – 150 °C.
Измеряют температуру межпланетной среды, конечно же, не термометрами, которые эта среда практически не нагреет опять же из-за ничтожной концентрации, а косвенными методами, например, по скорости движения частиц, которую можно измерить достаточно точно.
Вопрос второй. Известно, что в саунах температура воздуха достигает 120—140 °C, что гораздо выше температуры кипения воды; при такой температуре можно запросто готовить яичницу или запекать яйца вкрутую. Каким же образом человек не только выдерживает эту температуру, но еще получает удовольствие, нисколько не запекаясь? Какую максимальную температуру может вообще выдержать человек?
Ответ. Температура воздуха в саунах регламентирована в пределах 90 – 140 °C при относительной влажности 5 – 15 %. Это очень низкая влажность, и в ней все дело. Чрезвычайно сухой воздух сауны способствует быстрому испарению воды из тела человека, главным образом через легкие, имеющие огромную поверхность, а также с поверхности тела через потоотделение. Испаряясь, вода поглощает большое количество тепла (так называемую теплоту парообразования) и интенсивно охлаждает тело человека. Известно, что если не пополнять запас жидкости в теле человека за счет чая и других напитков, то за одно посещение сауны можно потерять в весе несколько килограммов из-за испарения воды. Поэтому-то температура тела человека и держится в узких, дозволенных природой и системой терморегуляции человека рамках даже при более высоких температурах. Известен опыт немецких ученых, когда несколько человек пробыли порядка 10 минут при температуре +210 °C в очень сухом воздухе.
Однако достаточно повысить влажность воздуха в сауне, как переносимость температуры резко падает. Если вылить на камни в сауне достаточное количество воды (что иногда делают не очень грамотные посетители), то запросто можно обжечь всех присутствующих. Не следует путать финскую баню-сауну с русской парилкой, где влажность гораздо выше, а температура ниже.
Что же касается варки яиц в сауне, то автор часто это делает, причем на той же полке, где лежит сам (рис. 253). Обычно это изумляет всех присутствующих, а яйца получаются очень вкусными – с крутым желтком и мягким белком, что очень необычно.
Вопрос третий. Опять о бане, на сей раз русской. Чтобы высушить парилку, нередко открывают в ней окошко, устраивают сквозняк, особенно в мороз. Пар так и валит оттуда внутрь помещения. Как же может этот пар осушить и без того влажное помещение парилки?
Ответ. Здесь хитрость в том, что внешний воздух всегда холоднее воздуха в парилке. Поэтому абсолютная влажность его невысока по сравнению с горячим и влажным воздухом парилки, особенно в мороз, когда вымораживается почти вся влага из воздуха.
Впуская наружный воздух в парилку, мы заменяем влажный воздух на сухой, содержащий в себе мало влаги по абсолютной величине. Нагревшись от мощного камина в русской парилке, воздух приобретает крайне низкую относительную влажность и быстро высушивает все вокруг. Испаряются все лужи на полатях, простыни становятся сухими. Парилка снова готова к приему голых гостей.
А пар, который валит из окошка, – это не влага, пришедшая снаружи. Холодный воздух охлаждает воздух парилки вокруг себя и сильно повышает его относительную влажность, доводя его до точки росы. Поэтому невидимый нам пар тут же конденсируется в туман, который мы почему-то называем паром. Если приглядеться внимательно, то видно, что туман образуется вокруг входящего в окошко холодного воздуха, а сам морозный воздух – в центре потока – прозрачен. Значит, туман не вносится снаружи, а выпадает из внутреннего воздуха парилки.
Вообще в бане можно наблюдать различные физические явления, и в этом одним из первых убедился сам Архимед!
Вопрос четвертый. Известно, что теплопроводность газов уменьшается с их разрежением. Полный вакуум вообще не может передать тепло – нет вещества, его передающего. Известен и сосуд Дьюара, или попросту термос, где две колбы, вставленные одна в другую, разделены слоем разреженного газа, то есть просто между ними откачан воздух (рис. 254). Это мероприятие позволяет резко сократить теплопередачу между этими двумя колбами.
Однако давайте проведем опыт, где мы будем откачивать воздух между этими колбами и измерять теплопроводность получаемого слоя разреженного газа. Откачали 90 % воздуха – теплопроводность не изменилась. Откачали 99 % воздуха – то же самое. Повысили разрежение еще в 2 – 3 раза – никакого эффекта.
В чем же дело, неужели не работают законы физики? А как же тогда работает термос?
Ответ. Такой эффект, с первого взгляда кажущийся парадоксальным, на самом деле имеет место. Давление падает в сотни раз, а теплопроводность как бы замирает на одной точке. Объясняется это тем, что молекулы оставшегося при разрежении газа, который собственно и переносит тепло от стенки к стенке, получают возможность увеличить свой пробег между столкновениями друг с другом. Самих молекул становится меньше, но путь пробега их между столкновениями увеличивается. Поэтому и теплопроводность почти не изменяется. «Почти» это потому, что для определения этой разницы нужны очень точные методы измерения, практически же эта теплопроводность даже при падении давления в сотни раз не изменяется. Только тогда, когда останутся тысячные и менее доли первоначального количества газа, теплопроводность начнет падать, причем резко. Вот в термосах между колбами как раз очень низкое давление, поэтому-то и теплопроводность этого весьма разреженного газа очень мала.
Кстати, иногда встречается реклама окон, где между стеклами якобы откачан воздух для понижения теплопередачи. К такой рекламе автор относится с сомнением. Не верится, что между большими поверхностями составных пластмассовых рам можно создать достаточно высокий вакуум, как в термосе.
А главное, сами стекла не выдержат при этом огромного наружного давления, реально достигающего нескольких тонн на каждое стекло. Герметизация стекол может препятствовать проникновению влаги между стеклами, что тоже важно, но чтобы откачать между ними воздух, надо иметь толстенные и сверхпрочные, а также очень малоразмерные стекла, что вряд ли приемлемо. Гораздо реальнее просто заполнить пространство между стеклами в герметичных рамах газом, имеющим плохую теплопроводность, заодно и сильно высушенным (обезвоженным).
Вопрос пятый. Вопрос этот не так прост, как может показаться. Сплавим равные части свинца с температурой плавления 327 °C и олова с температурой плавления 232 °C. Какова будет температура плавления полученного сплава?
Ответ. Напрашивается такой ответ: температура плавления сплава равна средней между температурами плавления компонентов, т. е. 280 °C. Но это не так. Температура плавления сплава, называемого ПОС-50 и широко используемого в пайке, гораздо ниже, причем даже ниже, чем у чистого олова, и находится в интервале 183—209 °C, что с первого взгляда кажется удивительным. Можно привести еще более парадоксальный пример: сплав, состоящий из 50 % висмута с температурой плавления 271 °C, 25 % свинца и по 12,5 % олова и кадмия с температурой плавления последнего 321 °C (так называемый сплав Вуда), имеет температуру плавления всего 68 °C! Этот сплав придуман в 1860 г. английским инженером Вудом (не путать со знаменитым американским физиком Вудом, который родился на 8 лет позже года изобретения сплава!). Известен сплав почти из тех же компонентов, называемый анатомическим, который плавится вообще при 60 °C! Здесь уместно рассказать про шутку зубных техников, широко использующих эти сплавы. Они отливают чайную ложку из таких сплавов и подсовывают ничего не подозревающему гостю при чаепитии. Ложка, почти как серебряная, такая же тяжелая и блестящая. Но, когда гость начинает помешивать ею горячий чай, она плавится в стакане, и в руках у изумленного гостя остается только «огрызок» ручки (рис. 255)!
Свойство сплавов плавиться легче составляющих компонентов обусловливается эвтектикой, и оно хорошо известно металловедам. Эвтектоидами в металловедении называются сплавы с такими количественными соотношениями компонентов, которые обеспечивают минимальную температуру плавления. Отмеченные выше сплавы являются яркими примерами сплавов, очень близких к эвтектоидным для данных компонентов.
Если вы правильно ответили на все вопросы, – вы гений, и вам можно дальше не читать, вы и так все знаете. Если не ответили ни на один вопрос, – не огорчайтесь и попробуйте задать их товарищам и родителям; автор надеется, вы будете удовлетворены их ответами. Если же вы ответили самостоятельно хотя бы на часть вопросов – поступайте в университет на физический факультет, ваши преподаватели будут довольны вами, а вы – ими.
Это не шутка и не розыгрыш. Действительно, самая экономичная и экологичная печь (например, для отапливания домов) – это холодильник. Обычный домашний, лучше безмоторный (он сложно называется – абсорбционный), такие выпускались под названием «Иней» или «Морозко». Он не шумит и служить будет 100 лет. Печкой, разумеется. Вот как автор сам убедился в том, что холодильник может отлично работать печкой, и кое в чем другом, тоже полезном для ума и нужном в хозяйстве.
Однажды автору подарили необычный холодильник, кажется, «позаимствованный» с корабля. Агрегат этого холодильника был раздельным: мотор, компрессор и теплообменник – одним узлом, а испаритель, или иначе – морозильная камера, – другим, соединенным с первым длинными медными трубками. При этом морозильную камеру автор поставил на кухне охлаждать продукты, а силовой блок с теплообменником грохотал в чулане.
За месяц «общения» с этим холодильником автор сделал удивительные открытия. Оказывается, температура на кухне была ниже, чем в других комнатах, а в чулане с теплообменником была настоящая сауна. При этом стоило вынуть из морозильной камеры охлажденные продукты и заложить новые, еще «теплые» (особенно бутылки с пивом и водой), как теплообменник буквально раскалялся.
Напротив, если начинали охлаждать теплообменник, например, обдувая вентилятором, продукты в морозильнике охлаждались гораздо быстрее. Особенно сильно он начинал морозить, если вешали на теплообменник мокрое полотенце.
Однажды автор ради эксперимента поставил теплообменник в лохань с холодной водой. И вода достаточно быстро нагрелась. Нагревая воду, автор наблюдал за счетчиком электроэнергии, и это наблюдение совершенно потрясло его.
Нагреем теплообменником одно и то же количество воды разными способами. При только что поставленных в морозильник «теплых» продуктах расход энергии будет минимальный. При уже охлажденных продуктах этот расход повышается. Если нагревать воду кипятильником, расход энергии будет самый большой. Сделал автор и «смертельный» для холодильника опыт, поставив в морозильник кастрюлю с кипятком. Расход энергии на нагрев воды теплообменником оказался в несколько раз меньше, чем кипятильником.
Поразмыслив, автор сделал для себя ряд полезных в хозяйстве выводов.
Для реализации этих выводов читателям лучше всего иметь холодильник с «разнесенными» агрегатами (какой был у автора), но можно и самому «разнести» их, если воспользоваться услугами мастера по ремонту холодильников.
Вывод первый: если хотите, чтобы холодильник охлаждал лучше, ставьте теплообменник в самое прохладное место квартиры, обдувайте его вентилятором, выводите наружу или, оборудовав его специальным бачком, грейте с его помощью холодную воду. В сельском или дачном доме можно поместить теплообменник под пол и даже в грунт – в водоносный слой, если он неглубокий. Холодильник создаст вам арктический (а может, даже и антарктический!) холод. На теплообменнике, особенно горизонтального типа, можно сушить мокрые полотенца, пеленки (это актуально, если нет сушителя!) и другое белье, а также грибы, фрукты и др., греть воду. Холодильник от этого будет работать только лучше.
Вывод второй: если хотите обогревать вашу квартиру, дом и прочее теплообменником, затрачивая значительно меньше энергии, чем если бы это делали обычным электронагревателем, ставьте испаритель (морозильную камеру) в теплое место.
Морозильная камера (разумеется, без продуктов) используется и для охлаждения воды. Ледяную воду можно иметь в квартире, если поместить испаритель в специальный бачок и подавать туда обычную воду.
Правильнее всего помещать испаритель в водоносный слой в грунте, хотя бы в колодец. Заморозить всю воду там он не сможет – силы не те, но немного охладит ее. Разницу в тепле он, как тепловой насос, перекачает в ваш дом. Автор не ставит термин тепловой насос в кавычки, потому что полученное устройство так и называется в технике. Теплообменник буквально раскалится и будет обогревать ваш дом как электрокамин, затрачивая в 2 – 3 раза меньше электроэнергии. Иными словами, КПД вашего обогревателя на основе холодильника будет 200—300 %. Абсурд? Ничуть не бывало. Здесь все справедливо, и вот почему.
Как работает холодильник? Газы, как известно, при сжатии нагреваются, а при расширении охлаждаются. Если быстро сдавить воздух поршнем, то он настолько нагреется, что может даже воспламенить горючий материал – смесь бензина с воздухом, например в двигателях. Существовало даже древнее воздушное огниво (рис. 256), состоящее из поршня 2, цилиндра 3 и колпачка с трутом 1. При быстром вдвигании поршня в цилиндр трут начинал тлеть, и из него раздуванием получали огонь. Современное огниво со стеклянным цилиндром показано на рис. 256, б. Этот опыт хорошо иллюстрирует нагрев газов при сжатии.
Убедиться в охлаждении газов при расширении лучше всего выпуская сжатый углекислый газ из баллона углекислотного огнетушителя. Газ так охлаждается, что сразу переходит в снег, минуя даже жидкую фазу (рис. 257). Из этого снега и получают прессованием сухой лед.
Поговорить о принципе действия холодильника проще всего на примере компрессорного устройства (рис. 258). Компрессор 2 накачивает особый газ, легко переходящий в жидкость, обычно фреон, в теплообменник 1. Газ при сжатии переходит в жидкость и нагревается. В теплообменнике эта жидкость охлаждается, отдавая тепло окружающей среде. Затем через регулируемый вентиль 4 эта охлажденная жидкость выпускается в испаритель 3, где она снова переходит в газ, газ расширяется, да еще это расширение усугубляется компрессором, который откачивает газ из испарителя.
1 – теплообменник; 2 – компрессор; 3 – испаритель; 4 – вентиль
В результате испаритель сильно охлаждается; его обычно помещают в морозильную камеру.
Так вот, если этот испаритель поместить в проточную воду, например, подпочвенные грунтовые воды, то он примет их температуру, допустим, +4 °C. Таким образом, испаритель, который должен был охладиться, предположим, до – 20 °C, нагреется на 24 °C. Тепло это перейдет через компрессор в теплообменник, который нагреется еще сильнее (чем если бы туда поступал газ при – 20 °C!) и будет сильнее отапливать помещение.
Холодильный агрегат, как тепловой насос, перекачает тепло окружающей среды в ваш дом.
Такие установки для коттеджей уже существуют. Одна из них изображена на рис. 259. Здесь теплообменники 2 размещены в домах в качестве отопительных деталей: отдав тепло, рабочий газ, перешедший в жидкость, выпускается в расширители – испарители 1, находящиеся в скважинах в грунте. Вот так, потребляя из сети 3,5 кВт мощности на работу компрессора, этот агрегат нагревает помещение, как электрокамин мощностью 10,3 кВт! Почти перпетуум-мобиле, только тепловой!
Обратите внимание на этот необыкновенный вид нагревателей – в нем будущее! Когда электроэнергия станет дороже, а к тому все идет, отапливать дома будем холодильниками!
«Над всем, что совершается в беспредельном пространстве, в потоке преходящего времени властвует Энергия, как царица или богиня, озаряя своим светом и былинку в поле, и гениального человека, здесь даря, там отнимая, но сохраняясь в целом количественно неизменной… Но, где свет, там и тень, имя которой – Энтропия. Глядя на нее, нельзя подавить в себе смутного страха – она, как злой демон, старается умалить или совсем уничтожить все то прекрасное, что создает светлый демон – Энергия. Все мы находимся под защитой Энергии, и все отданы в жертву скрытому яду Энтропии… Количество Энергии постоянно, количество же Энтропии растет, обесценивая Энергию качественно. Солнце светит, но тени становятся все длиннее. Всюду рассеяние, выравнивание, обесценивание…».
Этот отрывок из старинной книги рисует ужасную картину приближения тепловой смерти Вселенной. И оказывается, до сих пор не найдено средство, защищающее Вселенную от тепловой гибели.
Как следует из приведенного отрывка, энтропия есть некая величина, увеличение которой в необратимых процессах (например, при превращении механической энергии в тепло) характеризует ту часть энергии тел, которая уже не может совершать полезную работу и рассеивается в окружающей среде в виде тепла.
Доказав, что работа совершается только при переходе тепла от горячего тела к холодному (иначе тепло и не переходит!), и распространив свои выводы на всю Вселенную, немецкий ученый Рудольф Клаузиус в середине XIX в. заявил о неминуемой тепловой смерти Вселенной, что потрясло общественность того времени.
Вероятнее всего, тепловая смерть нашего мира все-таки наступит. Как же это будет происходить? И что будет потом?
Постепенно выравнится температура всех тел во Вселенной. Звезды охладятся, планеты и другие холодные тела нагреются, вся энергия Вселенной «обесценится» энтропией. Никакая работа больше не будет совершаться, так как вся она уже будет совершена. Жизнь также станет невозможной, ибо жизненные процессы – тоже работа. Вселенная превратится в «тепловой мусор».
Но допустит ли Высший разум, создавший наш Мир, такое безобразие? Сейчас трудно сказать, что будет в действительности, но скорее всего тепловая смерть совпадет по времени со сжатием Вселенной, которое, по последним данным, должно наступить после ныне протекающего расширения. По-видимому, это сжатие должно в конце концов привести Вселенную к тому состоянию, которое было до Большого взрыва, эту Вселенную образовавшего. Перестанут существовать Пространство, Время, Масса, Энергия и другие основы нашего Мира в том виде, как мы это себе сейчас представляем. Весь наш состарившийся, потерявший дееспособность Мир, сжавшись в точку, перестанет, в нашем понятии, существовать. Вместе с ним перестанет существовать и «тепловой мусор» – энтропия, в которую превратится вся энергия…
Одно утешительно – произойдет это очень и очень не скоро. А вот тепловая смерть нашей земной биосферы может наступить, причем очень скоро. И вызвать ее может так называемое глобальное потепление.
Известно, что активная деятельность человека – техническая, научная, военная, сельскохозяйственная и т. д., принимающая все более глобальный характер, сильно влияет на состояние биосферы, как бы загрязняя ее. Биосфера – это «место» обитания жизни на Земле – верхняя часть коры, или почва, нижние слои атмосферы, реки, озера, моря и океаны. Загрязнения от человеческой деятельности могут быть разными – химические, радиоактивные, биологические и, наконец, тепловые. Извините, если пропущен какой-нибудь экзотический вид загрязнения, например информационный.
Так вот, считается, что принципиально преодолимы все виды загрязнений, кроме теплового. Допустим, поставил фильтры и нейтрализаторы с дожигателями на выхлопные трубы автомобилей и заводов – и нет химического загрязнения. Модернизировал системы мусоросбора и канализации – и нет загрязнения биологического. Ужесточил контроль над «светящимися» изотопами – и нет загрязнения радиоактивного. Конечно, все гораздо сложнее на самом деле, но, повторяем, принципиально со всеми этими видами загрязнений справиться можно.
А вот тепловое загрязнение, обусловленное термодинамическими законами, считается фатальным. Его можно оттянуть, снизить интенсивность его увеличения, но повернуть его вспять якобы нельзя. Потому что все виды энергии, совершая работу, переходят в тепло, которое повышает температуру окружающей среды нашей замкнутой земной системы. Особенно повышают эту температуру сжигание ископаемого топлива, получение энергии на атомных станциях, даже использование внутреннего тепла Земли и сжигание дров. Только использование природных видов энергии, которая и без нашего вмешательства перейдет в тепло, – солнечной, ветровой, гидравлической и т. д. вроде бы не даст дополнительного нагрева биосферы.
По мере нагрева биосферы повышается влажность и содержание углекислоты в атмосфере (теплая вода меньше ее растворяет, чем холодная), и имеет место парниковый эффект, когда Солнце начинает помогать дальнейшему разогреву биосферы. Повышение средней температуры биосферы на несколько градусов, чего можно ожидать уже в ближайшее время, вызовет таяние ледяных шапок Земли на севере и юге, подъем уровня океанов на 10 м и более. А это затопление огромного количества суши (хуже всего, наверное, придется Голландии, которая и сейчас почти вся ниже этого уровня!), множества крупнейших городов мира и много других бед.
А потом – еще хуже, потому что дальнейшее повышение температуры может изменить тепловое равновесие на Земле и климат станет наподобие венерианского, когда температура достигает сотен градусов и давление – десятков атмосфер. Вот и призывают ученые-экологи к бережному использованию энергии, чтобы как можно меньшее ее количество разогревало биосферу.
Но призывы эти подобны гласу вопиющего в пустыне, и скорее всего это глобальное потепление наступит. Может ли человек этому противодействовать? Автор полагает, что может, хотя почему-то об этом никто и нигде не упоминает. Вряд ли эта мысль никому не приходила в голову.
Мысль эту подсказывают вулканы. Извергаясь, они выбрасывают настолько много пепла (рис. 260), что он годами носится в верхних слоях атмосферы, заслоняя Солнце. И наступают годы глобального похолодания. Сравнительно недавно, в 1883 г. такое случилось с индонезийским вулканом Кракатау. Этот вулкан во время одного из своих самых чудовищных извержений выбросил в верхние слои атмосферы так много пепла, вращавшегося вокруг Земли вместе с пассатами, что за несколько лет существенно снизил температуру биосферы на Земле. А заодно появились и несколько лет простояли необыкновенно яркие зори. Нет худа без добра – может быть, без этого извержения глобальное потепление уже наступило бы…
Заметим, что лет 20 назад, когда говорили об ужасных последствиях предполагаемой ядерной войны, не забывали упоминать о пресловутой «ядерной зиме». Вроде бы от многочисленных сильных взрывов в стратосферу может попасть столько пыли, что солнечный свет перестанет проникать на Землю и наступит «великое оледенение».
Так вот где решение этой, казалось бы, неразрешимой проблемы. Конечно, не стоит провоцировать нового извержения Кракатау или развязывать ядерную войну, но забросить в верхние слои атмосферы в районе экватора сотню-другую самолетов или ракет с алюминиевой пылью или аналогичным светоотражающим порошком не помешало бы. Или, имитируя извержение вулкана, выстреливать из врытой в землю огромной пушки, наподобие жюль-верновской «колумбиады» огромными, разрывающимися в стратосфере снарядами, начиненными пылевидными материалами – той же алюминиевой пудрой, пудрой из мела, песка, глины или другого дешевого материала. Желательнее всего стрелять из такой пушки где-то вблизи экватора. Мелкодисперсная пыль, увлекаемая пассатами и еще более сильными и постоянно дующими ветрами в тропопаузе, на высоте всего 10—12 км, распределилась бы в зоне тропиков и около них и продержалась бы годами. Отражающая способность, или альбедо, Земли существенно возросла бы, поток солнечной энергии на Землю убавился бы, компенсируя выброс тепла от человеческой деятельности, и тепловое равновесие было бы восстановлено. Да и жители тропиков были бы довольны хотя бы временным снижением изнуряющей жары, сэкономили бы на кондиционерах, кроме всего прочего. Причем есть время на подготовку такого проекта века или даже тысячелетия – десяток-другой лет.
Как уже говорилось, Рудольф Клаузиус доказал, что тепло может непосредственно (без преобразований!) переходить только от горячих тел к холодным. Это называется вторым началом термодинамики. Конечно, с помощью преобразователей энергии – машин можно передать тепло от холодных тел горячим. Ну, например, холодной батарейкой от карманного фонаря раскалить горячий волосок лампочки. Но это происходит с преобразованиями форм энергии и опять же с переходом части ее в низкотемпературное тепло. А чтобы обратно – от холодных к горячим, – так тепло не ходит, хотя принципиального запрета на это нет.
Последняя фраза как будто прямо призывает искать такие процессы, которые полностью превращали бы тепло в движение, иначе говоря, позволяли теплу переходить от менее нагретых тел к более нагретым. Что это обеспечило бы миру, ясно без слов. Мы имели бы неограниченное количество энергии, причем не боялись при этом нагревания, теплового загрязнения окружающей среды и, разумеется, тепловой смерти нашего Мира.
Эту идею поддерживал и К. Э. Циолковский, он сам работал над полным превращением тепла в работу. Циолковский считал, что в природе существуют процессы концентрирования энергии, обратные процессам рассеяния, поэтому получается «вечный круговорот материи», вечно возрождающаяся юность Вселенной. Отыскать механизмы, концентрирующие энергию, освоить их, использовать для утоления энергетического голода – вот задача, которую ставил Циолковский.
Решить такую задачу, правда, по-своему, попытался еще в 1871 г. великий английский ученый Джеймс Максвелл. Он приписал функции подобного механизма некоему фантастическому существу, названному позже «демоном Максвелла». Это существо, утверждал ученый, обладает столь изощренными способностями, что может следить за каждой отдельной молекулой в ее движениях и знать ее скорость. Если взять сосуд, разделенный перегородкой на две части, и посадить «демона» у дверцы в перегородке, мы можем заставить его открывать дверцу только перед быстрыми или только перед медленными молекулами. «Демон» будет пропускать быстрые молекулы в одну часть сосуда, а медленные – в другую, тогда в одной части сосуда и температура, и давление окажутся выше, чем в другой, то есть мы без затраты работы получим неограниченный запас энергии.
«Демон Максвелла», придуманный более 100 лет назад, и ныне будоражит умы людей. Много раз ученые убедительно доказывали, что это лишь шутка великого физика, не имеющая никакой реальной основы игра воображения. Действительно, если бы в сосуде были всего две молекулы, то и без «демона» они в половине случаев могли бы оказаться в какой-либо одной части сосуда. Если же молекул много, то вероятность подобного случая чрезвычайно мала. Академик А. Ф. Иоффе оценил возможность процессов концентрации энергии дробью, в которой после запятой идут еще восемьдесят четыре нуля. Это гораздо меньше вероятности получения в столкновении «Москвича» и «Запорожца» совершенно нового «Мерседеса».
Однако страсти не унимаются, приверженцы «демона» стараются найти все новые аргументы в его защиту. В одном из научных журналов, в статье, посвященной проблеме «демона Максвелла», всерьез говорится о том, что роль «демона» в разделении молекул с разной энергией взял на себя квантовый генератор – лазер, который отделяет возбужденные молекулы с большой энергией от невозбужденных.
Утверждают, что разделение молекул по скоростям в потоке молекул газа якобы происходит в вакуумной камере под воздействием гравитационного поля Земли: дескать, в этих условиях медленные молекулы больше отклоняются от первоначальной траектории, чем быстрые. Кроме того, заявляют, будто измерения температуры кипения жидкости в различных ее частях показали отклонения, достигающие десятков градусов. Как, если не с помощью «демона Максвелла», они могли возникнуть?
Однако до сих пор нет ни строгих доказательств возможности перехода тепла от холодных тел к горячим, или, как этот процесс иногда называют, энергетической или тепловой инверсии, ни строгих его опровержений, что и подогревает интерес к дальнейшим поискам.
Так что ищите, если хотите, хотя вероятность находки исчезающе мала…
После «демона Максвелла», которого старательно ищут изобретатели всех стран и народов, не мешало бы поговорить о тепловых «вечных двигателях», которые… работают. Поливают огурцы, например.
И хотя это не совсем «вечные», а скорее двигатели на даровой энергии, но все, кто их видит, почему-то считают их вечными. Сначала расскажем о «вечном двигателе», который автор сделал на даче для полива огурцов. Вот как изготовить его самому.
Обычную 200-литровую бочку окрашиваете снаружи в черный цвет (как говорят, чтобы тепло притягивала). Переворачиваете бочку отверстием для пробки вниз и вставляете в это отверстие резиновую пробку с двумя шлангами, на одном из которых – всасывающий клапан, а на другом – нагнетающий (эти клапаны легко изготовить из «пальцев» от резиновой перчатки или снять со старого противогаза). Шланг с всасывающим клапаном помещаем в бассейн, другую бочку и т. д., а с нагнетающим – например, в теплицу, которую надо поливать (рис. 261). Ночью бочка охлаждается, давление в ней падает, и она всасывает воду. Днем бочка нагревается, особенно если день солнечный, давление в ней растет и выталкивает одно-два и более ведра воды через нагнетающий клапан, поливая растения. Можно на неделе и не ездить на дачу – полив будет обеспечен! Какой еще «вечный двигатель» сослужит вам такую службу?
Но чаще всего такие двигатели на даровой энергии используют для подзаводки часов. Вот, например, самозаводящиеся часы, основанные на тепловом расширении металлов. Их механизм изображен на рис. 262. Главная часть его – стержни Z1 и Z2, сделанные из металла с большим коэффициентом теплового расширения, например алюминия. Стержень Z1 упирается в зубцы колеса X так, что при удлинении этого стержня от нагревания зубчатое колесо немного поворачивается. Стержень Z2 зацепляет за зубцы колесо Y при укорочении от холода и поворачивает его в том же направлении. Оба колеса насажены на вал W1, при вращении которого поворачивается большое колесо с черпаками. Черпаки захватывают ртуть, налитую в нижний желоб, и переносят в верхний, оттуда ртуть течет к левому колесу, также с черпаками. Наполняя последние, ртуть заставляет колесо вращаться, при этом приходит в движение цепь К, охватывающая колеса К1 (на общем валу W2 с большим колесом) и К2; последнее колесо закручивает заводную пружину часов. Ртуть, вылившаяся из черпаков левого колеса, стекает по наклонному желобу R1 чтобы опять начать свое перемещение.
Механизм, как видим, должен двигаться не останавливаясь до тех пор, пока будут удлиняться или укорачиваться стержни Z1 и Z2. Следовательно, для завода часов необходимо только, чтобы температура воздуха попеременно то повышалась, то понижалась. Но именно это и происходит само собой, а всякая перемена в температуре окружающего воздуха вызывает удлинение и укорочение стержней, вследствие чего медленно, но постоянно закручивается пружина часов.
Вообще, изобретатель таких самозаводящихся часов был большим затейником. К тому же, видимо, он пытался подарить эти часы своему злейшему врагу, чтобы отравить его ртутными парами. По крайней мере, вся эта затея с ртутью и черпаками выглядит каким-то наворотом. Прекрасно заводились бы часы только от вращения первого колеса с зубцами. К тому же изобретателю надо было сказать, что ось этого колеса закреплена на основании материалом, имеющим низкий коэффициент теплового расширения, например сталью. Вот такие часы на двух столбах – стальном и алюминиевом, безо всякой там ртути, строились и работали на улицах в Швейцарии. Днем, когда тепло, столбы удлинялись – алюминиевый вдвое сильнее, чем стальной, а ночью, когда холодно, они укорачивались. Часы работали.
а – схема: 1 – трубка с глицерином; 2 – груз; б – общий вид с трубкой, скрытой в цоколе часов
Другой образец самозаводящихся часов сходного устройства показан на рис. 263. Здесь главной действующей частью является глицерин, сильно расширяющийся с повышением температуры воздуха и поднимающий при этом некоторый груз, опускание которого и движет механизм часов. Так как глицерин затвердевает лишь при – 30 °C, а кипит при 290 °C, то механизм этот пригоден для часов на городских площадях и других открытых местах. Колебания температуры на 2 °C уже достаточно для обеспечения хода таких часов. Один экземпляр их испытывался в течение года и показал вполне удовлетворительный ход, хотя за то время к механизму не прикасалась ничья рука.
Выгодно ли по тому же принципу устраивать двигатели более крупные? На первый взгляд кажется, что подобный даровой двигатель должен быть очень экономичен. Вычисление, однако, показывает другое. Для завода обыкновенных часов на целые сутки нужно энергии всего около 1,5 Дж. Это составляет в секунду около 2 · 10 – 5 Дж. Иначе говоря, мощность этого механизма и есть 2 · 10 – 5 Вт. Даже если стоимость этого механизма мы оценим всего в 10 долларов, то 1 кВт мощности нам обойдется в 50 миллионов долларов!
И в заключение нельзя обойти вниманием еще одни самозаводящиеся часы, на сей раз работающие от изменения атмосферного давления.
В XVIII в. один изобретатель использовал барометр для завода часового механизма и таким образом построил часы, которые сами собой заводились и шли безостановочно (рис. 264). Известный английский механик и астроном Фергюссон видел это интересное изобретение и в 1774 г. отозвался о нем так:
«Я осмотрел вышеописанные часы, которые приводятся в непрерывное движение подъемом и опусканием ртути в своеобразно устроенном барометре; нет основания думать, чтобы они когда-либо остановились, так как накопляющаяся в них двигательная сила была бы достаточна для поддержания часов в ходу на целый год, даже после полного устранения барометра. Должен сказать со всей откровенностью, что, как показывает детальное знакомство с этими часами, они являются самым остроумным механизмом, какой мне когда-либо случалось видеть – и по идее, и по выполнению».
К сожалению, опять имеем дело с ртутью. Сколько человек отравилось ее парами, сейчас неизвестно. Рассказывают только, что при золочении куполов церквей ртутной амальгамой люди гибли десятками. Хитер был Галилей: не имел дела со ртутью – прожил более 80 лет. А ученик его Торричелли! Вы посмотрите только на рисунок, где он изобретает барометр! Ведь ртуть там в огромных открытых, можно сказать, корытах! По нынешним санитарным нормам это преступление. Вот и умерли молодыми и Торричелли, и Паскаль…
Римляне тоже не знали, что свинец токсичен, и ели из свинцовой посуды. Говорят, что это – одна из причин гибели Древнего Рима…
Да, что-то около этого, потому что первый тепловой, а именно паровой, двигатель придумал не Джеймс Уатт, как многие думают, а уже известный нам Герон Александрийский почти 2 тысячи лет назад.
Но еще раньше, более 2 тысяч лет назад, Архимед придумал и построил паровую пушку, которая тоже была некоторым образом паровой машиной, хотя и однократного действия. Пушка эта называлась сложно – архитронито (переводится с греческого как «сверхгром» или «супергром»).
Что за человек был Архимед? Ведь он сделал для науки и техники гораздо больше, чем в состоянии сделать один человек. Великий римский оратор Цицерон так сказал об Архимеде: «Я полагаю, что в этом сицилийце было больше гения, чем может вместить человеческая природа».
А вот как писал об Архимеде античный историк Плутарх:
«И нельзя не верить рассказам, будто он был тайно очарован некоей сиреной, не покидавшей его ни на миг, а поэтому забывал он и о пище, и об уходе за телом, и его нередко силой приходилось тащить мыться и умащаться, но и в бане он продолжал чертить геометрические фигуры на золе очага и даже на собственном теле, натертом маслом, проводя пальцем какие-то линии, – поистине вдохновленный музами, весь во власти великого наслаждения. Архимед был человеком такого возвышенного образа мыслей, такой глубины души и богатства познаний, что о вещах, доставлявших ему славу ума не смертного, а божественного, не пожелал написать ничего, но, считая сооружение машин и вообще всякое искусство, сопричастное повседневным нуждам, грубым и низменным, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают, не смешиваясь с потребностями жизни».
В рукописях Леонардо да Винчи сохранились эскизы и описания архитронито. Эскизы приведены на рис. 265.
Главной частью этого орудия является ствол 1. Задняя часть ствола примерно на треть длины помещена в жаровню 2. Правее и выше жаровни мы видим водяной бачок 3 с краном. Перед стрельбой в ствол вводят ядро, раскаляют на жаровне заднюю часть ствола и вводят в нее из бачка с помощью крана порцию воды. Вода мгновенно превращается в пар, который своим давлением выбрасывает ядро. Леонардо считал, что орудие способно бросать ядро весом 1 талант (24 кг) на расстояние шести стадий (чуть более 1 км).
Наш современник грек И. Саккас построил модель архитронито по эскизам Леонардо. Ядро этой модели – теннисный мячик, заполненный цементом, пролетел 40 м. Скромно, но ведь это всего лишь модель.
Есть все основания считать архитронито тепловым двигателем – в нем есть цикл сжатия, который происходит одновременно с нагревом, а расширение пара – в процессе движения ядра в стволе. Но все-таки настоящим паровым двигателем в полном смысле этого слова, непрерывно действующим и выделяющим энергию в виде вращения, был, конечно же, эолипил Герона Александрийского. Эол в древнегреческой мифологии – бог ветров. Отсюда и название машины.
Сосуд с водой шарнирно соединялся двумя трубками с полым шаром, содержащим два сопла, загнутых в одну и ту же сторону (рис. 266). Когда под сосудом разводили огонь, пар по трубкам попадал в шар и по соплам вырывался наружу. Древние не знали, что такое пар, они думали, что вода при нагревании переходит в горячий воздух. Сам Аристотель об этом говорил, поэтому и Герон был уверен, что из сопел вырывается горячий ветер.
Как и положено реактивной турбине, она, шипя и свистя, начинала быстро вращаться. Однако турбина не выполняла никакой полезной работы, хотя вполне могла бы это делать. По этому же принципу сейчас работают центробежные маслоочистители на автомобилях, только вместо пара там из сопел вырывается масло.
Лишь в XVII в. эолипил Герона или его аналог нашел практическое применение. В 1629 г. римский архитектор Дж. Бранка опубликовал книгу «Различные машины», где рассказал о своем изобретении. Тот же резервуар с водой в виде человеческой головы, та же турбина (только не реактивная, а активная с лопатками), с приводом на тяжелые песты для дробления руды (рис. 267).
Первое применение паровой машины в качестве водяного насоса опять же принадлежит Герону Александрийскому (рис. 268).
1 – резервуар; 2, 6 – трубки; 3 – шар; 4 – сифонная трубка; 5 – сосуд
Устройство имеет резервуар 1, заполненный водой. На крыше резервуара укреплены шар 3 и сосуд 5. Верхняя часть полости шара 3 сообщена с водяным объемом резервуара 1 трубкой 2. Водяной объем шара 3 соединен с сосудом 5 сифонной трубкой 4. Устройство устанавливается на месте, открытом солнечным лучам. В солнечную погоду шар 3 нагревается, и давление пара в нем увеличивается. Под давлением пара вода из шара 3 поступает в трубку 4. После заполнения трубки 4 вода начинает поступать в сосуд 5. Перекачивание воды происходит как под действием избыточного давления в шаре 3, так и вследствие сифонного эффекта, т. е. сосуд 5 заполняется водой и в пасмурную погоду до тех пор, пока уровни в вазе и шаре не сравняются. Избыток воды из сосуда 5 сбрасывается в резервуар 1 по трубке 6. Ночью шар 3 охлаждается, и пар, заполняющий верхнюю полость шара, конденсируется. При этом в шаре образуется вакуум, т. е. давление падает ниже атмосферного. Под действием образовавшейся разности давлений по трубке 2 в шар 3 начинает поступать вода из резервуара 1. Так происходит заполнение шара 3 перед последующим дневным циклом.
Напоминает описанный ранее «вечный двигатель» для поливки огурцов. Не хватает только клапанов и теплицы с огурцами. Обидно даже, как этот Герон сумел всех опередить!
Но практического применения все эти машины в античном мире не нашли. Была дешевая сила животных и рабов, и машины тогда были лишь в качестве игрушек.
Первые промышленные паровые машины появились в Англии в виде водяных насосов для откачки воды из шахт и рудников. Раньше эту работу выполняли животные на ступальных колесах. На некоторых рудниках число лошадей, работающих на откачке воды, достигало 500. Угледобывающая промышленность Англии буквально гибла от непомерной стоимости откачки воды из шахт. Вот тут-то и появилась необходимость в тепловой машине, которая, потребляя имеющиеся в избытке уголь и воду, могла бы заменить лошадей.
И первой паровой машиной, откачивавшей воду из рудников, была «огненная машина» английского военного инженера Томаса Севери (1650—1715). Томас Севери получил патент на свою машину в 1698 г. Эта машина (рис. 269) имела один сосуд 1, верхняя часть которого соединялась трубкой 7 с котлом 2. Котел имел предохранительный клапан 4 и трубку 3 для заполнения котла водой. К сосуду 1 присоединялись также всасывающая трубка 12 с клапаном 11 и нагнетающая трубка 6 с клапаном 10. Машина была снабжена баком 8 с краном 9. При открытии крана 5 пар из котла 2 подавался в сосуд 1, выгоняя оттуда воду по трубке 6. Клапан 10 при этом открыт, а клапан 11 закрыт. В конце нагнетания кран 5 закрывался, и через кран 9 в сосуд 1 подавалась холодная вода. Пар в сосуде 1 охлаждался, конденсировался, и давление падало, засасывая туда воду по трубке 12. Клапан 11 при этом открывался, а клапан 10 закрывался. Так как необходимо было периодически поворачивать оба крана – 5 и 9, их соединили пластиной.
В машине Севери, как и у Герона, использовались как избыточное давление пара, так и вакуум, возникающий при конденсации пара.
1 – тяга; 2 – груз; 3; 8 – цепи; 4; 6 – плечи балансира; 5 – балансир; 7 – бачок; 9 – поршень; 10 – цилиндр; 11; 13 – краны; 12 – котел
Но настоящий переворот в технике принесли лишь поршневые паровые машины. Среди их создателей первым был англичанин Томас Ньюкомен (1663—1729), кузнец по профессии, инженер-самоучка. Он сам устанавливал машины Севери на рудниках и хорошо знал об их недостатках – невозможности откачки воды из глубоких шахт.
В машине Ньюкомена мощностью 7,5 кВт, построенной в 1725 г., установленные в шахте насосы приводились длинной тягой 1 (рис. 270), подвешенной вместе с грузом 2 с помощью цепи 3 на одном из плеч 4 балансира 5. Другое плечо 6 балансира такой же цепью 8 было соединено с поршнем 9, установленным в вертикальном цилиндре. Пар в цилиндр 10 подавался из котла 12 с помощью крана 11. Этот кран открывали, когда поршень находился в нижнем положении. Избыточным давлением пара поршень поднимался в верхнее положение. Совершался холостой ход, тяга 1 опускалась.
В верхнем положении поршня кран 11 закрывался. Одновременно открывался кран 13, и в цилиндр впрыскивалась холодная вода из бачка 7. Пар в цилиндре конденсировался, в результате чего в нем создавался вакуум. Под действием атмосферного давления поршень опускался. Совершался рабочий ход, и тяга 1 поднималась.
Таким образом, машина Ньюкомена была скорее атмосферной, чем чисто паровой, так как рабочий ход у нее осуществлялся не давлением пара, а именно атмосферным давлением. Атмосферные машины были огромной величины при скромных мощностях. Кстати, атмосферная машина русского инженера-самоучки И. Ползунова (1728—1766), заработавшая через неделю после его смерти, тоже была громадной по размерам. Да и КПД таких машин был ничтожно мал.
Первой настоящей паровой поршневой машиной (подчеркнем это, так как вообще первая паровая машина – все-таки эолипил Герона!) была машина, созданная Джеймсом Уаттом (1736—1819) в Англии в 1774 г. (рис. 271). Только в его машине именно пар своим давлением осуществлял рабочий ход поршня. Даже первая машина Уатта оказалась вдвое экономичнее машин Ньюкомена, не сравнивая уже их размеры. КПД лучших машин Уатта достигал фантастической величины в… 2,7 %! Нам эта цифра смешна, но именно машины Уатта изменили промышленную энергетику, именно они превратили XIX в. в век пара.
Но все-таки эолипилы, или паровые турбины, оказались победителями среди паровых машин. Они единственные служат и сейчас на тепловых и атомных электростанциях, мощных судах (рис. 272). Их КПД на порядок выше, чем у машин Уатта, не говоря уже о мощностях в сотни мегаватт! Хитрый грек Герон и в этом опередил всех – он открыл паровую турбину!
Но как бы то ни было, а подавляющее большинство современных тепловых двигателей – внутреннего сгорания. Они и на автомобилях, и на тракторах, мотоциклах, сельхозмашинах, на большинстве судов и мало ли еще где, даже на самолетах.
Как же они возникли? Делалось много безуспешных попыток создать двигатель, в котором топливо сжигалось бы не вне рабочего объема машины (цилиндров), как у паровых машин, а внутри его. Это должно было резко повысить КПД тепловой машины. Первая такая попытка принадлежит французу Лебону (1769(67) – 1804) – изобретателю светильного газа, двигатель на котором он запатентовал в 1801 г.
Но только в 1860 г. бельгийскому инженеру Ж. Ленуару (1822—1900) удалось создать работоспособный и используемый в промышленности двигатель внутреннего сгорания, тоже на светильном газе. Не удивляйтесь, но на газе, полученном нагреванием дерева без доступа воздуха (термолизом), изобретенном в 1799 г. Лебоном, работали некоторые советские грузовики 40 – 50-х гг. ХХ в.
Изготовленный Ленуаром двигатель напоминал паровую машину (рис. 273). Двигатель был с золотниковым распределителем. Один из золотников (нижний) обеспечивал поочередную подачу воздуха и газа в полости цилиндра, расположенные по разные стороны поршня. Второй золотник (верхний) служил для выпуска отработанных газов. Газ и воздух до попадания в цилиндр не сжимались и к золотнику подводились по отдельным каналам. Всасывание смеси в каждую полость происходило примерно до половины хода, после чего золотник перекрывал впускное окно, и смесь воспламенялась искрой. Давление сгоревшей смеси возрастало и действовало на поршень, производя работу расширения. После окончания расширения второй золотник соединял цилиндр с выхлопной трубой, и поршень вытеснял отработанные газы.
а – общий вид; б – схема: 1 – поршень; 2; 4 – золотники; 3 – цилиндр
Вращался двигатель Ленуара с частотой порядка 100—150 оборотов в минуту, мощность его была около 0,5 кВт. Но КПД был всего 3 %, т. е. меньше, чем у тогдашних паровых машин. Но все-таки таких двигателей построили во Франции и Англии около 300, и на выставке 1864 г. двигателю Ленуара было присуждено первое место.
Тем не менее после изобретения двигателя Н. Отто и Э. Лангена и демонстрации его на парижской выставке 1867 г., двигатель Лену-ара был обречен. КПД нового двигателя был в 5 раз больше и достигал 15 % – цифры в то время неслыханной. И хотя эти, а также последующие двигатели Н. Отто строились на мощности до 1 000 лошадиных сил, они работали опять же на газе – светильном, доменном и др., т. е. им не было места на автомобилях.
Но главное, что совершил Н. Отто в двигателестроении, – это разработка в 1877 г. четырехтактного цикла действия двигателей: всасывание, сжатие, расширение (рабочий ход), выхлоп, по которому работает большинство двигателей и сейчас.
Применение двигателей внутреннего сгорания на транспорте могло быть реальным только при жидком топливе, которое можно компактно хранить в баках. Самым удобным, хотя и опасным видом топлива оказался бензин – он легко испарялся в воздухе и образовывал горючие смеси. Первый бензиновый двигатель был построен в 1884 г. русским инженером И. С. Костовичем для дирижабля. Дирижабль, к сожалению, сгорел, а двигатель мощностью около 50 лошадиных сил остался цел и невредим, так как хранился отдельно от дирижабля. Никто его так и не использовал. Надо же – построить двигатель специально для дирижабля, как будто автомобилей и не существовало! И судьба двигателя, возможно, оказалась бы счастливее…
Предком современных бензиновых двигателей считается двигатель 1885 г. немецких инженеров Г. Даймлера (1834—1900) и В. Майбаха (1846—1929), развивавший мощность 0,5 лошадиной силы при объеме цилиндра 0,25 л и частоте вращения 200 оборотов в минуту.
Изобретатели поставили его на деревянный велосипед и получили первый в мире мотоцикл, тоже, разумеется, деревянный. А так как двигатель не мог эффективно работать без карбюратора, приготовляющего рабочую смесь (о карбюраторе мы уже говорили выше), то годом создания эффективного бензинового двигателя (рис. 274) нужно считать год патентования В. Майбахом карбюратора – 1893-й. Частота вращения двигателей постепенно росла и в 1914 г. составила 2 000 оборотов в минуту (сейчас она примерно в 3 раза выше).
1 – привод на маслонасос; 2 – распределительный вал; 3 – водяная помпа; 4 – поршень; 5 – запальная свеча; 6 – радиатор; 7 – топливный бак; 8 – карбюратор; 9 – выхлопная труба; 10 – магнето (генератор высокого напряжения)
Но… (Опять это «но»! Бензиновые двигатели завоевывали мир, они были почти на всех автомобилях, какое может быть «но»?) Но они имели все-таки небольшой КПД, который принципиально нельзя было повысить. Дело в том, что когда начинали повышать степень сжатия, т. е. все больше и больше сжимать рабочую смесь в цилиндрах именно для повышения КПД, смесь паров бензина с воздухом не выдерживала нагревания и взрывалась совсем не тогда, когда ей было положено. Почти как в пневматической зажигалке древних народов, о которой мы уже говорили…
Вот тут-то самый раз рассказать о дизельных двигателях, лишенных этого недостатка. Первый патент автора дизельных двигателей немецкого инженера Р. Дизеля относится к 1892 г. Суть работы этого двигателя ясна из формулы изобретения к этому патенту (приводимой здесь в сокращении): «Способ работы для двигателей внутреннего сгорания такого рода, что в цилиндре при помощи поршня сжимается чистый воздух… так, что достигаемая при этом температура значительно превышает температуру воспламенения применяемого горючего вещества, после этого производится постепенный впуск топлива, и вследствие этого его сгорание…»
Стало быть, чистый воздух можно сжимать до давлений, в несколько раз превышающих давления сжатия в бензиновых двигателях, без боязни того, что воздух, чего доброго, взорвется. Это давление доходит до 30—40 МПа, и температура воздуха при этом повышается до 500—700 °C. Впрыснутая особыми насосами и форсунками в этот сжатый и раскаленный воздух солярка тотчас же загорается и совершает работу по продвижению поршня с гораздо более высоким КПД, чем в бензиновых двигателях. Да и не только солярка, а любое топливо при такой температуре загорится, даже угольный порошок, который поначалу собирался всыпать в цилиндр сам Дизель.
1 – поршень; 2 – топливный насос; 3 – топливный бак; 4 – воздушный фильтр; 5 – клапаны; 6 – выхлопной патрубок; 7 – распределительный вал; 8 – привод масло-насоса; 9 – водяная помпа; 10 – радиатор
Как бы то ни было, КПД дизельного двигателя (рис. 275) вырос как минимум в 1,5 раза по сравнению с карбюраторными двигателями, да и само дизельное топливо было дешевле бензина. Вот почему дизельные двигатели успешно вытесняют бензиновые, прежде всего на мощных грузовых автомобилях. Во время Великой Отечественной войны с Германией наши танки оснащались именно дизельными двигателями, что во многом определяло их преимущества по сравнению с немецкими бензиновыми. Вот как дизель – немецкое изобретение – помог выиграть нам войну с Германией.
В настоящее время в связи с заменой карбюратора системами непосредственного впрыска топлива позиции дизельного и бензинового двигателей сближаются, что всем идет на пользу.
И наконец, самый «молодой» двигатель внутреннего сгорания, к тому же самый малогабаритный и легкий, самый мощный, самый перспективный. Такие двигатели используют как на вертолетах и самолетах, так и на электростанциях для выработки электроэнергии из газа. Этот двигатель называется газотурбинным, или газовой турбиной, и он, как говорится, уже на подножке автомобиля. Пока им оснащают опытные конструкции, но уже скоро он будет стоять на грузовых автомобилях и автобусах, а также, возможно, на легковых автомобилях.
1 – компрессор; 2 – регенератор; 3 – камера сгорания; 4 – форсунка; 5 – топливный насос; 6 – турбина
Газовая турбина – роторный двигатель. На лопатках его ротора энергия газа преобразуется в механическую работу (рис. 276). В компрессор 1 турбины поступает воздух и сжимается в нем за счет части работы, производимой турбиной. Сжатый воздух идет в регенератор (теплообменник) 2, где немного подогревается отработавшими в турбине горячими газами. Затем он попадает по трубе в полость между двойными стенками камеры сгорания 3. Здесь он подогревается еще сильнее и направляется в камеру сгорания вместе с топливом, которое насос 5 подает через форсунку 4. В камере сгорания образуются газы с очень высокой температурой и давлением. Через сопло они устремляются на рабочее колесо 6 турбины. Совершив работу, газы покидают установку через регенератор, нагревая поступающий из компрессора воздух. Запускается такая турбина пусковым электродвигателем – стартером.
Стать автомобильным двигателем уже сейчас газовой турбине мешают две причины: неэкономичность маломощных двигателей (а автомобильный двигатель по сравнению с электростанцией – лилипут), а также… сильный шум при работе. Первый недостаток уже преодолен разработкой особых жаропрочных керамических материалов для турбин, что сделало КПД газотурбинного двигателя не ниже дизельного, а второй успешно преодолевается специальными акустическими мерами.
И здесь первым оказался Герон – газовая турбина тоже ведь эолипил, хотя и газовый!
А что же можно называть автомобилем? Хорошо, колесница – это не автомобиль, так как экипаж тащит лошадь. А если лошадь поставить на шасси и заставить через трансмиссию приводить колеса (рис. 277), то будет ли тогда колесница автомобилем?
Многие (в том числе и автор) считают, что это уже автомобиль. Автомобилем можно называть такой экипаж, который едет с помощью ведущих колес, содержит двигатель (в том числе и живой), имеет привод от двигателя к ведущим колесам и меняет направление движения манипуляцией с колесами. То есть его маршрут определяют не рельсы – направляющие, а непосредственно водитель, управляющий колесами – их поворотом, торможением и т. д.
Тогда автомобилю, как и двигателю, тоже около 2 тысяч лет, даже больше. Например, мускулоход Деметрия Фалернского, датированный 308 г. до н. э. (рис. 278), имел все необходимое, чтобы признать его автомобилем, а именно: двигатель-человек на ступальном колесе, привод от ступального колеса к ведущим задним колесам, а также управляемое переднее колесо. Дизайн экипажа в виде улитки вполне соответствовал скорости движения.
Доктор философии Джовани да Фонтана создал мусколоход, чертеж которого сохранился до сих пор (рис. 279). Внешне он напоминает маленький городской автомобиль, этакий сити-кар XV века, так как построен он был в 1420 г.
А вот парализованный часовщик из города Альтдорфа Стефан Фарфлер в 1680 г. изготовил для себя инвалидную коляску с приводом единственного колеса от рукоятей с зубчатой передачей (рис. 280). Так что «самобеглая коляска» русского крестьянина Леонтия Шамшуренкова, построенная в 1752 г. и приводимая в движение двумя спрятанными в ней людьми, отнюдь не являлась первым автомобилем, за который ее многие годы выдавали.
Но самокатка знаменитого И. П. Кулибина, имевшая, помимо мускульного привода, еще и маховичный, своеобразную коробку передач и рекуперативный пружинный тормоз (рис. 281), была действительно чудом, обогнавшим время.
В наше время мусколоходы блестяще представлены велосипедами и веломобилями, причем последним предсказывают большое будущее.
Строились автомобили и на накопленной механической энергии. И если об автомобиле с приводом от маховика мы уже говорили, то были и пружинные автомобили, о которых известно из истории транспорта. Пружиномобиль с мускульным подзаводом для выездов королей оказался буквально безделушкой по сравнению с заводным пружинным омнибусом, построенном в США в городе Новом Орлеане в 1870 г.
Омнибус массой около 500 кг был снабжен восемью пружинными двигателями из стальных ленточных пружин. Утверждают, что пружинный омнибус развивал мощность в 16 лошадиных сил (около 12 кВт) и перевозил десяток пассажиров. Но, зная о малой удельной энергии пружин, можно думать, что пробег омнибуса был очень незначителен – сотни метров, если не меньше.
Автор знает об этом из собственного опыта, так как в свое время построил гибрид из маховика и пружин с приводом на колеса лобовым вариатором. Распугивая студентов, он разъезжал на этом чуде по коридорам Политехнического института в городе Тольятти, где он тогда работал.
Если же говорить об автомобилях обязательно с тепловыми двигателями, то первым был автомобиль с паровым двигателем, который появился в Китае в 1668 г. Изготовил его в Пекине миссионер ордена иезуитов бельгиец Фердинанд Вербист, служивший астрономом при дворе императора Канси. На тележке находилась реторта с трубкой, направленной на турбину, соединенную шестернями с ведущими колесами (рис. 282). Машина имела 60 см в длину. При разведении огня под ретортой вырывающийся из нее пар вращал турбину, и автомобиль двигался, причем мог ездить больше часа. Тележка была неуправляемой, никто на ней не ездил, хотя принципиально она вполне могла быть изготовлена больших размеров и возить людей.
Паровой реактивный автомобиль Ньютона появился уже гораздо позже.
А дальше произошла интересная история. Изобретатель парового двигателя Дж. Уатт, которому сам Бог, казалось, велел заниматься паровыми автомобилями, вдруг на старости лет стал ретроградом и, пользуясь своими патентными правами, начал запрещать строить паромобили. Уильям Мердок, один из учеников Уатта, тайком построил действующий небольшой паромобиль (рис. 283) и испытывал эту «огнедышащую машину» по ночам (что привело к смерти от страха случайно встретившего этот паромобиль священника).
Во Франции же, где английский патент Уатта не имел силы, артиллерийский офицер Н. Кюньо разработал и построил паровой автомобиль – лафет с двухцилиндровой паровой машиной (рис. 284). Это фактически первый полноразмерный паровой автомобиль массой 4,5 тонны с приводом на переднее управляемое колесо, на котором, кстати, и «висел» паровой двигатель с котлом.
а – чертеж; б – наезд паромобиля на стенку (старинный рисунок)
В результате машина плохо слушалась руля и постоянно наезжала своим опасным котлом и кочегаркой на стены домов и ограды, что видно из старинного рисунка (см. рис. 284, б). От французского слова «шофер», что означает «кочегар», и пошло название профессии водителя.
Неудачи первых паровиков не сломили энтузиастов, и вскоре появились более изящные паромобили, например английский паромобиль изобретателя Р. Треветика (рис. 285), построенный в 1803 г.
Появились и паровозы, первый из которых был построен также Р. Треветиком в 1803 г. (рис. 286). Вообще, Ричард Треветик, один из самых талантливых создателей парового транспорта, был проклят Уаттом (который, как уже было упомянуто, деспотически запрещал паровой транспорт), умер в полной нищете и был похоронен в безымянной могиле для нищих. Но его дело не пропало даром, и вскоре появились паровозы – как «ногастые» уроды (рис. 287 а, б), так и знаменитый красавец «Ракета» Дж. Стефенсона (рис. 288), которого многие считают создателем паровоза вообще. Ведь XIX в. был веком триумфа паромобилей, а паровозы сохранились до половины XX в. Автор этих строк имел счастье в детстве ездить на поездах с паровозной тягой, где после выхода поезда из туннеля пассажиры вытирали сажу с лиц друг у друга. А что делалось в старом Лондонском метро, где поезда, ведомые паровозом, ходили по туннелям, представить трудно!
Современная эра автомобиля начинается с использования на колесном экипаже двигателя внутреннего сгорания. Обычно считают, что первый автомобиль с таким двигателем построил Карл Бенц в 1885 г. (рис. 289). Даже столетие автомобиля отмечали в 1985 г. Между тем еще в 1864 г. австрийский инженер-электротехник Зигфрид Маркус на 21 год раньше Бенца создал первый автомобиль с двухтактным бензиновым двигателем с электрическим зажиганием!
Но почему-то вклад Маркуса в автомобилестроение был забыт, а создателями первых автомобилей были объявлены те, кто организовал их производство и продажу – Даймлер и Бенц!
Автомобиль Маркуса (рис. 290), который он построил в 1874—1878 гг. (это была следующая модель), до сих пор цел и хранится в венском Политехническом музее. В 1950 г. 75-летний первый автомобиль вывели на улицы Вены и торжественно проехали на нем, демонстрируя приоритет Австрии.
Мы уже имеем современные, аэродинамических форм автомобили, оснащенные мощными экономичными двигателями внутреннего сгорания. КПД карбюраторных двигателей уже доведен до 30—35 %, дизелей – до 40—43 %. Но помните великого Станиславского с его знаменитым: «Не верю!»? Давайте и мы проверим, так ли это на самом деле.
1 кг бензина или солярки при сгорании выделяет 46,1 МДж. А легковой автомобиль, прошедший 100 км со средней для городского движения скоростью 40—60 км/ч, расходует на механическую работу по своему перемещению 20 МДж. Выходит, при КПД двигателя около 40 % расход топлива на 100 км должен быть около 1 кг! Спросите даже у опытных таксистов, сколько они расходуют топлива на 100 км пути в городе, и вы узнаете, что реальный КПД двигателя не более 10 %. В чем же дело? Почему КПД оказался отброшенным к временам Бенца и Даймлера и даже дальше?
Здесь хочется ответить вопросом на вопрос: а каков будет КПД крупной тепловой электростанции, если ее энергией питать… одну электролампочку? Еще меньше.
Любой тепловой двигатель рассчитан на определенную мощность, и КПД его максимален при мощности, близкой к максимальной. Если автомобиль, например легковой, будет эту мощность расходовать целиком, то ехать он должен со скоростью 150—200 км/ч. При этом почти вся энергия уйдет на «взбалтывание» воздуха – аэродинамические потери. Если же ехать со средней скоростью 60 км/ч (что для города даже много, она составляет для крупных городов 40—20 и менее км/ч), то двигатель не будет использовать даже десятой части своей мощности. Почти как лампочка, питаемая всей электростанцией. Вот и выходит КПД ниже Бенцовского.
Предположим, что КПД двигателя – это отношение механической энергии, выделенной для перемещения автомобиля, к тепловой энергии сгоревшего топлива. С КПД всего автомобиля сложнее, но давайте условно считать им отношение минимальной работы перемещения автомобиля к тепловой энергии сгоревшего топлива на этом же перемещении. Рассмотрим результаты зависимости этих КПД от скорости автомобиля. Что же мы получаем? Наиболее экономичное движение автомобиля наблюдается на скорости 40—50 км/ч для грузовиков и 60—70 км/ч для легковых автомобилей. Минимальный расход топлива при этом даже называется контрольным расходом, но КПД двигателя – ниже 10 %.
А двигатель развивает максимальный КПД при полной или почти полной мощности. Как же быть, если двигатель эффективно работает только на своей полной мощности, которая почти никогда не нужна? Может быть, не нужны автомобилям такие мощные двигатели? Нет, нужны, и эта мощность почти постоянно растет. Автомобиль с мощным двигателем становится динамичным, маневренным, безопасным, а стало быть, престижным…
А можно, чтобы было как в домашнем холодильнике: поработал, накопил холод – отключился? Накопленный холод делает свое дело, а как потеплеет, терморегулятор снова включит холодильник. Раньше, когда холодильники не имели терморегуляторов и «молотили» постоянно, они были очень неэкономичны.
Автомобильный двигатель вырабатывает механическую энергию, а мы знаем, что существуют накопители этой энергии – пружины, сжатый газ, маховики. Поработал двигатель на полной мощности с высоким КПД, передал энергию в накопитель – отключился, а автомобиль работает на этой накопленной энергии.
Реально ли это? Да, это реально, такие гибриды теплового двигателя и накопителей существуют, и расходуют они топлива в 2 с лишним раза меньше по сравнению с обычным двигателем. Накопитель гибрида помогает использовать энергию на спусках и торможениях, чтобы не гасить ее в тормозах. А это еще более повышает экономичность автомобиля.
1 – двигатель; 2 – сцепление; 3 – бесступенчатая трансмиссия; 4 – карданная передача; 5 – привод к ведущим колесам; 6 – маховик
Несмотря на то что встречаются гибриды и с электрическим накопителем, экономичнее, конечно, накапливать механическую энергию движения без преобразований. На рис. 291 показана компоновочная схема такого гибрида с тепловым двигателем и маховиком на легковом автомобиле. Это одно из исполнений на опытном образце, таких вариантов существует много. Здесь роль бесступенчатого звена может выполнять и гидростатическая или электрическая передача, и вариатор. В наших, отечественных гибридах, в частности, разработанных и испытанных автором, эту роль выполнял механический вариатор. Конечно же, экономичнее всего та передача, которая не преобразует механическую энергию двигателя в другие виды, а именно вариатор.
Ну а как же другие накопители механической энергии – пневматические, гидропневматические, пружинные? Годны ли они для гибридов? К сожалению, ни пружины, ни резина для этого дела не подходят – слишком малы их накопительные возможности. А вот газ – пожалуйста! Особенно с гидравликой – гидрогазовые или гидропневматические накопители.
1 – двигатель; 2 – гидрогазовый накопитель; 3 распределитель; 4 бак; 5 гидронасос-мотор; 6 ведущий мост автомобиля; 7 – редуктор; 8 карданные валы; 9 коробка передач
Схема гибридного силового агрегата с функцией и рекуператора энергии представлена на рис. 292. Подобный гибрид, изобретенный с участием автора для городского автобуса, был изготовлен и испытан. Гидрогазовый накопитель; накопитель вмещал 80 л масла, а гидромашина была мощностью 140 кВт. Особенно хорошо работала система в режиме рекуператора. При торможении автобуса соединенная с его трансмиссией гидромашина, работая в режиме насоса, закачивала в накопитель масло, сжимая газ. Автобус сбавлял скорость и останавливался. Для последующего разгона масло из накопителя направлялось в гидромашину, которая на сей раз работала в режиме мотора и разгоняла автобус. При торможении с 40 км/ч автобус при отключенном двигателе разгонялся до 30 км/ч, вызывая восторг и удивление всех присутствующих зевак. Представьте себе, что многотонная машина тихо и плавно трогается с места и разгоняется при остановленном двигателе (что было видно всем присутствующим через открытый задний двигательный отсек).
Аналогичные опыты были проведены фирмой «Вольво» (Швеция) и показали почти тот же результат – экономилось от 30 до 50 % топлива и значительно снижалась токсичность выхлопных газов. Но система была слишком сложной для серийного производства.
Отчасти можно считать гибридной установку с газом, сжатым в баллонах и питающим привод автомобиля – пневмокара (рис. 293).
Дело в том, что воздух при расширении сильно охлаждается, и подогрев его сильно повышает внутреннюю энергию газа, а следовательно, и пробег машины. Подобная схема изображена на рисунке 294. Если подогревать газ достаточно сильно, то установка выдаст больше энергии, чем в нее «закладывали». Таким образом, получается нечто вроде гибрида теплового двигателя и пневматического накопителя.
1– горелка; 2 – змеевик; 3 – баллон со сжатым воздухом; 4 – цилиндр двигателя
Автор еще в молодые годы изготовил для себя и ездил на подобном гибриде, показанном на рис. 295. Устройство настолько просто, что его легко построить самому. Баллон с углекислотой – от огнетушителя; пневматический гайковерт – с заводского конвейера (официально – из магазина); змеевик в емкости – от соседского самогонного аппарата. Остальное – из велосипеда и металлических труб. В емкость змеевика заливается кипяток, вентиль баллона открывается – и поехали!
1 – баллон с жидкой углекислотой; 2 – накопитель тепла со змеевиком; 3 – пневматический гайковерт; 4 – цепная передача
А совсем недавно, уже в начале ХХI в., такие автомобили, работающие на энергии сжатого воздуха, подогреваемого на входе в пневмодвигатель, стали выпускать во Франции. Автомобиль, рассчитанный на 5 человек, проходит около 20 км с одной заправкой баллонов воздухом под давлением 30 МПа.
Скорость такого автомобиля – до 100 км/ч. Заправка всего за 3 минуты от специальной станции сжатого воздуха.
Гибриды могут быть не только для автомобилей. Электростанции, работая ночью с малой загрузкой, тоже требуют накопителей энергии. Обычно это водохранилище, поднятое на гору; ночью вода закачивается в него мощными насосами, а в час пик сливается обратно по трубам на турбины. Но такое может быть только в гористой местности.
Иногда ночью закачивают воздух в отработанную шахту под давлением до 75 атмосфер; выпуская его на воздушные турбины, получают дополнительную энергию в часы пик. Есть даже проект горячего озера, где предполагается покрыть водоем одеялом из пенопластовых шаров и нагревать воду в нем по ночам, а в часы пик или зимой использовать эту горячую воду для получения энергии или отопления (рис. 296).
Странно, что этот проект появился в современной Германии, где так пекутся об экологии. Ведь рыба, живущая в этом озере, будет очень недовольна повышением в нем температуры до 75 °C!
Речь пойдет о столь необычных вещах, что они с первого взгляда покажутся сказкой. Что больше весит – чайник с горячей водой или с таким же количеством холодной? Неподвижный маховик или вращающийся? Вопросы эти имеют прямое отношение к теории относительности, связанной с именем А. Эйнштейна (1879—1955), важны они и для ядерной энергетики.
Да, горячий чайник весит (вернее, имеет массу) больше холодного. Да, вращающийся маховик с накопленной в нем энергией имеет массу больше неподвижного. Потому что добавочную массу дает… энергия, заключенная в горячем чайнике и вращающемся маховике! Сколько же весит энергия? Если разогнать ракету до скорости 10 км/с, то прибавка в массе будет примерно на десять порядков меньше массы самого тела в покое. Да ракету в полете и не взвесишь! Можно взвесить вращающийся маховик, но он способен иметь окружную скорость, лишь раз в 10 меньшую, чем ракета, и прибавки в его массе не заметят даже самые чувствительные весы.
Но все меняется, если тело разогнано до больших, близких к свету, скоростей. Электрон, например, можно разогнать до скорости, которая лишь на 35—40 км/с меньше скорости света; масса электрона при этом возрастает в 2 000 раз и становится даже больше массы неподвижного протона. Но до скорости света никакое тело нельзя разогнать, потому что для этого потребуется бесконечно большое количество энергии, да и само тело «вберет» в себя массу всей Вселенной, оно станет телом бесконечно большой массы! Поэтому и нельзя реально это сделать.
Только «частица света», или фотон, может мчаться со скоростью света. И то потому, что в покое фотон ничего не весит, или имеет массу покоя, равную нулю. А вот в разогнанном виде фотон имеет вполне конкретную массу. Она, правда, очень мала. Так, например, «частичка» – фотон зеленого света имеет энергию 4 х 10 – 19 Дж, и это соответствует массе всего в 4,4 х 10 – 36 кг!
В миллиграммах это, конечно, было бы побольше, но сейчас массу принято измерять в килограммах. Этот фотон имеет массу почти в 200 000 раз меньшую, чем электрон! Правда, с уменьшением длины волны масса фотона растет, и у гамма-лучей она может приблизиться к массе электрона, но все равно это очень мало!
К слову, несмотря на такую ничтожность энергии и массы, человек способен воспринимать уже несколько, всего 3 – 4 кванта, или фотона света. Трудно представить, что глаз может быть таким чувствительным прибором, даже гордость берет за наше зрение!
Ну а почем будет 1 кг энергии? Это очень легко вычислить по формуле Эйнштейна:
E = mc 2,
Где т – масса энергии, кг; с – скорость света в вакууме, или 3 · 108 м/с.
Итого получается, что 1 кг энергии эквивалентен 9 х 1016 Дж. Много это или мало?
Если 1 кг бензина, сгорая в 15 кг воздуха, выделяет 46,1 х 106 Дж, то 1 кг чистой энергии соответствует примерно 32 000 000 т бензо-воздушной смеси! Впечатляет, не правда ли? Такой энергией, если взорвать эту смесь, можно стереть с лица Земли крупный мегаполис. Вот почем кило энергии!
Как же ее выделить? Теоретически очень просто: нужно соединить соответствующее количество частиц с античастицами, например, электронов с позитронами или протонов с антипротонами. Можно даже соединить атомы вещества с атомами антивещества (например, водород с антиводородом) и получить аннигиляцию, или просто уничтожение вещества с образованием фотонов, или лучистой энергии. Желательно только не проделывать этого опыта самостоятельно, так как свет, полученный при этом, может быть очень ярок!
Шутка, конечно, потому что получить античастицы или антиматерию, хотя и можно, но очень сложно и дорого. Пока, по крайней мере. А чтобы получить более скромные количества энергии, уничтожая вещество, можно использовать атомную или термоядерную энергию. Проще всего это сделать в атомных или термоядерных бомбах.
1 – отражатель нейтронов; 2 – устройство для запала с задержкой; 3 – заряд взрывателя
Атомная бомба (рис. 297) представляет собой толстостенный стальной сосуд, в котором раздельно находятся два или более куска урана-235 или плутония-239. При поджигании запала заряд обычного взрывчатого вещества взрывается и быстро сближает куски урана или плутония, так что их суммарная масса становится больше так называемой критической. Если масса меньше критической, то образовавшиеся в ней нейтроны запала с задержкой вылетают из куска металла, так и не вызвав цепной реакции деления остальных ядер. Но если масса, например, урана-235 оказывается больше критической, или равной примерно 50 кг, то нейтроны достигают своей цели, разрушают остальные атомы, и наступает цепная реакция. Эту-то реакцию мы называем атомным взрывом и хорошо представляем ее по многочисленным фотографиям и телепередачам. Из 50 кг урана-235 только 1 кг ядер испытывают деление, но и при этом выделяется 8,4 х 1013 Дж энергии, что эквивалентно взрыву 20 000 т тринитротолуола.
Сравним с энергией аннигиляции 1 кг вещества и найдем, что последняя примерно в 1 000 раз больше; следовательно, при взрыве атомной бомбы с массой урана в 50 кг, только 1 г вещества уничтожится, перейдя в энергию. А сколько бед может принести этот грамм вещества!
Не следует думать, что 50 кг урана – это очень много. Уран – достаточно тяжелый металл, немногим легче золота, и эта его масса умещается в шаре радиусом 8,5 см!
Более мощным источником энергии служит так называемый термоядерный процесс, или процесс слияния, синтеза ядер. Например, можно образовать одно ядро гелия (два протона, два нейтрона) путем слияния ядер тяжелого водорода (дейтерия) и сверхтяжелого его изотопа (трития). При таких реакциях синтеза 1 кг массы выделяет примерно в 10 раз больше энергии, чем при реакции деления, например, урана. Главное, что здесь нет критической массы, и количество дейтерия и трития может быть как угодно велико. То есть разрушительная сила термоядерной бомбы теоретически не имеет пределов.
Схема термоядерной бомбы показана на рис. 298. Она имеет прочнейшую металлическую оболочку, в которой помещаются вещества, содержащие дейтерий и тритий. В качестве запала здесь – атомная бомба 1, состоящая, как и положено, из кусков урана или плутония, вместе составляющих критическую массу. Сближают эти куски заряды 2. При взрыве атомного запала развивается температура в миллионы градусов, при которых и происходит реакция синтеза. Прочный корпус бомбы необходим для того, чтобы активное вещество бомбы успело прореагировать, и его не раскидало вокруг в самом начале взрыва.
Ну а если энергию нужно получить не в виде взрыва, а постепенно, используя ее, например, для получения электроэнергии? С термоядерной энергией, наиболее емкой и безопасной с точки зрения радиоактивного заражения, пока дела обстоят неважно: денег и сил истрачено столько, сколько уже хватило бы, чтобы полностью освоить другие виды экологической энергии – ветра, солнечную или глубинного тепла Земли. Но пока задача людям не под силу.
Атомная же энергия давно служит для получения электроэнергии, причем в некоторых странах атомными электростанциями получают большую часть электроэнергии.
Устройство, в котором поддерживают управляемую реакцию деления ядер, называется атомным, или ядерным, реактором (рис. 299). Основными элементами атомного реактора являются: ядерное горючее, замедлитель нейтронов (вода тяжелая или обычная, графит и т. д.), теплоноситель для вывода тепла, образующегося при работе реактора (вода, жидкий натрий и др.), и устройство для регулирования скорости реакции (вводимые в рабочее пространство реактора стержни, содержащие кадмий или бор – вещества, которые являются хорошими поглотителями нейтронов).
1 – отражатель; 2 – регулирующие стержни; 3 – турбина; 4 – генератор; 5 – конденсатор; 6 – парогенератор
Уменьшение скорости нейтронов, которое происходит при столкновении их с ядрами замедлителя, выгодно потому, что вероятность захвата медленных нейтронов ураном с сотни раз больше, чем быстрых. Лучшим замедлителем нейтронов является тяжелая вода. Обычная же вода сама в значительном количестве захватывает нейтроны и превращается в тяжелую воду. Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов.
Возможны реакторы, работающие без замедлителя на быстрых нейтронах, что очень существенно при использовании реакторов в качестве источников энергии на судах или подводных лодках. Однако в реакторах на быстрых нейтронах не может быть использован в качестве горючего естественный уран, обогащенный изотопом 235. Реакторы же на медленных нейтронах могут работать и на естественном уране.
Управление реактором осуществляется вдвиганием и выдвиганием стержней. Вдвигая стержни реактора полностью, можно вообще приостановить цепную реакцию. Но это теоретически.
Опыт эксплуатации атомных реакторов показал, что вопрос использования атомной энергии неоднозначен. Безусловно, атомная энергия оказывается дешевле и, при отсутствии аварий, экологичнее, например, энергии, полученной на угольных электростанциях. Но цепная реакция относится к числу тех редчайших процессов, которые никогда не реализовывались в природе, по крайней мере, на Земле. Поэтому к последствиям таких процессов живая природа пока не приспособилась, и в том их опасность.
Авария в Чернобыле 26 апреля 1986 г., вызвавшая много споров о ее причинах, привела к гибели большого количества людей и радиоактивному заражению обширных территорий. Последствия этой катастрофы будут сказываться еще десятки и сотни лет, так как некоторые из радионуклидов, разбросанных по территории (например, стронций, плутоний), имеют большие периоды полураспада. Поэтому перспективы ядерной энергетики, по-видимому, должны быть пересмотрены по сравнению с весьма оптимистическими, существовавшими до 1986 г.
Вот вам и ответ на вопрос: «Почем килограмм энергии?»