13. Mr. Dalton’s Round Bits of Wood

Experimenting in my lab brought home to me that chemical mixtures were completely unlike chemical compounds. One could mix salt and sugar, say, in any proportion. One could mix salt and water – the salt would dissolve, but then one could evaporate it and recover the salt unchanged. Or one could take a brass alloy and recover its copper and zinc unchanged. When one of my dental fillings came out, I was able to distill off its mercury, unchanged. All of these – solutions, alloys, amalgams – were mixtures. Mixtures, basically, had the properties of their ingredients (plus one or two ‘special’ qualities perhaps – the relative hardness of brass, for example, or the lowered freezing point of salt water). But compounds had utterly new properties of their own.

It was tacitly accepted by most chemists in the eighteenth century that compounds had fixed compositions and the elements in them would combine in precise, invariable proportions – practical chemistry could hardly have proceeded otherwise. But there had been no explicit investigations of this, or declarations on the matter, until Joseph-Louis Proust, a French chemist working in Spain, embarked on a series of meticulous analyses comparing various oxides and sulphides from around the world. He was soon convinced that all genuine chemical compounds did indeed have fixed compositions – and that this was so however the compound was made, or wherever it was found. Red mercuric sulphide, for instance, always had the same proportions of mercury and sulphur, whether it was made in the lab or found as a mineral.[31]

Between pole and pole [Proust wrote] compounds are identical in composition. Their appearance may vary owing to their mode of aggregation, but their properties never… The cinnabar of Japan has the same composition as the cinnabar of Spain; silver chloride is identically the same whether obtained from Peru or from Siberia; in all the world there is but one sodium chloride; one saltpetre; one calcium sulphate; and one barium sulphate. Analysis confirms these facts at every step.

By 1799, Proust had generalized his theory into a law – the law of fixed proportions. Proust’s analyses, and his mysterious law, excited attention among chemists everywhere, not least in England, where they were to inspire profound insights in the mind of John Dalton, a modest Quaker schoolteacher in Manchester.

Gifted in mathematics, and drawn to Newton and his ‘corpuscular philosophy’ from an early age, Dalton had sought to understand the physical properties of gases – the pressures they exerted, their diffusion and solution – in corpuscular or ‘atomic’ terms. Thus he was already thinking of ‘ultimate particles’ and their weights, albeit in this purely physical context, when he first heard of Proust’s work, and by a sudden intuitive leap, saw how these ultimate particles might account for Proust’s law, and indeed the whole of chemistry.

For Newton and Boyle, though there were different forms of matter, the corpuscles or atoms of which they were composed were all identical. (Thus there was always, for them, the alchemical possibility of turning a base metal into gold, for this only entailed change of form, a transformation of the same basic matter.)[32] But now the concept of elements, thanks to Lavoisier, was clear, and for Dalton there were as many kinds of atoms as there were elements. Every one had a fixed and characteristic ‘atomic weight’, and this was what determined the relative proportions in which it combined with other elements. Thus if 23 grams of sodium invariably combined with 35.5 grams of chlorine, this was because sodium and chlorine atoms had atomic weights of 23 and 35.5. (These atomic weights were not, of course, the actual weights of atoms, but their weights relative to that of a standard – for example, that of a hydrogen atom.)

Reading Dalton, reading about atoms, put me in a sort of rapture, thinking that the mysterious proportionalities and numbers one saw on a gross scale in the lab might reflect an invisible, infinitesimal, inner world of atoms, dancing, touching, attracting, and combining. I had the sense that I was being enabled to see, using the imagination as a microscope, a tiny world, an ultimate world, billions or trillions of times smaller than our own – the actual constituents of matter.

Uncle Dave had shown me gold leaf, beaten and hammered out until it became almost transparent, so that it transmitted light, a beautiful bluish green light. This leaf, a millionth of an inch thick, he said, was only a few dozen atoms thick. My father had shown me how a very bitter substance such as strychnine could be diluted a millionfold and still be tasted. And I liked to experiment with thin films, to blow soap bubbles in the bath – a speck of soapy water could be blown, with care, into a huge bubble – and to watch oil, in iridescent films, spreading on wet roads. All these prepared me, in a way, to imagine the very small – the smallness of particles that composed the millionth-of-an-inch thickness of gold leaf, a soap bubble, or an oil film.

But what Dalton intimated was infinitely more thrilling: for it was not just atoms in the Newtonian sense, but atoms as richly individual as the elements themselves – atoms whose individuality gave elements theirs.

Dalton later made wooden models of atoms, and I saw his actual models in the Science Museum as a boy. These, crude and diagrammatic as they were, excited my imagination, helped give me a sense that atoms really existed. But not everyone felt this, and, for some chemists, Dalton’s models epitomized the absurdity, as they saw it, of an atomic hypothesis. ‘Atoms’, the eminent chemist H.E. Roscoe was to write, eighty years later, ‘are round bits of wood invented by Mr. Dalton.’

It was indeed possible, in Dalton’s time, to regard the idea of atoms as implausible, if not outright nonsense, and it would be over a century before indisputable evidence for the existence of atoms was secured. Wilhelm Ostwald, for one, was not convinced of the reality of atoms, and in his 1902 Principles of Inorganic Chemistry he wrote:

Chemical processes occur in such a way as if the substances were composed of atoms… At best there follows from this the possibility that they are in reality so: not however, the certainty… One must not be led astray by the agreement between picture and reality, and confound the two… An hypothesis is only an aid to representation.

Now, of course, we can ‘see’ and even manipulate individual atoms, using an atomic force microscope. But it required enormous vision and courage, at the very beginning of the nineteenth century, to postulate entities so utterly beyond the bounds of any empirical demonstration possible at the time.[33]

Dalton’s theory of chemical atoms was detailed in his notebook on the 6th of September, 1803, his thirty-seventh birthday. He was at first too modest or too diffident to publish anything on his theory (he had, however, worked out the atomic weights of half a dozen elements – hydrogen, nitrogen, carbon, oxygen, phosphorus, sulphur – which he recorded in his notebook). But word was soon out that he had hatched something astonishing, and Thomas Thomson, the eminent chemist, went up to Manchester to meet him. A single short conversation with Dalton in 1804 ‘converted’ Thomson, altered his life. ‘I was enchanted’, he later wrote, ‘with the new light which immediately burst upon my mind, and I saw at a glance the immense importance of such a theory.’

Although Dalton had presented some of his thoughts to the Literary and Philosophical Society in Manchester, they did not become known to a wider public until Thomson wrote of them. Thomson’s presentation was brilliant and persuasive, much more so than Dalton’s own exposition, which was crammed, awkwardly, into the final pages of his 1808 New System.

But Dalton himself realized that there were fundamental problems with his theory. For to pass from a combining or equivalent weight to an atomic weight required that one know the exact formula of a compound, for the same elements, in some cases, might combine in more than one way (as in the three oxides of nitrogen). So Dalton assumed that if two elements formed only a single compound (as hydrogen and oxygen appeared to do in water, or nitrogen and hydrogen in ammonia), they would do so in the simplest possible ratio: one to one. This ratio, he felt, would surely be the most stable. Thus he took the formula of water (in modern nomenclature) to be HO, and the atomic weight of oxygen to be the same as its equivalent weight, namely 8. Similarly, he took the formula of ammonia to be NH, and thus the atomic weight of nitrogen to be 5.

And yet, as was demonstrated by the French chemist Gay-Lussac, in the very year that Dalton published his New System, if one measured volumes and not weights one found that two volumes, not one, of hydrogen combined with one volume of oxygen, to yield two volumes of steam. Dalton was skeptical of these findings (although he could have confirmed them himself with great ease), skeptical because he felt they would entail the breaking of an atom into two, to allow the combination of a half-atom of oxygen with each atom of hydrogen.

Although Dalton talked about ‘compound’ atoms, he had not clearly distinguished (any more clearly than his predecessors) between molecules – the smallest amount of an element or compound that could exist free – and atoms – the actual units of chemical combination. The Italian chemist Avogadro, reviewing Gay-Lussac’s results, now hypothesized that equal volumes of gases contained equal numbers of molecules. For this to be so, the molecules of hydrogen and oxygen would have to have two atoms apiece. Their combination to form water, therefore, could be represented as 2H2+1O2 → 2H20.

But in an extraordinary way (at least so it seems in retrospect), Avogadro’s suggestion of diatomic molecules was ignored or resisted by virtually everyone, including Dalton. There remained great confusion between atoms and molecules, and a disbelief that atoms of the same sort could link together. There was no problem in seeing water, a compound, as H20, but a seemingly insuperable difficulty in allowing that a molecule of pure hydrogen could be H2. Many atomic weights of the early nineteenth century were thus wrong by simple numerical factors – some seemed to be half what they should be, some twice, some a third, some a quarter, and so on.

Griffin’s book, my first guide in the laboratory, was written in the first half of the nineteenth century, and many of his formulas, and hence many of his atomic weights, were as erroneous as Dalton’s. Not that any of this mattered too much in practice – nor, indeed, did it affect the great virtue, the many virtues, of Griffin. His formulas and his atomic weights might indeed have been wrong, but the reagents he suggested, and their quantities, were exactly right. It was only the interpretation, the formal interpretation, that was askew.

With such confusion about elemental molecules, added to uncertainty about the formulas of many compounds, the very notion of atomic weights started to be discredited in the 1830s, and indeed the very notion of atoms and atomic weights fell into disrepute, so much so that Dumas, the great French chemist, exclaimed in 1837, ‘If I were master I would efface the word atom from science.’

Finally in 1858, Avogadro’s countryman Stanislao Cannizzaro realized that Avogadro’s 1811 hypothesis provided an elegant way out of the decades-long confusion about atoms and molecules, atomic and equivalent weights. Cannizzaro’s first paper was as ignored as Avogadro’s had been, but when, at the close of 1860, chemists gathered at the first-ever international chemical meeting in Karlsruhe, it was Cannizzaro’s presentation that stole the show, and ended the intellectual agony of many years.

* * *

This was some of the history I nosed out when I emerged from my lab and got a ticket to the library of the Science Museum in 1945. It was evident that the history of science was anything but a straight and logical series, that it leapt about, split, converged, diverged, took off at tangents, repeated itself, got into jams and corners. There were some thinkers who paid little attention to history (and it may be that there are many original workers who are much better off for not knowing their precursors or antecedents – Dalton, one feels, might have had more difficulty in proposing his atomic theory had he known the huge and confused history of atomism for the two thousand years that preceded him). But there were others who pondered the history of their subjects continually, and whose own contributions were integrally related to their pondering – and it is clear that this was the case with Cannizzaro. Cannizzaro thought intensely about Avogadro; saw the implications of his hypothesis as no one else had; and with them, and his own creativity, revolutionized chemistry.

Cannizzaro felt very passionately that the history of chemistry needed to be in the minds of his students. In a beautiful essay on the teaching of chemistry, he described how he introduced his pupils to its study by ‘endeavouring to place them… on the same level with the contemporaries of Lavoisier’, so that they might experience, as Lavoisier’s contemporaries did, the full revolutionary force, the wonder of his thought; and then a few years ahead, so that they could experience the sudden, blinding illumination of Dalton.

‘It often happens’, Cannizzaro concluded, ‘that the mind of a person who is learning a new science, has to pass through all the phases which the science itself has exhibited in its historical evolution.’ Cannizarro’s words had a powerful resonance for me, because I, too, in a way, was living through, recapitulating, the history of chemistry in myself, rediscovering all the phases through which it had passed.

Загрузка...